
LA-UR-21-26619
Approved for public release; distribution is unlimited.

Title: Parallelism in MCNP® 6.2

Author(s): Bull, Jeffrey S.

Intended for: 2021 MCNP® User Symposium, 2021-07-12 (Los Alamos, New Mexico, United
States)

Issued: 2021-07-13 (Draft)

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National
Nuclear Security Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher
recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution,
or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as
work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom
and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its
technical correctness.

14/5/21Managed by Triad National Security, LLC, for the U.S. Department of Energy’s NNSA. 14/5/21

Parallelism in MCNP® 6.2

Jeffery Bull
XCP-3 (Monte Carlo Codes

Roundtable on MCNP Parallelism Performance
2021 MCNP® User Symposium

July 16, 2021

24/5/21 24/5/21

Manager
Worker B

Worker A • Performs particle transport
• Returns results

Interchange data
via messages

MCNP uses two methods to run in parallel

Message Passing Interface (MPI)

• Sends workers a set of
histories to run

• Collects results

Shared memory multiprocessing (OpenMP)

Master
Thread

Thread 2

Thread 1 • Performs particle transport
• Only executes the

transport subroutine and
dependences.

Interchange data
via shared memory

• Holds shared data
• Only copy of fixed data:

(geometry, cross sections)

34/5/21 34/5/21

Trade Offs

• MPI
− Pros
 Easier to implement
 Can be use with (almost) all features of MCNP6
 Only way to run on multi-node clusters.

− Cons
 Implementation on Linux and MacOS systems require user to compile MCNP

• OpenMP
− Pros
 Included in the distributed executables.
 Limited to a subset of MCNP6 capabilities

− Cons
 Difficult to implement

− Some sections in the parallel region must be run serially – requires thread locks
− Insure individual threads don’t overwrite critical data

 Limited to a subset of MCNP6 capabilities
 Speedup depends on computer architecture (NUMA memory)

44/5/21

Hand off to Avery

54/5/21 54/5/21

OpenMP Performance Of The Test Problem

Snow cluster
• 128 GB per node
• 2 sockets/node
• 18 CPUs/socket
• No hyperthreading
• Non-uniform memory access

(NUMA)

Compare results for 9 and 36
threads.

64/5/21 64/5/21

Fraction Of Time Thread Is Waiting For Work
9 threads: 55% CPU time spent in spin/overhead state

36 threads: 90% CPU time spent in spin/overhead state

	Parallelism in MCNP® 6.2
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6

