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Abstract

An analytic solution to a previously studied toy problem is derived and used as a
code verification benchmark. Using various Random Number Generators (RNGs) in
MCNP6, including the newest SFC64 RNG available in MCNP6.3.1, and their various
properties (e.g., RNG stride), we show how these RNGs perform and how to correct
or workaround potential issues with respect to the analytic benchmark problem.
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Hendricks’ Spherical Benchmark

In 1991, John Hendricks studied the effects of changing the random number stride in
Monte Carlo calculations using a simple test problem [1].

• Static, one-speed transport
• 15-mean-free-path radius sphere
• Isotropic point source at center
• 10% absorbing, 90% scattering

(mock cross sections made with
simple ace.pl utility)

• Random numbers (RNs) are used for
only a few basic functions
– direction-of-flight: 2 RNs
– distance-to-collision: 1 RN
– reaction sampling or rouletting: 1 RN
– total: 4 RNs per track
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Spherical Integral Transport Equation

Hendricks’ spherical benchmark is expressed analytically by the static, one-speed,
integral neutron transport equation for a homogeneous material in one-dimensional
spherical coordinates [2], i.e.,

rϕ(r) =
∫ a

0
r ′q(r ′)

[
E1
(
ΣT |r − r ′|

)
− E1

(
ΣT |r + r ′|

)]
dr ′, (1)

for a finite or infinite radial boundary a, where

q(r ′) =
ΣS

2
ϕ(r ′) +

Q(r ′)
2

(2)

and En(x) is defined by the integral

En(x) =
∫ 1

0
e−x/µµn−2dµ. (3)

8/22/2024 | 4



Numerical Approximation of the Integral

The integral in the transport equation is approximated by an N-point quadrature rule,

rϕ(r) =
N∑

j=1

wj rjq(rj)
[
E1
(
ΣT |r − rj |

)
− E1

(
ΣT |r + rj |

)]
, (4)

where rj and wj are the quadrature points and weights, respectively. The scalar flux
is evaluated at the quadrature points to form a closed system of equations,

riϕi =
N∑

j=1

wj rjq(rj)
[
E1
(
ΣT |ri − rj |

)
− E1

(
ΣT |ri + rj |

)]
, (5)

where ϕi ≡ ϕ(ri).
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Removal of the Logarithmic Singularity

The exponential integral has a logarithmic singularity at ri − rj = 0. It is removed by
adding and subtracting rq(r) under the integral,

rϕ(r) =
∫ a

0

[
r ′q(r ′)− rq(r) + rq(r)

] [
E1
(
ΣT |r − r ′|

)
− E1

(
ΣT |r + r ′|

)]
dr ′. (6)

The integral is separated into two parts and the second integral is solved exactly,

rϕ(r) =
∫ a

0

[
r ′q(r ′)− rq(r)

] [
E1
(
ΣT |r − r ′|

)
− E1

(
ΣT |r + r ′|

)]
dr ′ + rq(r)p(r), (7)

where

p(r) =
1
ΣT

{2 [1 − E2 (ΣT r)]− E2 [ΣT (a − r)] + E2 [ΣT (a + r)]} . (8)
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Formulation of the System of Equations (1 of 2)

The integral in the transport equation with the logarithmic singularity removed is
approximated by an N-point quadrature rule,

riϕi =
N∑

j ̸=i
j=1

wj
[
rjq(rj)− riq(ri)

] [
E1
(
ΣT |ri − rj |

)
− E1

(
ΣT |ri + rj |

)]
+ riq(ri)p(ri). (9)

This is recast as a N × N system of equations,

A ϕ = Q, (10)
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Formulation of the System of Equations (2 of 2)

where

Aij = ri

[
1 − ΣS

2
p(ri)

]
+

N∑
j ̸=i
j=1

wj ri
ΣS

2
[
E1
(
ΣT |ri − rj |

)
− E1

(
ΣT |ri + rj |

)]
(11)

for i = j ,

Aij = −wj rj
ΣS

2
[
E1
(
ΣT |ri − rj |

)
− E1

(
ΣT |ri + rj |

)]
(12)

for i ̸= j , and

Qi = ri
Q(ri)

2
p(ri) +

N∑
j ̸=i
j=1

wj

[
rj

Q(rj)

2
− ri

Q(ri)

2

] [
E1
(
ΣT |ri − rj |

)
− E1

(
ΣT |ri + rj |

)]
.

(13)
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Isotropic Point Source

The uncollided scalar neutron flux is Qi/ri . For a spherical system with an isotropic
point source at the center, i.e.,

Q(r) =
s0

4π
δ(r)
r2 , (14)

the uncollided flux is
ϕi = s0

exp (−ΣT ri)

4πr2
i

, (15)

which means that
Qi = s0

exp (−ΣT ri)

4πri
. (16)
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Results for 10,000 Gauss-Legendre Quadrature Points
Converged to 6 Significant Figures

Tally Surface Flux
1 1.43284E-01
2 3.71264E-02
3 1.41400E-02
4 6.19403E-03
5 2.91509E-03
6 1.43307E-03
7 7.25476E-04
8 3.75078E-04
9 1.96984E-04
10 1.04658E-04
11 5.60141E-05
12 2.99863E-05
13 1.57773E-05
14 7.70698E-06

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Tally Surface

10 4

10 1

102

105

108

1011

Fl
ux

Analytic
MCNP±1

The MCNP6 [3] default random number generator
(GEN=1) is used with STRIDE=1.
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Implications of Exceeding the Random Number Generator
Stride

warning. random number stride 1 exceeded 10000000 times.

The sample (population) variance is used to calculate the reported standard
deviation of the mean, assuming that all histories are independent and uncorrelated.
That is,

S2 =
N

N − 1

 1
N

N∑
i=1

x2
i −

(
1
N

N∑
i=1

xi

)2 . (17)

If the random number stride is exceeded, then the correlations between histories
must be taken into account to obtain the proper sample variance and subsequent
standard deviation of the mean.
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Generalized Population Variance

The sample (population) covariance between neighboring (offset) histories can be
defined as,

Ci,i+j =
N − j

N − j − 1

 1
N − j

N−j∑
i=1

xixi+j −

 1
N − j

N−j∑
i=1

xi

 1
N − j

N∑
i=1+j

xi

 , (18)

where 1 ≤ j < N represents the history offset. For example, if j = 1 the sample
covariance Ci,i+1 is the covariance between subsequent histories. If j = 0, we
recover the sample variance. The covariance-corrected sample variance can then be
defined as,

S̃2 = S2 + 2
N−1∑
j=1

Ci,i+j , (19)
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Computing Sample Covariance
PTRAC has a legacy feature where individual history scores can be printed into an
easy-to-use column-formatted file:

ptrac file=asc write=all max=9e9 coinc=col

tally=12,22,32,42,52,62,72,82,92,102,112,122,132,142

value=0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0

This produces a PTRAC file in the following form:
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Correlations Between Histories

The normalized correlation coefficient can be used to visualize the magnitude of any
issues when exceeding the stride:

ρi,i+j =
Ci,i+j√

Ci,iCi+j,i+j
(20)

The history-offset correlations are computed using the MCNP6 default and the new
SFC64 random number generator [4] in MCNP6.3.1 and later.
• SFC64 (RAND GEN=8) has no stride. Each history uses an independent stream of

random numbers.
• 48-bit LCG (RAND GEN=1) with strides of 1, 2, 8, 16, 100, 1,000, and 152,917

(default stride).
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Numerical Results: Correlations
Positive correlation values between neighboring histories can be seen in red when
the random number generator stride is exceeded.
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Numerical Results: Probability Density Functions
Each histogram and curve in blue represent 10,000 independent (varying random
number seed) mean values.
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Numerical Results: Z Scores and Relative Standard
Deviations

A metric to determine how close
the distribution is to the reference
solution is the Z score, defined as

Z =
µ− x
σ

, (21)

where x is the semi-analytic
reference flux.
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Summary

• A semi-analytical solution to a simple benchmark is provided along with consistent
MCNP6 results.

• The standard deviation of the mean of the tallies can be underestimated if the
random number generator stride is exceeded; the mean of the tallies are
unaffected.

• The covariance-corrected standard deviation can be computed to obtain more
appropriate confidence intervals.

• The best way to avoid any stride exceedance issues is to use the new SFC64
(RAND GEN=8) random number generator in MCNP6.3.1 and later.
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