LA-UR-24-28824

Approved for public release; distribution is unlimited.

- **Title:** Improvements to Contributions from Neutron Inelastic Scattering for Next-Event Estimators in MCNP® Software
- **Author(s):** Sweezy, Jeremy Ed
- **Intended for:** 4th Annual 2024 MCNP® User Symposium, 2024-08-19/2024-08-22 (Los Alamos, New Mexico, United States)

Issued: 2024-08-28 (rev.1)

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National Nuclear Security
Administration of U.S. Department of Energy under contract 892

Improvements to Contributions from Neutron Inelastic Scattering for Next-Event Estimators in MCNP® Software

Jeremy Sweezy 4th Annual 2024 MCNP® User Symposium Aug 20, 2024

LA-UR-24-28824

Conclusions for the Impatient - Spoiler Alert!

- Minor corrections in MCNP® 6.3.1 for inelastic neutron scattering contributions to Point Det. / DXTRAN spheres
- Average users won't notice. Nuclear data nerds might.
	- Inelastic cross section generally much smaller than elastic cross section
	- Energy range of the corrections:
		- $\triangle E = -Q/(A * (A 1))$
		- H-1, He-3, He-4 have no inelastic reactions
		- Only appreciable for Deuterium (H-2) and Tritium (H-3)
		- Small energy range, −*Q* × (10's keV), for small mass targets (3 < *A* < 33)
		- Tiny energy range, −*Q* × (< 1 keV), for large mass targets (*A* > 33)

What is a Next-Event Estimator?

- In MCNP nomenclature, a Next-Event Estimator (NEE) is termed a point detector, or F5 tally
- FIP, FIC, and FIR tallies are arrays of NEEs
- DXTRAN (DXT), Deterministic Transport, also uses NEE scattering physics **Diagram of a FIR (Flux Image**

Radiograph) tally.

NEE Energy from Neutron Inelastic Scattering

Particle-Transport Simulation with the Monte Carlo Method

L. L. Carter and E. D. Cashwell Los Alamos Scientific Laboratory

"..the lower root E′ *l* − *can usually be ignored without introducing appreciable error.' [\[1\]](#page-25-0)*

NEE Energy from Neutron Inelastic Scattering

Particle-Transport Simulation with the Monte Carlo Method

L. L. Carter and E. D. Cashwell Los Alamos Scientific Laboratory

UNCLASSIFIED 8/20/2024 | 5

NEE Energy from General Neutron Scattering

• Generalized equation (moving and non-moving target, elastic and inelastic scattering) for outgoing neutron energy in the LAB frame [\[2,](#page-25-1) [3\]](#page-26-0):

$$
E'_{l\pm}=E_{cm}[\mu_l\pm D]^2
$$

For a stationary target: $E_{cm} = \frac{E_{cm}}{100 \text{ Hz}}$ $\frac{27}{(A+1)^2}$ (Specific Energy of COM System) $D =$ s $\left(\mu_l^2 - \left(1 - \frac{E_c'}{E_{cm}}\right)\right)$ (This is the $\sqrt{\text{discriminate}}$)

- The outgoing energy in the COM frame, E'_c , is:
	- provided by nuclear data for inelastic scattering
	- $-$ provided by kinematics for elastic scattering ($E_c^{\prime}=E_c$)

NEE Weight from General Neutron Scattering

• The outgoing weight is the original weight multiplied by the differential angular probability,

$$
w'=wp(\mu_l)
$$

• The Jacobian (∂µ*c*/∂µ*^l*) is used for conversion of the differential angular probabilities from the center-of-mass (COM) to laboratory frame (LAB):

$$
p(\mu_I) = p(\mu_c) \partial \mu_c / \partial \mu_I
$$

• And an expression for the Jacobian (∂µ*c*/∂µ*^l*) that is valid for both roots is:

$$
\frac{\partial \mu_c}{\partial \mu_l} = E'_l \frac{1}{\sqrt{E'_c E_{cm} D^2}}.
$$

NEE Energy and Jacobian

Two roots only valid for limited scattering angles: $\sqrt{1 - A^2 - QA(A+1)/E_l} < \mu_l < 1$

Examples of Two Root Ranges for Various Isotopes/Reactions

MCNP ≤ **6.3.0, NEE for Level Scattering**

MCNP ≤ **6.3.0, NEE for Law 44 and Law 61**

MCNP ≤ **6.3.0, Neutron NEE - Scattering Angle Issues**

- Reactions are only possible if −1.0 ≤ µ*^c* ≤ 1.0
- Floating point comparisons for $\mu_c \approx -1$ and $\mu_c \approx 1$ were not properly handled
	- some contributions were neglected
	- lead to minor underestimation
- Law 44 (Kalbach 87): Incorrect handling for $\mu_c < -1.0$ and $\mu_c > 1.0$
	- Was incorrectly reset to:

$$
\mu_c = -1.0 \text{ for } \mu_c < -1.0,
$$

or

 $\mu_c = 1.0$ for $\mu_c > 1.0$

– lead to overestimation, for backward scattering

MCNP ≥ **6.3.1, Corrections**

- All inelastic reactions implementations combined into a single implementation
- The correction solves for both roots [\[2\]](#page-25-1).
- If $(-1.0 > \mu_c > -1.0 + \epsilon)$ then set $\mu_c = -1.0$
- If $(1.0 < \mu_c < 1.0 + \epsilon)$ then set $\mu_c = 1.0$

MCNP Tests with Single Reaction Cross-sections

- Single reaction cross-sections generated with ACEtk
- Thin target
- Tally single scatter only
- Compare F5 to F4 torus

Testing - Law 44 (Kalbach 87) - Within Two Root Region

B-11 (z,n α) - Law 44 (Kalbach 87), 9.545 MeV Source, $\mu_l = 1.0$

Law 44 (Kalbach 87) – Within Single Root Region

B-11 (z,nα) - Law 44 (Kalbach 87), 10.0 MeV Source, µ*^l* = −0.9

Law 61 (Tabulated Energy Angle) – Within Two Root Region

Al-26 MT 91 (Continuum Scattering) - Law 61, 5.035 MeV Source, µ*^l* = 0.9

Law 61 (Tabulated Energy Angle) – Within Two Root Region

Al-26 MT 91 (Continuum Scattering) - Law 61, 5.035 MeV neutrons, µ*^l* = 1.0

Integral Test - LLNL Pulse Sphere - D2**O Diagram**

- D_2O sphere with fusion neutron generator
- Time-of-flight measurements

Integral Test - LLNL Pulse Sphere - D₂O Results

Integral Test - LLNL Pulse Sphere - D₂O Results

Questions Email: jsweezy@lanl.gov

UNCLASSIFIED 8/20/2024 | 23

References I

[1] Leland L. Carter and Edmond D. Cashwell.

Particle Transport Simulation with the Monte Carlo Method. Technical Information Center, Energy Research and Development Administration, Los Alamos, NM, USA, October 1975. TID-26607. <https://www.osti.gov/biblio/4167844>.

[2] Jeremy Ed Sweezy.

Improvements to Contributions from Neutron Inelastic Scattering for Next-Event Estimators in MCNP® Software.

Technical Report LA-UR-23-31561, Rev. 1, Los Alamos National Laboratory, Los Alamos, NM, USA, November 2023.

<https://www.osti.gov/biblio/2205018>.

References II

[3] Jeremy Ed Sweezy.

Neutron Next-Event Estimators Kinematics.

Technical Report LA-UR-23-30378, Rev. 2, Los Alamos National Laboratory, Los Alamos, NM, USA, September 2023. <https://www.osti.gov/biblio/2000872>.

