LA-UR-22-30539

Approved for public release; distribution is unlimited.

Title:MCNP6.3 Unstructured Mesh Verification: Godiva and CANDU ModelsAuthor(s):Gonzalez, Esteban
Armstrong, Jerawan Chudoung
Tutt, James RobertIntended for:2022 MCNP User Symposium, 2022-10-17/2022-10-21 (Los Alamos, New
Mexico, United States)Issued:2022-10-10

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National Nuclear Security Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

MCNP6.3 Unstructured Mesh Verification: Godiva and CANDU Models

Esteban Gonzalez, Jerawan Armstrong, James Tutt

MCNP User Symposium October 17-21, 2022

MCNP Unstructured Mesh Feature

Mesh Input File Format:

- Abaqus Input (ASCII; MCNP 6.0 6.3 versions)
- HDF5 (binary; MCNP 6.3 version)

EEOUT (Elemental Edit OUTput) File Format:

- Flat File (ASCII or binary; MCNP 6.0 6.3 versions)
- HDF5 (binary; MCNP 6.3 version)

35 SIMULIA

ABAOUS

The HCF Group

Using CUBIT to create Abaqus Input Files for MCNP UM Calculations

- Create solid 3D geometry or import CAD model.
- 2. Prepare model for meshing.
- 3. Generate mesh.
- Check mesh qualities and volumes. If they are not good enough, go to 1, 2, or 3.
- 5. Create materials.
- 6. Create blocks and assign materials.
- 7. Export a mesh model as an Abaqus file.
- 8. Run cubit_to_mcnp.py to create an Abaqus file satisfying the MCNP requirement.
- Run write_mcnp_um_input.py on a modified Abaqus input file to create an MCNP (skeleton) input file.
- 10. Run an MCNP UM Calculation.
- 11. Postprocess and analyze MCNP results.

Godiva Sphere Reflected by Water (HEU-MET-FAST-004)

A model taken from the International Handbook of Evaluation Criticality Safety Benchmark Experiments

Constructive Solid Geometry (CSG) Setup

Oy s 1 2 3	phere (97.67 w/o) in sphere 1 0.048143 -1 2 0.10021 1 -2 0 2	of H2O HEU-MET-FAST-004 \$ oralloy sphere \$ water sphere
1 2	so 6.5537 so 33.4717	<pre>\$ radius of oralloy sphere \$ radius of water sphere</pre>
c m1	Oy (97.675 w/o) 18.74 92234.80c 0.011150 92236.80c 0.0019919 Water 0.998207	92235.80c 0.97694 92238.80c 0.0099250
m2	1001.80c 0.66667 8016.80c 0.33320	8017.80c 1.3333e-4

Experimental benchmark keff = 0.9985 +/- 0.0011

Calculated Keff: 0.99983 +/- 0.00059 Volume: 157,080.372 cm³ Computing Time: 12.42 minutes

The MCNP code cannot be used to create UM models.

Create Linear Hex UM Model by CUBIT: Godiva

Abaqus Model Exported From Cubit

------List Summary------Number of entities: 2 Total Volume: 157,080.152cm³ Volume Meshed: 156,845.1251cm³ 99.85%

HEU Sphere is 99.89719% meshed volume H2O Sphere is 99.84962% meshed volume HEX Mesh : Hex quality 253,616 elements

Keff: 0.999127 +/- 0.000525 Computing Time: 55.46 minutes

MCNP Results: Godiva

Calculated Keff: for 10,000 neutrons

CSG 0.999832 +/- 0.000590 UM 0.999127 +/- 0.000525

Geometry	68% confidence	95% confidence	99% confidence
CSG	0.99924 - 1.00042	0.99866 -1.00101	0.99827 - 1.00139
UM	0.99860 - 0.99965	0.99808 - 1.00017	0.99774 - 1.00052

Visualization by ParaView: Godiva

Using MCNP HDF5 Elemental Edit Output (EEOUT) file

Energy Deposition

Canadian Deuterium natural Uranium reactor fuel bundle 37-element

- Requires that the UM bundle is inside a CSG cell which is then reflected
 - Representing full core
- Geometric Meshes are grouped by material
 - Representing a cell geometry

UM generated by CUBIT

Meshed Bundle

Fuel-1 Difference % 1.1354 Air-2 Difference % 2.0191 Clad-3 Difference % 0.5365 Coolant-4 *Mesh is overcompensated Difference % -2.3171 CO2-5 Difference % 0.0894

Quality of meshes

MCNP Results: CANDU

CSG: final keff = 1.155468 +/- 0.000279

UM: final keff = 1.155801 +/- 0.000281

Geometry	68% confidence	95% confidence	99% confidence
CSG	1.15519 - 1.15575	1.15491 - 1.15602	1.15473 - 1.15621
UM	1.15552 - 1.15608	1.15524 - 1.15636	1.15506 - 1.15654

Visualization by ParaView: CANDU

High fidelity 3D results

Conclusion

- Cubit was used to create unstructured mesh models for Godiva reflected by water and CANDU fuel bundle. Linear hexahedral element models were created.
- The KCODE calculations were run for both CSG and UM models to compare the results. The results are comparable.
- HDF5 EEOUT files created by MCNP6.3 can be visualized by ParaView without post-processing.

