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MCNP simulations rely on nuclear data.

239Pu 240Pu
140Xe

100Zr

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

10-1110-10 10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 100 101

Av
er

ag
e 

Pr
om

pt
 N

eu
tro

n 
M

ul
tip

lic
ity

Incident Neutron Energy (MeV)

ENDF/B-VII.1
ENDF/B-VIII.0

Experimental Data

Average Prompt 
Neutron Multiplicity=

Av. Number of 
outgoing neutrons 

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

 0.4
 0.45

 0.01  0.1  1  10

PF
N

S 
(1

/M
eV

)

Outgoing Neutron Energy (MeV)

239Pu(n500keV,f) PFNS

1m Evaluation
Evaluation

Staples, 500keV
Knitter, 215keV

Starostov, thermal
Lajtai, thermal

Lestone, 500keV
ENDF/B-VII.1

Prompt Fission Neutron
Spectrum= Energy distribution 

of outgoing neutrons
Fission cross-section = 

probability of fissionNeutron Data Standards . . . NUCLEAR DATA SHEETS A.D. Carlson et al.

V. TABULAR DATA FOR THE NEUTRON
STANDARDS

Tabular data for each of the cross section standards and
the additional cross sections obtained in the cross section
standards evaluation process are given in the Tables XII–
XX. For all the evaluations other than those for the light
element standards, the tabular output is directly from
GMAP. For the 6Li(n,t), 10B(n,α) and 10B(n,α1γ) cross
sections the GMAP output was fitted with EDA code as
described in Sec. A. The tables for those cross sections
were provided as point-wise values from EDA. The H(n,n)
and C(n,n) cross sections had been evaluated using EDA
and the tables are direct output from EDA as point-wise
values.

The evaluation of the 252Cf PFNS obtained from
this work led to only very small changes in the spec-
trum obtained by Mannhart. It is recommended that
the Mannhart evaluation be used for any applications. It
is available at https://www-nds.iaea.org/standards/
ref-spectra/ together with the evaluated 235U ther-
mal prompt fission neutron spectrum. The reference fis-
sion cross sections for 209Bi(n,f), natPb(n,f), 235U(n,f),
238U(n,f) and 239Pu(n,f); and the prompt γ-ray pro-
duction reference Cross Sections for 7Li(n,n’γ) and
48Ti(n,n’γ) will be listed and updated on the site https:
//www-nds.iaea.org/standards/. As noted previously,
the 3He(n,p) cross section was not re-evaluated. The pub-
lication on the 2006 standards [1] contains the 3He(n,p)
evaluation.

The GMAP evaluation estimates a point-wise cross sec-
tion and its uncertainty at energy E using experimental
data in the energy range from E1 to E2. However, for
the 235U(n,f) cross section an integral from 7.8–11 eV
is produced with a node average energy 9.4 eV. The in-
terval corresponding to the node at 0.15 keV starts at
0.1 keV both for 235U(n,f) and 239Pu(n,f) cross sections.
From there on, all intervals are located half-way between
given GMA nodes. The results from 1 keV up to 150 keV
correspond to the average of low resolution experiments.
For the 238U(n,f) cross section below 2 MeV (below the
region where it is a standard) results with a denser grid
are marked by “x” and one corrected point is labelled
by “xx”. Smoothing has been applied for regions where
scatter of data needs to be removed since the standards
should be smooth. For all the tabular data, the values in
the standards energy region are recommended to be used
as standards for measurements. The fitted unsmoothed
values were included into the evaluated ENDF-B/VIII.0
general-purpose files in the standard region.
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FIG. 37. (Color online) Comparison of the 2017 and 2006
standards evaluations, together with experimental data for the
239Pu(n,f) cross section (a) and for the 239Pu(n,f) to 235U(n,f)
cross section ratio (b,c).
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Nuclear data are validated, in turn, often by using MCNP and 
with respect to criticality.

Neutron Data Standards . . . NUCLEAR DATA SHEETS A.D. Carlson et al.

V. TABULAR DATA FOR THE NEUTRON
STANDARDS

Tabular data for each of the cross section standards and
the additional cross sections obtained in the cross section
standards evaluation process are given in the Tables XII–
XX. For all the evaluations other than those for the light
element standards, the tabular output is directly from
GMAP. For the 6Li(n,t), 10B(n,α) and 10B(n,α1γ) cross
sections the GMAP output was fitted with EDA code as
described in Sec. A. The tables for those cross sections
were provided as point-wise values from EDA. The H(n,n)
and C(n,n) cross sections had been evaluated using EDA
and the tables are direct output from EDA as point-wise
values.

The evaluation of the 252Cf PFNS obtained from
this work led to only very small changes in the spec-
trum obtained by Mannhart. It is recommended that
the Mannhart evaluation be used for any applications. It
is available at https://www-nds.iaea.org/standards/
ref-spectra/ together with the evaluated 235U ther-
mal prompt fission neutron spectrum. The reference fis-
sion cross sections for 209Bi(n,f), natPb(n,f), 235U(n,f),
238U(n,f) and 239Pu(n,f); and the prompt γ-ray pro-
duction reference Cross Sections for 7Li(n,n’γ) and
48Ti(n,n’γ) will be listed and updated on the site https:
//www-nds.iaea.org/standards/. As noted previously,
the 3He(n,p) cross section was not re-evaluated. The pub-
lication on the 2006 standards [1] contains the 3He(n,p)
evaluation.

The GMAP evaluation estimates a point-wise cross sec-
tion and its uncertainty at energy E using experimental
data in the energy range from E1 to E2. However, for
the 235U(n,f) cross section an integral from 7.8–11 eV
is produced with a node average energy 9.4 eV. The in-
terval corresponding to the node at 0.15 keV starts at
0.1 keV both for 235U(n,f) and 239Pu(n,f) cross sections.
From there on, all intervals are located half-way between
given GMA nodes. The results from 1 keV up to 150 keV
correspond to the average of low resolution experiments.
For the 238U(n,f) cross section below 2 MeV (below the
region where it is a standard) results with a denser grid
are marked by “x” and one corrected point is labelled
by “xx”. Smoothing has been applied for regions where
scatter of data needs to be removed since the standards
should be smooth. For all the tabular data, the values in
the standards energy region are recommended to be used
as standards for measurements. The fitted unsmoothed
values were included into the evaluated ENDF-B/VIII.0
general-purpose files in the standard region.
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FIG. 37. (Color online) Comparison of the 2017 and 2006
standards evaluations, together with experimental data for the
239Pu(n,f) cross section (a) and for the 239Pu(n,f) to 235U(n,f)
cross section ratio (b,c).
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Fig. 5, l?re active portion of ori~”nal Jezebel, the bare plutonium assembly. Cooling air blows wtt of the locating arms
that nudeon taut wires.

thickness was assumed in apportioning the nickel
between external and internal surfaces. Lack of
planeness, however, was assumed to introduce an average
0.001 -in. gap between each of the three principal pairs
of internal surfaces.

Average densities were established by adjusting
measured materiaI densities to allow for the nominal
volume of internal nickel coating and voids. Voids
remaining after correction for internal nickel were
redistributed uniformly (with compensating surface-mass
adjustment, Ref. 3) so that values of average density
were retained.*

*A restate m e nt of the inverse-square relationship between
density and critical mass is that a given mass increment is three
times as effective when distributed uniformly as it is when added
to the surface.

As shown in Figs. 6, 7, and 8, the three Jezebel
systems differed somewhat in shape, which led to
different corrections for asphericity. Further, aluminum
adapters re uired to fit the thin steel clamps (Fig. 5) to
the small !2 s u p arts a d d e d to the incidental reflection

for that assembly. Otherwise, corrections were similar.
Captions of Figs. 6, 7, and 8 give the critical or

slightly subcritical Jezebel configurations from which
critical masses are derived. Also shown are
corresponding masses corrected for the fiiling of major
voids left by missing mass-adjustment plugs or glory-hole
inserts, and by retracted control rod. These corrections
rely upon calibrations of the control rod and plugs.

The further corrections for asphericit y, nickel
coating, incidental reflection by clamps and
surroundings, homogenization, etc., are listed in Table I.
The resulting critical masses apply to isolated bare
spheres of uniform plutonium or uranium.
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Validation with many keff values is a highly under-determined 
problem, where thousands of nuclear data yield one keff value!

Neutron Data Standards . . . NUCLEAR DATA SHEETS A.D. Carlson et al.

V. TABULAR DATA FOR THE NEUTRON
STANDARDS

Tabular data for each of the cross section standards and
the additional cross sections obtained in the cross section
standards evaluation process are given in the Tables XII–
XX. For all the evaluations other than those for the light
element standards, the tabular output is directly from
GMAP. For the 6Li(n,t), 10B(n,α) and 10B(n,α1γ) cross
sections the GMAP output was fitted with EDA code as
described in Sec. A. The tables for those cross sections
were provided as point-wise values from EDA. The H(n,n)
and C(n,n) cross sections had been evaluated using EDA
and the tables are direct output from EDA as point-wise
values.

The evaluation of the 252Cf PFNS obtained from
this work led to only very small changes in the spec-
trum obtained by Mannhart. It is recommended that
the Mannhart evaluation be used for any applications. It
is available at https://www-nds.iaea.org/standards/
ref-spectra/ together with the evaluated 235U ther-
mal prompt fission neutron spectrum. The reference fis-
sion cross sections for 209Bi(n,f), natPb(n,f), 235U(n,f),
238U(n,f) and 239Pu(n,f); and the prompt γ-ray pro-
duction reference Cross Sections for 7Li(n,n’γ) and
48Ti(n,n’γ) will be listed and updated on the site https:
//www-nds.iaea.org/standards/. As noted previously,
the 3He(n,p) cross section was not re-evaluated. The pub-
lication on the 2006 standards [1] contains the 3He(n,p)
evaluation.

The GMAP evaluation estimates a point-wise cross sec-
tion and its uncertainty at energy E using experimental
data in the energy range from E1 to E2. However, for
the 235U(n,f) cross section an integral from 7.8–11 eV
is produced with a node average energy 9.4 eV. The in-
terval corresponding to the node at 0.15 keV starts at
0.1 keV both for 235U(n,f) and 239Pu(n,f) cross sections.
From there on, all intervals are located half-way between
given GMA nodes. The results from 1 keV up to 150 keV
correspond to the average of low resolution experiments.
For the 238U(n,f) cross section below 2 MeV (below the
region where it is a standard) results with a denser grid
are marked by “x” and one corrected point is labelled
by “xx”. Smoothing has been applied for regions where
scatter of data needs to be removed since the standards
should be smooth. For all the tabular data, the values in
the standards energy region are recommended to be used
as standards for measurements. The fitted unsmoothed
values were included into the evaluated ENDF-B/VIII.0
general-purpose files in the standard region.
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FIG. 37. (Color online) Comparison of the 2017 and 2006
standards evaluations, together with experimental data for the
239Pu(n,f) cross section (a) and for the 239Pu(n,f) to 235U(n,f)
cross section ratio (b,c).
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thickness was assumed in apportioning the nickel
between external and internal surfaces. Lack of
planeness, however, was assumed to introduce an average
0.001 -in. gap between each of the three principal pairs
of internal surfaces.

Average densities were established by adjusting
measured materiaI densities to allow for the nominal
volume of internal nickel coating and voids. Voids
remaining after correction for internal nickel were
redistributed uniformly (with compensating surface-mass
adjustment, Ref. 3) so that values of average density
were retained.*

*A restate m e nt of the inverse-square relationship between
density and critical mass is that a given mass increment is three
times as effective when distributed uniformly as it is when added
to the surface.

As shown in Figs. 6, 7, and 8, the three Jezebel
systems differed somewhat in shape, which led to
different corrections for asphericity. Further, aluminum
adapters re uired to fit the thin steel clamps (Fig. 5) to
the small !2 s u p arts a d d e d to the incidental reflection

for that assembly. Otherwise, corrections were similar.
Captions of Figs. 6, 7, and 8 give the critical or

slightly subcritical Jezebel configurations from which
critical masses are derived. Also shown are
corresponding masses corrected for the fiiling of major
voids left by missing mass-adjustment plugs or glory-hole
inserts, and by retracted control rod. These corrections
rely upon calibrations of the control rod and plugs.

The further corrections for asphericit y, nickel
coating, incidental reflection by clamps and
surroundings, homogenization, etc., are listed in Table I.
The resulting critical masses apply to isolated bare
spheres of uniform plutonium or uranium.
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Problem: which nuclear data values (out of 20,000!) 
are those that lead to bias in simulating 1000s of 
validation experiment?? 

Highly under-determined and complexly 
intertwined problem leading to unconstrained 

spaces in nuclear data!

Traditional methods: human brain cannot assess all 
this complex data at once ->  targeted comparison 
of data with and without an isotope or looking at 
bare spheres for the actinides -> one could miss  
issues you are not looking for.

Perfect problem for ML!!!
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Unconstrained physics spaces: We can change nuclear data 
widely within differential constrains and still get the same keff!
Differences in ENDF/B-VIII.0 and 
JEFF3.3 nuclear data represent 
uncertainty in the differential 
information.

Both ENDF/B-VIII.0 and JEFF3.3 compute 
Jezebel keff equally well using MCNP6 but 
contributions per reaction differ drastically

(Thanks to Mike Rising)
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Here, we want to tease out these unconstrained physics 
spaces using ML and various integral responses. 
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Fig. 5, l?re active portion of ori~”nal Jezebel, the bare plutonium assembly. Cooling air blows wtt of the locating arms
that nudeon taut wires.

thickness was assumed in apportioning the nickel
between external and internal surfaces. Lack of
planeness, however, was assumed to introduce an average
0.001 -in. gap between each of the three principal pairs
of internal surfaces.

Average densities were established by adjusting
measured materiaI densities to allow for the nominal
volume of internal nickel coating and voids. Voids
remaining after correction for internal nickel were
redistributed uniformly (with compensating surface-mass
adjustment, Ref. 3) so that values of average density
were retained.*

*A restate m e nt of the inverse-square relationship between
density and critical mass is that a given mass increment is three
times as effective when distributed uniformly as it is when added
to the surface.

As shown in Figs. 6, 7, and 8, the three Jezebel
systems differed somewhat in shape, which led to
different corrections for asphericity. Further, aluminum
adapters re uired to fit the thin steel clamps (Fig. 5) to
the small !2 s u p arts a d d e d to the incidental reflection

for that assembly. Otherwise, corrections were similar.
Captions of Figs. 6, 7, and 8 give the critical or

slightly subcritical Jezebel configurations from which
critical masses are derived. Also shown are
corresponding masses corrected for the fiiling of major
voids left by missing mass-adjustment plugs or glory-hole
inserts, and by retracted control rod. These corrections
rely upon calibrations of the control rod and plugs.

The further corrections for asphericit y, nickel
coating, incidental reflection by clamps and
surroundings, homogenization, etc., are listed in Table I.
The resulting critical masses apply to isolated bare
spheres of uniform plutonium or uranium.

5

.

See D. Neudecker et 
al., NDS 167, 36 (2020).
D. Neudecker et al., LA-
UR-21-22465, 
submitted.
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We use as ML algorithms random forest and SHAP metric.
• Random forests: Build a prediction model for the bias as non-linear function 

of potentially informative features:

• Importance of features assessed with SHAP metric

Δ = 𝐸 − 𝐶 = 𝑓 𝑋!, … , 𝑋"!### + ϵ

+ + …+

239Pu
233U

19F

239Pu
233U

19F

239Pu
NOT 233U

19F

239Pu
233U

19F

239Pu
233U

NOT 19F

See P. Grechanuk et al., J.
Comput. & Theor. Transport 

47, 552 (2019). 

+
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Step 1 (validation input): simulating 3 integral responses and 
calculating sensitivities to nuclear data.

1100 crits 40 pulsed spheres 14 reaction rates in crits 
crits

DN et al., NDS 167, 36, 2020; DN et al., ANE 159, 108345 2021.      (thanks to Jen Alwin)

Jezebel

Sensitivities to nuclear data

(Brown et al., NDS 148, 1, 
2018)
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Steps 2 & 3: ML highlights issue in nuclear data that are 
explored with differential data and theory -> ”a success story”

241Pu(n,f) cross section among 
10 most important reactions 
related to bias in simulations 
of validation   

experiments.

Potential issue in nuclear data 
given differential 
experimental data, but where 
should curve go? 

Nuclear theory does 
not constrain enough 
to solve the issue.

DN et al., LA-UR-21-
22465, submitted.
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Feedback loop with ML and validation experiments indicates 
that lower 241Pu(n,f) cross section leads to reduced bias.

DN et al., LA-UR-21-22465, submitted.

Using FAUST tool (Wim Haeck), we 
see that Dirty Jezebel keff bias 
reduces from 143 pcm to 4 pcm 
while average of bias in keff sensitive 
to 241Pu(n,f) improves slightly.
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Now an example of finding an unconstrained physics space. 
ML finds issue in several, inter-twined nuclear data.

This plot illustrates 
what 235U nuclear 
data were 
highlighted as 
potentially leading 
to bias in various 
integral responses.
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There is considerable space in differential data, cannot pin 
down what nuclear data is wrong  -> unconstrained space!
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We need better experiments or improved nuclear theory to better constrain 
these nuclear data that are critical input of MCNP simulations!
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Summary

• We are using ML methods and various integral responses to pin down potential 
issues in nuclear data underlying MCNP and highlight unconstrained physics 
spaces in nuclear data.

• Identifying unconstrained physics spaces in nuclear data could potentially 
motivate future measurements or theory developments which in turn leads to 
better nuclear data for MCNP. These experiments are often designed with the 
help of MCNP.

• MCNP is also heavily used to simulate various integral responses and to get 
sensitivities that feed into the ML algorithm.
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