LA-UR-24-28660

Approved for public release; distribution is unlimited.

Title: Verifying Burnup Calculations on Unstructured Mesh

- **Author(s):** Gonzalez, Esteban Armstrong, Jerawan Chudoung
- **Intended for:** MCNP User Symposium 2024, 2024-08-19/2024-08-22 (Los Alamos, New Mexico, United States)

Issued: 2024-08-30 (rev.1)

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National Nuclear Security
Administration of U.S. Department of Energy under contract 892

Verifying Burnup Calculations on Unstructured Mesh

Esteban Gonzalez (Radiation Protection Programs) Jerawan Armstrong (Monte Carlo Methods, Codes & Applications)

2024 MCNP User Symposium August 19-22, 2024

LA-UR-24-28660

Outline

- Introduction:
	- − MCNP6 Burnup Feature
	- − MCNP6 Unstructured Mesh Feature
- Verify MCNP burnup calculations on unstructured mesh models
	- − Unstructured Mesh (UM) geometry models VS Constructive Solid Geometry (CSG) models.
- ACTIUM
	- − Coupling MCNP & CINDER2008 in AARE
- Conclusions and future works

MCNP6 Depletion/Burnup Feature

- Only for KCODE problems
- BURN card (MCNP internally links to CINDER90)
	- − MCNP for steady-state flux calculations
	- − CINDER90 for nuclide depletion calculations
- Limitations:
	- poor numerical stability
	- severely out-of-date data
	- not for fixed source problems

two iterations at each time-step

MCNP Unstructured Mesh (UM) Feature

• Particle transport on unstructured meshes

Mesh Input File Format:

- Abaqus Input [6.0 6.3 versions]
- HDF5 [6.3 version]

EEOUT (Element Edit OUTput) File Format:

- Flat File [6.0 6.3 versions]
- HDF5 [6.3 version]

Burnup & Unstructured Mesh Verification

- MCNP burnup calculations on unstructured meshes are needed for advanced reactors design analysis.
	- − MCNP UM calculations provide high-fidelity results that can be easily mapped to other finite element analysis codes for Multiphysics calculations.
	- − MCNP burnup calculations on constructive solid geometries (CSG) were validated for many reactor applications.
	- − No V&V (verification & validation) work on MCNP burnup calculations on unstructured meshes.
- Verification Approach:
	- − Create equivalent MCNP CSG and UM input files.
	- − Run MCNP CSG & UM calculations to compare calculation results.

Verification

Two Test Problems

- Two test problems are taken from the International Handbook of Evaluation Criticality Safety Benchmark Experiments.
	- − **Godiva**: HEU-MET-FAST-001; Bare HEU sphere
	- − **GodivaR**: HEU-MET-FAST-004; HEU sphere reflected by water
- CUBIT (Sandia National Laboratory's automated mesh generation toolkit) is used to create unstructured mesh models.
	- − Linear hexahedral (6-face 8-node) elements

Unstructured Mesh Models

- **Godiva** (HEU-MET-FAST-001):
	- Highly Enriched Uranium (HEU) bare sphere
	- Metallic uranium with 93.71 wt. % U-235 with a radius of 8.7407 cm
	- Meshed Volume: 99.58% of HEU
	- Number of elements: 7,168
- **GodivR** (HEU-MET-FAST-004):
	- HEU sphere refracted by water
	- 97.67 wt. % U-235 with a radius of 6.55 cm
	- Reflected by a sphere of water that has a radius of 33.47 cm surrounding it
	- Meshed Volume: 99.9% of HEU and 99.8% of H2O
	- Number of elements: 127,688 HEU and 125,928 H2O

MCNP Input Setup

- **KCODE** card
	- − 10,000 neutrons/cycle; total of 250 cycles; discard the first 50 cycles
	- − use default for other options
- **BURN** card
	- − fissile material will be depleted
	- − 60 days of burnup (time steps: 1,1,1,1,1,55)
	- − 1 MW power
	- − use default for other options

Results: Keffective Value

- Godiva (HEU-MET-FAST-001):
	- CSG: 1.000395 \pm 0.00073
	- UM: 0.998231 ± 0.000703 .
	- Benchmark: 1.000 ± 0.001
	- Meshed Volume: **99.58% of HEU**
- GodivR (HEU-MET-FAST-004):
	- CSG: 0.999 ± 0.0006
	- $UM: 0.999 + 0.0005$
	- Benchmark: 0.9985 ± 0.0011
	- Meshed Volume: **99.9% of HEU and 99.8% of H2O**

Results: Isotope Compositions

- Isotopes Compositions of the fissile material after the final burnup time
- Discrepancies between the UM & CSG models are observed for the other transuranic isotopes produced upon burnup
	- − Th²³⁰, Pa²³¹, U233,236,237,239, Np237,238,239 and Pu238,239,240

Fuel Initial Compositions

-Godiva

-GodivR

BURN: Time steps of 1-day, 1-day, 1-day, 1-day, 1-day, and 55-days for a total of 60 days burnup. With 10,000 neutrons/cycle for 250 total cycles.

Comparing the fuel composition after Burn

• Godiva

• GodivR − CSG

− UM

The same change is observed for the initial fuel isotopes in both CSG and UM.

Comparing the products after Burn: Godiva

- Over only 60 days of burnup, significant difference is observed for certain isotopes.
- Difference is growing iteratively.
- Will continue to grow with more burn up.
- Burn steps $1,1,1,1,1,55$ days

Atomic Fraction

Comparing the products after Burn: GodivR

- Over only 60 days of burnup, significant difference is observed for certain isotopes.
- Difference is growing iteratively.
- Will continue to grow with more burn up.
- Burn steps 1,1,1,1,1,55 days

Atomic Fraction

Considerations, observations

- 1 Time step review (60 days) GodivR
- Comparing CSG and UM
- The biggest difference is observed for Th-232.
- Missing the initial smaller time step increments.

-Such as 1 day, 5 day -Not accounting accurately for shorter lived isotopes.

Atomic Fraction

Considerations, things to note

- Burn time steps 60 days vs 1, 1, 1, 1, 1, 55 days (GodivR)
- CSG, difference in UM is also observed.
- Dependent on your burn time step set up.

GodivR CSG comparison of Burn

 \leftarrow

Alternative Approach: ACTIUM

- The ACTIUM code was developed for coupling CINDER2008 as a part of the Activation in Accelerator Radiation Environments (AARE) package with MCNP6 and produce transmuted quantities per time step on an unstructured mesh.
	- ACTIUM is a Python code developed at LANL.
	- ACTIUM uses the latest ENDF/B VIII.0 cross section libraries for the transmutation calculations.
- The ACTIUM code was updated to handle HDF5 EEOUT files created by MCNP6.3.
	- This allows for post processing of the results with ParaView.

Closer look at ACTIUM

- Advantage:
	- − Perform burnup at elements
	- − Writes an HDF5/XDMF file with atomic composition at elements
	- − Visualization in ParaView
	- − ENDF/B VIII.0 cross section
- Limitations:
	- − Poor performance for models with large number of elements
	- One time step only

Atom Density for U-233 after 60 day burn period for Godiva using MCNP Actium

Benefit of ACTIUM approach:

- ACTIUM provides the material composition at elements
- CSG provides the average result on the cell.
- Current UM capabilities of MCNP provide the average result of the Pseudo-cell.

Benefit of ACTIUM approach:

- UM can interrogate individual sections within a cell.
- Closer look at each isotope.
- 2 \cdot $^{4}_{2}$ *He*, alpha from decay and activation resulting from neutron capture.

Atom Density for ${}^{4}_{2}$ He after 60 day burn period for GodivR (H2O region) using ACTIUM (MCNP/CINDER2008)

Conclusions & Future Work

MCNP6, which internally links to CINDER90, does not output material compositions at elements for unstructured mesh calculations.

ACTIUM (MCNP/CINDER2008) can be used for depletion calculations on unstructured mesh and output material compositions at elements.

• Very poor performance for large number of elements when using ACTIUM. Example: 150k elements took over a week to run.

Future work:

- Refactor ACTIUM to fix performance.
- Integrate CINDER2024 in ACTIUM.

References

[1] Kulezsa et al., "MCNP® Code Version 6.3.0 Theory & User Manual", LA-UR-22-30006, Rev. 1, Los Alamos National Laboratory (2022).

[2] Josey, "The Status of Accelerator Transmutation Modelling within the MCNP Code", LA-UR-24-22232, Los Alamos National Laboratory (2024).

[3] Trellue et al., "Production and Depletion Calculations Using MCNP, LA-UR-12-25804", Los Alamos National Laboratory (2012).

[4] Gonzalez et al., "MCNP6.3 Unstructured Mesh Verification: GodivR and CANDU Models", LA-UR-22-33091, Los Alamos National Laboratory (2022).

