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Manager
Worker B

Worker A • Performs particle transport
• Returns results

Interchange data 
via messages

MCNP uses two methods to run in parallel

Message Passing Interface (MPI)

• Sends workers a set of 
histories to run

• Collects results

Shared memory multiprocessing (OpenMP)

Master 
Thread

Thread 2

Thread 1 • Performs particle transport
• Only executes the 

transport subroutine and 
dependences. 

Interchange data 
via shared memory

• Holds shared data 
• Only copy of fixed data: 

(geometry, cross sections)
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Trade Offs

• MPI
− Pros
 Easier to implement
 Can be use with (almost) all features of MCNP6
 Only way to run on multi-node clusters.

− Cons
 Implementation on Linux and MacOS systems require user to compile MCNP

• OpenMP
− Pros
 Included in the distributed executables.
 Limited to a subset of MCNP6 capabilities

− Cons
 Difficult to implement

− Some sections in the parallel region must be run serially – requires thread locks
− Insure individual threads don’t overwrite critical data

 Limited to a subset of MCNP6 capabilities
 Speedup depends on computer architecture (NUMA memory)
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Hand off to Avery
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OpenMP Performance Of The Test Problem

Snow cluster
• 128 GB per node
• 2 sockets/node
• 18 CPUs/socket
• No hyperthreading
• Non-uniform memory access 

(NUMA)

Compare results for 9 and 36 
threads.
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Fraction Of Time Thread Is Waiting For Work
9 threads:  55% CPU time spent in spin/overhead state

36 threads: 90% CPU time spent in spin/overhead state


	Parallelism in MCNP® 6.2
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6

