

LA-UR-21-25913

Approved for public release; distribution is unlimited.

Title:	Utilizing Unstructured Mesh Geometry in Criticality Calculations and Criticality Accident Alarm System Analysis
Author(s):	Alwin, Jennifer Louise Spencer, Joshua Bradly
Intended for:	MCNP Users Symposium, 2021-07-12 (Los Alamas, New Mexico, United States)
Issued:	2021-06-23

Disclaimer: Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National Nuclear Security Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness. technical correctness.

Utilizing Unstructured Mesh Geometry in Criticality Calculations and Criticality Accident Alarm System Analysis

J.L. Alwin, J.B. Spencer

12 July 2021

Presentation Topics

Criticality Calculations

- MCNP6.2 Results Compared with Experiments
 - Constructive Solid Geometry (CSG)
 - Unstructured Mesh (UM)

Criticality Accident Alarm System (CAAS) Analysis

- MCNP6.2 Results using Hybrid Geometry & Variance Reduction
 - CSG combined with UM Geometry
 - Weight Windows via Deterministic method used in MCNP6.2

Criticality Calculations with UM Geometry

Mesh Quality is important

- Mass/volume may not be preserved
- Especially important for criticality calculations
- It is possible to generate a mesh, which reflects the geometry adequately for most purposes, and yet does not properly preserve mass and/or volume to the degree necessary for correct criticality calculation leading to incorrect keffective results

In this work, results of a set of criticality calculations with MCNP UM are successful \rightarrow

Critical benchmarks with MCNP6.2 UM k-effective results that are ≈ ½% experimental values when due care is applied to mesh quality, in preserving both the mass and shape.

Critical Benchmarks using MCNP6.2 UM Geometry

- HEU-MET-FAST-001: Godiva- bare, fast, spherical assembly of ²³⁵U metal.
- HEU-MET-FAST-007-037: HEU metal slabs, polyethylene moderated & reflected.
- IEU-MET-FAST-007: Big Ten- large, mixed-uranium cylindrical core with 10% average ²³⁵U enrichment, surrounded by a thick ²³⁸U reflector.
- PU-MET-FAST-022: A bare, fast, spherical assembly of deltaphase plutonium metal, 98% ²³⁹Pu.
- **PU-SOL-THERM-001-001**: A water-reflected 11.5-inch diameter sphere of plutonium nitrate solution.

Determine engineering best practices for mesh parameters

- Mesh within mass and/or volume tolerances \rightarrow 1-2%
 - Volume within 2%, SA/V within 1%, density adjustment refinement
- Provide description of expert techniques
- Compare MCNP6.2 results and experiment results \rightarrow bias $\approx \frac{1}{2}\%$

Critical Benchmarks using MCNP6.2 UM Geometry

- 1. Construct a solid geometry (SpaceClaim¹)
- 2. Import a solid geometry into Attila4MC²
- 3. Create a mesh using Attila4MC
- 4. Use Attila4MC GUI to create MCNP6.2 input & Abaqus mesh files
- 5. Modify MCNP6.2 input file to specify kcode parameters
- 6. Execute MCNP6.2 kcode, pass statistical & convergence checks
- 7. Compare calculated k-effective result with experiment result
- 8. Convert .eeout to .vtk³ & visualize with Paraview⁴
- May use Abaqus⁵ directly. Study uses Attila4MC to generate Abaqus file, engineration practices offered apply equally well, regardless of model construction method.
- Study uses 1st order tetrahedral elements, 2nd order elements may be efficient curvature, the same engineering best practices apply
- 1. SpaceClaim. ANSYS SpaceClaim, <u>www.spaceclaim.com</u>
- 2. 2. Attila4MC, Silver Fir Software, https://silverfirsoftware.com/
- 3. 3. Kulesza, Joel. A Python Script to Convert MCNP Unstructured Mesh Elemental Edit Output Files to XML-based VTK Files. Los Alamos National Laboratory, LA-UR-19-20291. 2019.
- 4. 4. The Paraview Guide, Kitware, Inc, <u>www.Paraview.org/Paraview-guide</u>
- 5. 5. Abaqus. Dassault Systems. Abaqus Unified FEA. <u>www.3ds.com/products-services/similia/products/abaqus</u>

HEU-MET-FAST-001 Godiva

• Mesh Technique: Element Size Control

True Sphere (Radius = 8.741 cm) Volume = 2797.4 cm³ | Area=960.1 cm² SA/Vol = 0.343

Meshed Sphere (Max Edge Length = 1 cm) Volume = 2785.6 cm³ | Area = 957.6 cm² SA/Vol = 0.344

Meshed Sphere (Max Edge Length = 2 cm) Volume = 2746.6 cm³ | Area = 950.3 cm² SA/Vol = 0.346

Meshed Sphere (Max Edge Length = 5 cm) Volume=2480.9 cm³ | Area=899.2 cm² SA/Vol = 0.363

Meshed Sphere (Max Edge Length \ge 12 cm) Volume = 890.5 cm³ | Area = 529.2 cm² SA/Vol = 0.594

- Mesh Technique: Mass Correction
 - Apply factor to density based upon Vol_{true}/Vol_{meshed}
- Mesh Technique: Tessellated Body
 - Convert sphere to tessellated body¹ in SpaceClaim:

HEU-MET-FAST-001 Godiva

- Mesh Technique:
- Element Size Control & Mass Correction

True Sphere (Radius = 8.741 cm) Volume = 2797.4 cm³ | Area=960.1 cm² SA/Vol = 0.343

Meshed Sphere (Max Edge Length = 1 cm) Volume = 2785.6 cm³ | Area = 957.6 cm² SA/Vol = 0.344

Meshed Sphere (Max Edge Length = 2 cm) Volume = 2746.6 cm³ | Area = 950.3 cm² SA/Vol = 0.346

Meshed Sphere (Max Edge Length = 5 cm)

Volume=2480.9 cm3 | Area=899.2 cm2

SA/Vol = 0.363

Meshed Sphere (Max Edge Length = 10 cm) Volume = 1748.3 cm^3 | Area = 752.2 cm^2 SA/Vol = 0.430

Meshed Sphere (Max Edge Length ≥ 12 cm) Volume = 890.5 cm³ | Area = 529.2 cm² SA/Vol = 0.594

HEU-MET-FAST-007 Big Ten

Mesh Technique: Curvature Refinement

• Allows the mesh to be automatically refined to match the curvature of the entities in the geometric model. Mesh size is selected such that the distance of the model edge curve from the mesh edge (d) over the mesh edge length (h),

d/h < 0.5

Useful values for d/h are typically in the range of 0.01 to 0.4 (smaller value=more refinement)

HEU-MET-FAST-007 Big Ten

Mesh Technique: Pre-faceting

- 20-sided polygon vs. true cylinder
- Radial tolerances strictly preserved
- Mesh size substantially reduced

Critical Benchmark Results

- Critical benchmarks with various materials and geometry have been studied for use with MCNP6.2 UM
- k-effective results that are ≈ ½% experimental values when due care is applied to mesh quality, in preserving both the mass and shape.
- Mesh within mass and/or volume tolerances \rightarrow 1-2%
 - Volume within 2%, SA/V within 1%

Benchmark	CSG % k _{eff} Calc. vs. Exp	UM % k _{eff} Calc. vs. Exp	Calc/Exp k _{eff} CSG	Calc/Exp k _{eff} UM
HEU-MET-FAST-001	0.00%	-0.16%	1.0000	0.9984
HEU-MET-FAST-007-037	0.30%	0.29%	1.0030	1.0029
IEU-MET-FAST-007	-0.01%	-0.05%	0.9999	0.9995
PU-MET-FAST-022	-0.17%	-0.40%	0.9983	0.9960
PU-SOL-THERM-001-001	0.58%	0.30%	1.0058	1.0030

CAAS Calculations with MCNP6 Hybrid Geometry & VR

- Methods for criticality & shielding calculations
 - Criticality: excursion, source of fission neutrons/photons
 - Shielding: criticality source to detector calculations
- UM is beneficial for modeling complex facilities
 - Import existing facility CAD models
- CSG used for criticality cells, possibly detectors
 - Mass/volume preservation of critical assembly
 - Variation in detector location, mcnp_pstudy
- Steps:
 - 1. Solid geometry
 - 2. Mesh, MCNP input, Abaqus files
 - UM geometry embedded with CSG
 - 3. MCNP6.2
 - KCODE calculation to create criticality source
 - Fixed source calculation for detector results using FW-CADIS weight windows
 - 4. Visualize elemental edit out results in Paraview

 Neutron Energy Deposition [Gy]

 1.0e-10
 1.0e-9
 1.0e-7
 1.0e-6
 1.0e-5
 1.0e-4
 1.0e-3
 1.0e-02

CAAS Calculations – Solid Geometry

- Model of facility
- Unstructured Mesh
 - 3200cm × 2150cm × 360cm
 - 10-cm thick concrete ceiling
 - 30-cm concrete walls/floor

• CSG

- Pu nitrate solution
- Stainless steel tank
- Detector
- Air in rooms

• Cell, surface, data cards:

с			Cell Cards			80
1	1	0.0764	0	u=1		
2	1	0.0764	0	u=1		
3	1	0.0764	0	u=1		
4	1	0.0764	0	u=1		
5	1	0.0764	0	u=1		
6	1	0.0764	0	u=1		
7	1	0.0764	0	u=1		
8	1	0.0764	0	u=1		
9	1	0.0764	0	u=1		
10	0		0	u=1	<pre>\$ background</pre>	
11	0		100 -101 102 -103 104 -105	fill=1	<pre>\$ fill cell</pre>	
12	0		(-100:101:-102:103:-104:105)			
с			End Cell Cards			80
с			Surface Cards			80
С						
100 p	< -1300	0.5				
101 p	(1900	.5				
102 py	/ -1900	0.5				
103 py	/ 250.	5				
104 pz	z -50.	5				
105 pz	z 310.	5				
с			End Surface Cards			80
С			Data Cards			80
c Embe	edded (Geometry Spec	ification			
embed	L mesh	geo=abaqus mg	eoin=caas_hybrid.abaq			
	meeo	ut=caas_hybri	d2.mcnp.eeout			
	file	type=ascii				
	back	ground=10				
	matce	ell= 1 1 2 2 1	3 3 4 4 5 5 6 6 7 7 8 8 9 9			

... plus CSG cell & surface cards:

c ###	cell	S									
100	1	9.9270e	-2	-1	0 -	12	imp:n=1 \$ Pu nitrate				
101	3	4.8333e	-5	-10 +12			<pre>imp:n=1 \$ Air in tank</pre>				
102	2	8.6360e	-2	+1	0 -	11	imp:n=1 \$ Steel ta	ank			
120	5	-0.92		-4	0		imp:n=1 \$ Detector	•			
c ###	surf	aces									
10	rcc	0 0	2	0	0	100	50 \$ inside tank				
11	rcc	00	1	0	0	101	50.5 \$ outside tank				
12	pz	14.6					<pre>\$ height of solution</pre>				
40	sph	-255	-300	29	5	5.0	<pre>\$ detector</pre>				

CSG

с			Cell	L Cards					
1	4	0.0764	0		u=1	imp:n=1			
2	4	0.0764	0		u=1	imp:n=1			
3	4	0.0764	0		u=1	imp:n=1			
4	4	0.0764	0		u=1	imp:n=1			
5	4	0.0764	0		u=1	imp:n=1			
6	4	0.0764	0		u=1	<pre>imp:n=1</pre>			
7	4	0.0764	0		u=1	<pre>imp:n=1</pre>			
8	4	0.0764	0		u=1	imp:n=1			
9	4	0.0764	0		u=1	imp:n=1			
10	3	4.8333e-5	0		u=1	<pre>imp:n=1 \$ background</pre>			
11	3	4.8333e-5	-200 11 4	10	fill=1	<pre>imp:n=1 \$ fill cell</pre>			
100	1	9.9270e-2	-10 -12			imp:n=1 \$ Pu nitrate			
101	3	4.8333e-5	-10 +12			imp:n=1 \$ air in tank			
102	2	8.6360e-2	+10 -11			<pre>imp:n=1 \$ steel tank</pre>			
120	5	-0.92	-40			<pre>imp:n=1 \$ detector</pre>			
200	0		200			imp:n=0			
с			End Ce	ell Cards -					
с			Surfa	ace Cards -					
С									
10	rcc	0 0 2 0	0 0 100	50	<pre>\$ inside tank</pre>				
11	rcc	0 0 1	0 0 101	50.5	<pre>\$ outside tank</pre>				
12	pz	14.6			<pre>\$ height of solu</pre>	tion			
40	sph	-255 -300 29	95 5.0		<pre>\$ detector</pre>				
200	rpp	-1300.5 1900.	5 -1900.5 250	0.5 -50.5 3	10.5 \$ bo	unding box for um fill			
с			End Sur	rface Cards					
с			Data	a Cards					
c Emb	pedded	Geometry Spe	cification						
embed1 meshgeo=abaqus mgeoin=caas_hybrid.abaq									
	mee	out=caas_hybr:	id_kcode.mcnp	.eeout					
	fil	etype=ascii							
	bac	kground=10							
	mat	cell= 1 1 2 2	3 3 4 4 5 5	66778	899				

UM

CSG

CAAS Calculations – MCNP6 Calculations

MCNP6.2 KCODE calculation to obtain criticality source

• Collect fission neutrons (photons) from nitrate solution for active cycles

MCNP6.2 Fixed source calculation to obtain detector results

- Fission treatment off with 'nonu' card
- The energy deposited in a cell with F6 tally.
 - Neutrons from excursion: n/fission*fissions/excursion tally multiplier
- FMESH tally may be used to obtain energy deposition and relative error
 - Solution & tank w/tally multiplier & reaction numbers for energy deposition

```
fc6 neutron detector tally
f6:n 120
fm6 464638 $2.9e15 neutrons/excursion*1.6022e-10 Mev/g to Gray
fmesh104:n geom=rzt origin=0 0 1
    imesh=50 50.5 iints=10 1
    jmesh=1 13.6 100 jints=1 5 10
    kmesh=1 kints=1
    emesh 1e36 eints 1
    axs=0 0 1 vec=0 1 0
fm104 464638 0 -1 -4
```

- EEOUT file in UM to obtain energy deposition, relative error over entire

embee6:n embed=1 energy=464638 errors=yes

CAAS Calculations – Attila4MC FW-CADIS Calculation

- Deterministic calculation to obtain weight windows for use with MCNP6
 - Requires source spectrum obtained from earlier MCNP6 run

- Forward weighted-Consistent Adjoint Driven Importance Sampling
 - Bias particles to obtain global solution or toward single region
 - Equal statistics throughout region
 - Requires mesh representation of entire geometry with critical cell, room air, detectors

• MCNP6 results w/o weight windows:

6 miss missed	sed 7 of 10 all bin ern	0 tfc bin ror check	checks : 1	: the r tally	relative err bins had	ror exceeds t 0 bins wit	he recommended h zeros and	value of 0.1 1 bins with	for nonpoint relative err	detector tallies ors exceeding 0.10
the 10 statist	ical checks	are only	for th	e tally	/ fluctuatio	on chart bin	and do not app	ly to other t	ally bins.	
warning. warning. 1tally fluctuat:	1 of the 1 of the ion charts	1 tally 1 tall:	y fluct ies had	uation bins v	chart bins with relativ	did not pass ve errors gre	all 10 statis ater than reco	tical checks. mmended.		
		tally	6	1	(
nps	mean	error	vov s	Tobe	TOM					
1000000	1.7957E-09	0.8936 0	.9734	0.0 3.2	2E-01					

• MCNP6 results w/weight windows:

passed the 10 statistical checks for the tally fluctuation chart bin result 6 passed all bin error check: 1 tally bins all have relative errors less than 0.10 with no zero bins the 10 statistical checks are only for the tally fluctuation chart bin and do not apply to other tally bins. 1tally fluctuation charts tally 6 slope fom nps mean error VOV 4.8070E-05 0.0962 0.0652 4.0 45 1000000

CAAS Calculations – MCNP6 Results

- Converted caas_hybrid.mcnp.eeout to caas_hybrid.vtu [upcoming talk Wednesday Segment #1 Kulesza - UM Visualization and Postprocessing]
- Visualized with Paraview
- Neutron dose results for fine mesh at 1e6 particles:

Neutron Energy Deposition [Gy]

1.0e-10 1.0e-9 1.0e-8 1.0e-7 1.0e-6 1.0e-5 1.0e-4 1.0e-3 1.0e-02

CAAS Calculations – MCNP6 Results

- Relative Error after 5,000,000 particles
- FW-CADIS:
- Custom Reports: Spatial & Energy Sets:
 - Detector
- [could use CADIS for just 1 detector]

• FW-CADIS:

- Custom Reports: Spatial & Energy Sets:
 - Detector + Room Air
- [best for uniform statistics throughout]

Questions?

