
LA-UR-22-20980
Approved for public release; distribution is unlimited.

Title: Fission Matrix Processing Using the MCNP6.3 HDF5 Restart File

Author(s): Kulesza, Joel A.
Josey, Colin James

Intended for: Reference

Issued: 2022-05-09 (rev.1)

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National Nuclear Security
Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher recognizes that the U.S. Government
retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government
purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of
Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does
not endorse the viewpoint of a publication or guarantee its technical correctness.

Fission Matrix Processing Using the MCNP6.3 HDF5 Restart File

Joel A. Kulesza and Colin J. Josey

Monte Carlo Codes Group (XCP-3), Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM

jkulesza@lanl.gov & cjosey@lanl.gov

INTRODUCTION

This paper describes an approach to interrogating the fis-
sion matrix [1, 2] available in the HDF5-formatted [3] restart
file (also known as the “runtape” file), which is produced by
the upcoming public release of the MCNP R© code, version 6.3.
The fission matrix, its eigenvalues, and its eigenvectors, are im-
portant tools for characterizing fissile systems such as research
and power reactors and for accelerating the convergence of the
Monte Carlo fission-source site distribution [4, 5].

The MCNP6.3 restart file can be used to store the fission
matrix after its calculation during an MCNP k-eigenvalue
calculation. Because the restart file is HDF5-formatted in
MCNP6.3, retrieving values from it is straightforward using a
variety a programming languages and/or utilities. While ways
of interacting with the HDF5-formatted restart file will be
described in the documentation accompanying the upcoming
release of the MCNP code, this paper is written to highlight
the ability to interact with the fission matrix within the restart
file via example.

As such, this paper provides both a brief review of how
the fission matrix relates to a familiar form of the Boltzmann
transport equation and an example Python processing script
that can be used quantitatively and qualitatively understand
the matrix. Finally, this paper gives results of using the script
on the fission matrix resulting from a high-fidelity MCNP
calculation of the Oak Ridge National Laboratory (ORNL)
Pool Critical Assembly (PCA) [6, 7].

BRIEF REVIEW OF THEORY

References such as [4, 5] provide a full description of the
fission matrix’s development and application in the MCNP
code. However, a brief review is given here to orient the reader
to its origin and to indicate how it is useful. Accordingly, one
can begin by writing the Boltzmann neutron transport equation
in its k-eigenvalue time-independent form as

Mψ(x,Ω, E) =
1
k
χ(E)
4π

S (x), (1)

whereM is the migration operator containing terms such as
streaming, collision, and scattering, ψ is the angular neutron
flux, x is position, E is energy, Ω is the direction of particle
travel, and χ is the emission energy spectrum. The function

MCNP R© and Monte Carlo N-Particle R© are registered trademarks owned
by Triad National Security, LLC, manager and operator of Los Alamos Na-
tional Laboratory. Any third party use of such registered marks should be
properly attributed to Triad National Security, LLC, including the use of the
R© designation as appropriate. Any questions regarding licensing, proper use,
and/or proper attribution of Triad National Security, LLC marks should be
directed to trademarks@lanl.gov.

S (x) is the fission neutron source,

S (x) =

ˆ
dE′
ˆ

dΩ′νΣf
(
x, E′
)
ψ
(
x,Ω′, E′

)
, (2)

where νΣf is the product of neutron multiplicity and macro-
scopic fission cross section for a given position and energy.

By performing discretization and region-wise integra-
tion, one can express the fission source by the eigenvalue-
eigenvector equation

knSn = FSn , n = 0, 1, . . . ,N, (3)

where kn is the nth eigenvalue (with k0 > |k1| > |k2| > · · ·),
Sn is the nth eigenvector, and F is the fission matrix. The
resulting kn and S n approximate the terms k and S (x) from
Eq. (1), with k0 and S 0 representing the fundamental. Higher
modes can be used to assess characteristics such as system
asymmetry. Physically, F represents the mapping of fission
neutrons produced in a given spatial region as a result of a
fission neutron starting in a given spatial region (either the
same or different).

EXAMPLE PROCESSING SCRIPT

This section provides an example Python script that can
be used to process the fission matrix found in an MCNP6.3
restart file. To demonstrate this script, the ORNL PCA is used.
The ORNL PCA is characterized by a 5×5 array of fuel assem-
blies with about 18 curved fuel plates each that contain highly
enriched uranium metal with three of the fuel assemblies in-
terrupted by axial control rods and a fourth interrupted by a
stainless-steel regulating rod. The core geometry is shown in
Fig. 1.

An example script that can be used to process the fis-
sion matrix contained in the MCNP6.3 restart file to calculate
eigenvalue and eigenvectors, and to produce 2-d slice plots of
the eigenvectors, is given in Listing 2.

When the script given in Listing 2 is applied to the ORNL
PCA using the input from [8] modified to add the lines shown
in Listing 1, Fig. 2 is created. Note that no consideration is
given to the effect of statistical noise on Fig. 2, which could
be addressed by considering an ensemble of estimated fission
matrices through additional independent sampling.

Listing 1. MCNP Input Modifications to Create Fission Matrix

1 kcode 250000 1.000 50 250

2 kopts fmat=yes

3 hsrc 40 -20.41 20.25

4 40 -19.275 19.275

5 75 -36.35375 36.35375

Regulating Rod

Control Rods

Figure 1. ORNL PCA Core Configuration

CONCLUSIONS & FUTURE WORK

This paper describes an approach that enables quantitative
characterization and qualitative visualization of the fission
matrix that can be calculated during an MCNP6.3 k-eigenvalue
calculation. The approach is demonstrated by processing an
easily described but non-trivial fissile system with a designed-
in asymmetry. Future work includes extending this work to
provide 2-d and 3-d interactive interrogation and visualization
of the fission matrix.

ACKNOWLEDGEMENTS

The authors thank Michael E. Rising (LANL) for perform-
ing code review of work that relocated the fission matrix to be
a component of the MCNP6.3 restart file results group. This
work is supported by the Department of Energy National Nu-
clear Security Administration (NNSA) Advanced Simulation
and Computing (ASC) Program.

REFERENCES

1. K. W. MORTON, “Criticality Calculations by Monte Carlo
Methods,” Tech. Rep. AERE-T/R-1903, Great Britain
Atomic Energy Research Establishment, Harwell, Berks,
England (1956).

2. E. L. KAPLAN, “Monte Carlo Methods for Equilibrium
Solutions in Neutron Multiplication,” Tech. Rep. UCRL-
5275-T, Lawrence Radiation Laboratory, Berkeley, CA,
USA (1958).

3. THE HDF GROUP, “Hierarchical Data Format, version 5,”
Website (1997–2020), last Accessed: Feb. 2020.

4. F. B. BROWN et al., “Fission Matrix Capability for MCNP,
Part I - Theory,” in “Proceedings of International Confer-
ence on Mathematics and Computational Methods Applied
to Nuclear Science & Engineering (M&C 2013),” Sun Val-

k0 = 0.99987 k1 = 0.78118 k2 = 0.67823

k3 = 0.67096 k4 = 0.56392 k5 = 0.54171

k6 = 0.53869 k7 = 0.47154 k8 = 0.40781

k9 = 0.40605 k10 = 0.39657 k11 = 0.38730

k12 = 0.38158 k13 = 0.37157 k14 = 0.33888

Figure 2. Estimated Eigenvalues & Eigenvectors (2-d Slices)

ley, ID, USA; May 5–9 (2013), Los Alamos National Lab-
oratory Tech. Rep. LA-UR-13-20429.

5. S. E. CARNEY et al., “Fission Matrix Capability for
MCNP, Part II - Applications,” in “Proceedings of Inter-
national Conference on Mathematics and Computational
Methods Applied to Nuclear Science & Engineering (M&C
2013),” Sun Valley, ID, USA; May 5–9 (2013), Los Alamos
National Laboratory Tech. Rep. LA-UR-13-20454.

6. I. REMEC and F. B. K. KAM, “Pool Critical Assem-
bly Pressure Vessel Facility Benchmark,” Tech. Rep.
NUREG/CR-6454, Oak Ridge National Laboratory, Oak
Ridge, TN, USA (Jul. 1997).

7. J. A. KULESZA and R. L. MARTZ, “Evaluation of the
Pool Critical Assembly Benchmark with Explicitly Mod-
eled Geometry Using MCNP6,” Nuclear Technology, 197,
3, 284–295 (Mar. 2017).

8. J. A. KULESZA, “Oak Ridge National Laboratory Pool
Critical Assembly MCNP6 Criticality Calculation Input
File,” Tech. Rep. LA-UR-20-21532, Los Alamos National
Laboratory, Los Alamos, NM, USA (Feb. 2020).

Listing 2. Example Fission Matrix Processing Script
1 #!/usr/bin/env python3
2

3 import h5py
4 import matplotlib.pyplot as plt
5 import numpy as np
6 import scipy.sparse as sparse
7 import scipy.sparse.linalg as sla
8 from matplotlib.cm import get_cmap
9

10 SUPPORTED_RUNTAPE = [1, 0, 0]
11

12

13 def extract_fmat(runtape):
14 """Returns the last saved fission matrix as a scipy.sparse.csr_matrix"""
15 with h5py.File(runtape, "r") as handle:
16 # Check runtape version
17 version_file = handle["config_control"].attrs["version_file"]
18 if any(SUPPORTED_RUNTAPE != version_file):
19 print("Possibly incompatible runtape detected.")
20

21 fmat = handle["results/fission_matrix"]
22

23 n_dim = fmat["n"][()]
24 indices = fmat["indices"][:]
25 indptr = fmat["indptr"][:]
26 data = fmat["data"][:]
27

28 n_xyz = fmat["n_xyz"][:]
29 delta_xyz = fmat["delta_xyz"][:]
30 origin = fmat["origin"][:]
31

32 return (
33 sparse.csr_matrix((data, indices, indptr), shape=(n_dim, n_dim)),
34 n_xyz,
35 delta_xyz,
36 origin,
37)
38

39

40 def plot_eigs(mat, n_xyz, n_tot=6, n_col=2):
41 """Retrieve eigenvalues/vectors, sort, reshape to 3-d object, and plot."""
42 eigenvalues, eigenvectors = sla.eigs(mat, k=n_tot)
43

44 # Clean up and sort the eigenvectors.
45 sorted_eigvals = []
46 sorted_eigvecs = []
47 for i in np.argsort(-np.abs(eigenvalues)):
48 val = eigenvalues[i]
49 val = np.real(val) if np.real(val) == val else val
50 sorted_eigvals.append(val)
51 vec = np.real(eigenvectors[:, i].reshape(n_xyz[::-1]).transpose())
52 if len(sorted_eigvals) == 1:
53 vec = np.abs(vec)
54 sorted_eigvecs.append(vec)
55

56 # Create example plot grid.
57 cmap = get_cmap("RdBu")
58 fig, ax = plt.subplots(int(n_tot / n_col), n_col, figsize=(3, 3 * 1.75))
59 aspect_ratio_z = delta_xyz[1] / delta_xyz[0]
60 for i in range(int(n_tot / n_col)):
61 for j in range(n_col):
62 k = i * (n_col) + j
63 data = sorted_eigvecs[k]
64 cbar_scaling = max(np.max(data), -np.max(-data))
65 ax[i, j].matshow(
66 data[:, :, int(n_xyz[2] / 2)].transpose(),
67 cmap=cmap,
68 vmin=-cbar_scaling,
69 vmax=cbar_scaling,
70 origin="lower",
71 aspect=aspect_ratio_z,
72)
73 ax[i, j].set_xticks([])
74 ax[i, j].set_yticks([])
75 ax[i, j].set_title(
76 f"$k_{{{k}}}={sorted_eigvals[k]:.5f}$", y=1.0, pad=3, fontsize=6,
77)
78

79 plt.savefig("eigenvalues.pdf", bbox_inches="tight")
80

81

82 mat, n_xyz, delta_xyz, origin = extract_fmat("pca_kcode.mcnp.inp.txt.rtp.h5")
83 plot_eigs(mat, n_xyz, 15, 3)

	Introduction
	Brief Review of Theory
	Example Processing Script
	Conclusions & Future Work
	Acknowledgements

#!/usr/bin/env python3

import h5py
import matplotlib.pyplot as plt
import numpy as np
import scipy.sparse as sparse
import scipy.sparse.linalg as sla
from matplotlib.cm import get_cmap

SUPPORTED_RUNTAPE = [1, 0, 0]

def extract_fmat(runtape):
 """Returns the last saved fission matrix as a scipy.sparse.csr_matrix"""
 with h5py.File(runtape, "r") as handle:
 # Check runtape version
 version_file = handle["config_control"].attrs["version_file"]
 if any(SUPPORTED_RUNTAPE != version_file):
 print("Possibly incompatible runtape detected.")

 fmat = handle["results/fission_matrix"]

 n_dim = fmat["n"][()]
 indices = fmat["indices"][:]
 indptr = fmat["indptr"][:]
 data = fmat["data"][:]

 n_xyz = fmat["n_xyz"][:]
 delta_xyz = fmat["delta_xyz"][:]
 origin = fmat["origin"][:]

 return (
 sparse.csr_matrix((data, indices, indptr), shape=(n_dim, n_dim)),
 n_xyz,
 delta_xyz,
 origin,
)

def plot_eigs(mat, n_xyz, n_tot=6, n_col=2):
 """Retrieve eigenvalues/vectors, sort, reshape to 3-d object, and plot."""
 eigenvalues, eigenvectors = sla.eigs(mat, k=n_tot)

 # Clean up and sort the eigenvectors.
 sorted_eigvals = []
 sorted_eigvecs = []
 for i in np.argsort(-np.abs(eigenvalues)):
 val = eigenvalues[i]
 val = np.real(val) if np.real(val) == val else val
 sorted_eigvals.append(val)
 vec = np.real(eigenvectors[:, i].reshape(n_xyz[::-1]).transpose())
 if len(sorted_eigvals) == 1:
 vec = np.abs(vec)
 sorted_eigvecs.append(vec)

 # Create example plot grid.
 cmap = get_cmap("RdBu")
 fig, ax = plt.subplots(int(n_tot / n_col), n_col, figsize=(3, 3 * 1.75))
 aspect_ratio_z = delta_xyz[1] / delta_xyz[0]
 for i in range(int(n_tot / n_col)):
 for j in range(n_col):
 k = i * (n_col) + j
 data = sorted_eigvecs[k]
 cbar_scaling = max(np.max(data), -np.max(-data))
 ax[i, j].matshow(
 data[:, :, int(n_xyz[2] / 2)].transpose(),
 cmap=cmap,
 vmin=-cbar_scaling,
 vmax=cbar_scaling,
 origin="lower",
 aspect=aspect_ratio_z,
)
 ax[i, j].set_xticks([])
 ax[i, j].set_yticks([])
 ax[i, j].set_title(
 f"$k_{{{k}}}={sorted_eigvals[k]:.5f}$", y=1.0, pad=3, fontsize=6,
)

 plt.savefig("eigenvalues.pdf", bbox_inches="tight")

mat, n_xyz, delta_xyz, origin = extract_fmat("pca_kcode.mcnp.inp.txt.rtp.h5")
plot_eigs(mat, n_xyz, 15, 3)

