

LA-UR-21-26543

Approved for public release; distribution is unlimited.

Title:	Development of MCNP Training Modules for International Safeguards
Author(s):	Watson, Mara Mae Grieve, Tristan Sumner Kulesza, Joel A. Long, Grace Rachelle Rising, Michael Evan Trahan, Alexis Chanel
Intended for:	2021 MCNP User Symposium, 2021-07-12/2021-07-16 (Los Alamos, New Mexico, United States)
Issued:	2021-07-12

Disclaimer: Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National Nuclear Security Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness. technical correctness.

Development of MCNP Training Modules for International Safeguards

Mara Watson, Avery Grieve, Joel Kulesza, Grace Long, Mike Rising, Alexis Trahan 15 July 2021

Motivation

- Monte Carlo N-Particle (MCNP) software is a vital tool for international safeguards
- No training modules exist specifically for international safeguards applications nor do any existing training modules address the complete set of specific needs of safeguards practitioners
- Training modules, suitable for virtual and in-person delivery, are being developed to fill this gap

Overview of Units

Unit 1: MCNP Basics for International	Unit 2: Advanced Topics in MCNP for	
Safeguards	International Safeguards	
 Cohesive set of modules to cover basic MCNP material with a focus on building neutron detectors Geometry Common material definitions Fixed source definitions Capture tallies Approximately 1 week in length 	 Mix-and-match modules to cater to the audience Burn-up simulations MCNPTools & PTRAC Gamma detectors Principles of benchmarking Approximately 1 week in length with the option to add individual modules to the basic course as time permits 	

Unit 1: MCNP Basics for International Safeguards

- Geared towards intermediate MCNP users
- Examples focus on international safeguards applications
- Modules include:
 - Basic & advanced geometry concepts
 - Fixed source definitions
 - Tallies and reading output files
 - Nondestructive assay (NDA) system optimization

Basic & Advanced Geometry Modules

- Set-up basic neutron detector:
 - High-density polyethylene (HDPE)
 - ³He tubes
 - Point source
- Provide basic material definitions
- Spent fuel assembly for advanced geometry concepts, such as lattices, universes, and fill

Fixed Source Definitions

- Cylindrical sources containing fissioning radionuclides are most commonly used for international safeguards
 - Example: PuO₂ and UO₂
- Demonstrate how to use source distributions for:
 - Sampling radiation origins throughout the volume
 - Energy distributions
 - Defining source with spontaneous fission and (alpha, n) neutrons
- Choosing the correct fission model
 - FMULT card
 - Importance of PAR=SF for coincidence and multiplicity counter modeling

Tallies and Output Files

- Tallies:
 - F4 versus F8 tally
 - Tally multipliers for ³He
 - Coincidence and multiplicity counting using the CAP function
- Read output files and convert data into Singles, Doubles, and Triples

NDA System Optimization Exercise

- Apply knowledge from entire course to optimize NDA system as a class
- Parameters to consider and how to optimize them using the high level neutron coincidence counter (HLNCC) as an example:
 - HDPE thickness
 - Diameter of ³He tube rings
 - Number of ³He tubes and rings
 - Response to different sources
 - Ex: ²⁵²Cf versus PuO₂

Unit 2: Advanced Topics in MCNP for International Safeguards

- Gamma detectors
- Burn-up simulations
- SOURCES-4C & ISC
- MCNPTools/PTRAC for Safeguards
- Principles of benchmarking

Summary

- An MCNP course designed for safeguards practitioners is under development
- The first unit covers basic MCNP topics with relevant safeguards examples at an intermediate level
- The second unit covers advanced topics for international safeguards
- · We hope to hold this course internally and domestically in the next FY

Acknowledgments

This work was supported by the Information Science and Technology Institute (ISTI) Program Development.

