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Derivation of the Future Time Equation
for Analog, Non-Multiplying Monte Carlo Simulation

Eric J. Pearson, Joel A. Kulesza, and Brian C. Kiedrowski

May 24, 2021

Introduction

The expected computational time required to simulate a particle from a point in phase space through a
Monte Carlo history, termed the expected future time, is found by solving the Future Time Equation (FTE).
The expected future time may be useful when generating variance reduction parameters for a Monte Carlo
simulation with a method such as Consistent Adjoint Driven Importance Sampling (CADIS). This report
presents a detailed derivation of the Future Time Probability Density Function (FTPDF) and FTE for neutral
particle Monte Carlo transport to aid future researchers. For simplicity, this derivation only considers analog
transport in non-multiplying media.

The FTPDF describes the probability of the simulation of a complete history starting from some point in
phase space requiring a given computational time and the FTE is the first time moment of the FTPDF. In
analog neutral particle transport, the only routines (hereafter referred to as events) needed in a Monte Carlo
code to describe a particle history are the following:

source event, the event in which the distributions that define each dimension of the source are sampled to
construct a particle;

transition event, the event in which the distribution that describes the respective likelihoods of each
transport event is sampled and the particle is transmitted to the sampled event;

collision event, the event in which a particle collision is processed; and

surface-crossing event, the event in which a particle crossing a constructive solid geometry surface is
processed.

Describing the Monte Carlo simulation with only these events is possible because the many computations
necessary for a useful simulation such as tallying and looking up cross sections are abstracted under the
above events. A flowchart depicting the possible steps in one history of the simulation with the previously
stated simplifications is given in Fig. 1.

1 Derivation of the Future Time Probability Density Function

Transport operator notation is used as in Ref. [1] and, as noted there, this notation breaks from previous
work but does not change conclusions. See Ref. [2–4] for transport kernel notation used in similar derivations.
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Figure 1: Flowchart depicting all possible steps in one history of an analog neutral particle Monte Carlo
simulation in non-multiplying media.

1.1 Definitions

In the following sections five operators are defined to describe the random walk a particle may take in a
simulated history. Next, probability density functions (PDFs) governing the contribution of computational
time at several points in transport are defined. The FTPDF is then formed using these definitions. The
particle phase space considered for all definitions includes position (x, y, z), direction (µ, γ), energy (E), and
statistical weight (w) and is denoted as

p ≡ (x, Ω̂, E, w) ≡ (x, y, z, µ, γ, E,w). (1)

Note that the statistical weight of a particle gives the number of physical particles being represented by the
simulation particle and is modified from the analog value to preserve the expected value of estimated quantities
when using variance reduction techniques. This work does not consider variance reduction techniques; however,
statistical weight is still considered so that a particle at the end of simulation can be represented with a
weight of zero.

1.1.1 Event Transition Operator

After any non-terminal event, the next event that a particle transitions to must be sampled. The following
operators account for all possible phase spaces that the particle may transition into as the result of the
next sampled event and weight these phase spaces with the probability of free-flight to them. The particle
streaming from some position, x in p, along the direction of flight of the particle, Ω̂ in p, may either cross
the surface bounding the cell it currently resides in or first undergo a collision. The particle colliding at some
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point, x′ in p′, before reaching the next surface is governed by the transition-to-collision operator,

TC(p,p′) =

∫
dx′
∫
dΩ′

∫
dE′

∫
exp

(
−
∫ ‖x−x′‖

0

Σt(x + `Ω̂, E)d`

)

× δ(Ω̂′ − Ω̂)δ(E′ − E)δ(w′ − w)dw′,
‖x− x′‖
‖x− xs‖

< 1, (2)

where xs is the point of intersection between the particle-direction vector and the surface bounding the cell
the particle resides in, Σt(p) is the total macroscopic cross section, and TC(p,p′) = 0 for all positions outside
of the current cell. There is a set of phase spaces supported by the transition-to-collision operator. Each
phase space in this set is identical to the initial phase space except that the position is in the set of all points
along the particle direction inside the current cell, ({x`}, Ω̂, E, w) where {x`} is the set of all points that lay
on the ray connecting x and xs. Streaming to the next surface in the simulation and intersecting at point xs

in p′ is governed by the transition-to-surface operator,

TS(p,p′) =

∫
dx′
∫
dΩ′

∫
dE′

∫
exp

(
−
∫ ‖x−x′‖

0

Σt(x + `Ω̂, E)d`

)
× δ(x′ − xs)δ(Ω̂

′ − Ω̂)δ(E′ − E)δ(w′ − w)dw′. (3)

Note that xs will always exist because the particle is not simulated after leaving the system, i.e., leaving the
system is a terminal event. There is only one phase space supported by the transition-to-surface operator.
This phase space is identical to the initial phase space except that the position is at the point of intersection
between the particle-direction vector and the bounding surface of the current cell, (xs, Ω̂, E, w).

These operators may be interpreted as attenuating some probability from all phase spaces with support back
to the current phase space of the particle. Note that this interpretation is adjoint in that it considers particles
moving backwards along the particle-direction vector, i.e., backwards in time. Considering the operators
together implies that a simulation particle cannot transition past the surface of the cell in which it currently
resides in one event.

1.1.2 Collision Event Operator

Given that a collision has been transitioned to, the possibilities of a particle continuing on or terminating
must be considered depending on the reaction that the particle undergoes at the collision. Analog transport
in non-multiplying media implies that a particle only continues on after scattering and is otherwise absorbed
in the collision, terminating the history. The total macroscopic cross section is

Σt(p) = Σs(p) + Σa(p), (4)

where Σs(p) and Σa(p) are the scattering and absorption macroscopic cross sections, respectively. A particle
undergoing a collision event, scattering, and then continuing on is governed by the scattering collision operator,

CS(p,p′) =

∫
dx′
∫
dΩ′

∫
dE′

∫
Σs(x, Ω̂→ Ω̂′, E → E′)δ(x′ − x)δ(w′ − w)dw′, (5)

where Σs(x, Ω̂→ Ω̂′, E → E′) is the double-differential scattering cross section corresponding to the product
of the scattering cross section and the probability density function governing the outgoing angle and energy,

Σs(x, Ω̂→ Ω̂′, E → E′) = Σs(p)P (x, Ω̂→ Ω̂′, E → E′). (6)

The phase spaces supported by the scattering collision operator are all directions and energies at the particle
position and weight, (x, Ω̂′, E′, w), Ω̂′ ∈ 4π, E′ ∈ [0,∞). All outgoing directions and energies are considered
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valid because the double-differential scattering cross section may be zero. Likewise, a particle undergoing a
collision event, being absorbed, and terminating the history is governed by the absorptive collision operator,

CA(p,p′) =

∫
dx′
∫
dΩ′

∫
dE′

∫
Σa(x, E)δ(x′ − x)δ(Ω̂′ − Ω̂)δ(E′ − E)δ(w′ − 0)dw′. (7)

The only supported phase space resulting from the absorptive collision operator is identical to the incident
particle phase space except for a statistic weight of zero denoting a terminated history, (x, Ω̂, E, 0).

These operators may be interpreted as accounting for all phase spaces with support resulting from a reaction
of the type denoted by the operator subscript at the particle phase space and weighting these phase spaces by
the corresponding reaction cross section. Note that this interpretation is again adjoint in that it considers all
resulting phase spaces being tracked back to the incident phase space. To extend this work to consider more
reaction types, such as fission or collision-related variance-reduction processing, additional collision operators
may be defined and applied similarly throughout the derivation. As discussed in Sec. 1.1.4, these additional
operators should be accompanied with the computational time required to process the event they govern.

1.1.3 Surface-Crossing Event Operator

Given that a surface-crossing event has been transitioned to, the particle exiting the current cell is processed.
A surface-crossing event does not alter the particle position in the simulation, instead it alters the current cell
that the particle resides in, which is a neglected dimension in the phase space (as defined herein). However,
processing crossing a surface requires computational time, so it must be considered. If the surface being
crossed is a system boundary, the history is terminated; otherwise, the particle continues on into the next
cell. A particle undergoing a surface-crossing event is governed by the surface-crossing operator,

S(p,p′) =


∫
dx′
∫
dΩ′

∫
dE′

∫
δ(x′ − x)δ(Ω̂′ − Ω̂)δ(E′ − E)δ(w′ − w)dw′, x ∈ {xInternal Surfaces},∫

dx′
∫
dΩ′

∫
dE′

∫
δ(x′ − x)δ(Ω̂′ − Ω̂)δ(E′ − E)δ(w′ − 0)dw′, x ∈ {xBoundary Surfaces},

0, otherwise,
(8)

where {xInternal Surfaces} is the set of all points that lay on the internal surfaces of the system, i.e., surfaces
with cells on either side, and {xBoundary Surfaces} is the set of all points that lay on the boundary surfaces
of the system, i.e., surfaces with a cell only on one side. Note that this operator is an indicator of whether
a surface is crossed, similar to the arrival operator used in Ref. [5]. This operator may be interpreted as
accounting for all supported phase spaces that result from a surface crossing. Trivially, the only supported
phase space is that of the incident particle, (x, Ω̂, E, w), given that the particle is on an internal surface,
x ∈ {xInternal Surfaces} or that of the incident particle except with zero weight, (x, Ω̂, E, 0), given that that
particle is on a boundary surface, x ∈ {xBoundary Surfaces}.

1.1.4 Time Contribution Probability Density Functions

For any event to be processed, the computational time required is contributed to the total amount of
time required by the simulation. The exact time required per event call varies because of a number of
factors including problem specification, code configuration, system hardware, etc. For discussion on how
representative times per event call may be found using profiling tools see Ref. [3, 4]. It is also possible to find
representative values using timing routines embedded in the Monte Carlo transport code, such as how this
work is implemented in the University of Michigan’s hybrid deterministic-Monte Carlo Hammer code [6, 7].
For this derivation, the average time per call determined empirically by some means will be assumed to have
been found and is defined as:

τsrc, the time required to process a source event;
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τtrans, the time required to process a transition event;

τsurf, the time required to process a surface-crossing event;

τcol,S , the time required to process a scattering collision event;

τcol,A, the time required to process an absorptive collision event.

The probability density function for contributing a time τe at some event e is defined as

fe(p, τ) = δ(τ − τe), (9)

denoting that if event e is processed, a time of τe is contributed. The dependence on the phase space of the
particle is included in Eq. 9 so that it may be more easily extended to less trivial forms in future work.

1.2 Future Time Probability Density Function

Using the transport operators and time contribution functions defined above, the FTPDF may be defined in
an integral form by defining partial FTPDFs for surface-crossing and collision events and summing the two.

The partial FTPDF describing the probability of time τ being required to simulate a particle at phase space
p that first undergoes a collision is denoted as

υC(p, τ) = TC(p,p1)

∫
dτtransfTC (p1, τtrans)

×
(
CA(p1,p2)

∫
fCA(p2, τcol,A)δ(τ − τtrans − τcol,A)dτcol,A

+ CS(p1,p3)

∫
fCS (p3, τcol,S)υ(p3, τ − τtrans − τcol,S)dτcol,S

)
,

(10)

where υ(p, τ) is the FTPDF, to be defined later. The term following the absorptive collision operator,∫
fCA(p2, τcol,A)δ(τ − τtrans − τcol,A)dτcol,A,

accounts for the probability of requiring exactly τ time from processing a transition and absorptive collision
event as enforced by the Dirac delta function evaluated at time τ − τtrans − τcol,A. Note that the transition
and absorptive collision events are processed at different phase spaces. The absorptive collision operator
accounts for this probability at all supported phase spaces following an absorptive collision and weights it
according to the probability of entering that phase space through an absorbing event. The term following the
scattering collision operator, ∫

fCS (p3, τcol,S)υ(p3, τ − τtrans − τcol,S)dτcol,S ,

accounts for the probability of the history requiring exactly τ time from simulating the particle through all
events to the end of the history from phase space p3 after processing a transition event and scattering collision
event. This is enforced by the FTPDF evaluated at the phase space p3 and time τ − τtrans − τcol,S . The
scattering collision operator accounts for this probability at all supported phase spaces following a scattering
collision and weights it according to the probability of entering that phase space through a scattering event.
The first term on the right-hand side,

TC(p,p1)

∫
dτtransfTC (p1, τtrans),

acting on the above terms weights the probability of contributing time τ through any collision event at all
valid phase spaces according to the probability of transitioning to that phase space. It is then apparent that
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Eq. 10 accounts for the probability of simulating a particle at phase space p requiring computational time τ
given that it undergoes a collision event before crossing the surface bounding the cell it resides in.

Similarly, the partial FTPDF describing the probability of time τ being required to simulate a particle at
phase space p that first undergoes a surface crossing is denoted as

υS(p, τ) = TS(p,p4)

∫
dτtransfTS (p4, τtrans)

× S(p4,p5)

∫
fS(p5, τsurf)υ(p5, τ − τtrans − τsurf)dτsurf.

(11)

Reading Eq. 11 right to left, the probability of the history requiring exactly τ time from simulating the
particle through all events to the end of the history from phase space p5 after processing a transition and
surface-crossing event is accounted for by the FTPDF evaluated at (p5, τ − τtrans − τsurf) in the term following
the surface-crossing operator, ∫

fS(p5, τsurf)υ(p5, τ − τtrans − τsurf)dτsurf.

The surface-crossing operator acting on this term accounts for this probability at all supported phase spaces
following a surface crossing and weights it according to the probability of entering that phase space through
a surface crossing. Finally, the leftmost term on the right-hand side,

TS(p,p4)

∫
dτtransfTS (p4, τtrans),

acting on the above terms weights the probability of contributing time τ from a surface-crossing event at all
supported phase spaces according to the probability of transitioning to that phase space. This confirms that
Eq. 11 accounts for the probability of a particle simulated at phase space p requiring computational time τ
given that it crosses the surface bounding the cell it resides in before it undergoes a collision.

Because a particle may only transition to a surface-crossing event or a collision event, the FTPDF is formed
by summing the probabilities of these disjoint events, given by Eqs. 10 and 11, and is found to be

υ(p, τ)dτ = υC(p, τ)dτ + υS(p, τ)dτ (12a)

with the associated boundary condition

υ(p, τ) = δ(τ − 0), w = 0, (12b)

which arises because no computational effort is expended on terminated particles. See Fig. 2 for a diagram of
the way all possible events are connected in the random walk.

2 Derivation of the Future Time Equation

The Future Time Equation (FTE) is the first time moment of Eq. 12:

Υ(x, Ω̂, E, w) = Υ(p) =

∫
τυ(p, τ)dτ. (13)

This moment represents the expected computational time to simulate a hypothetical particle introduced at
phase-space position p. From the FTE, one may compute the expected time per history as

T =

∫
(Υ(p) + τsource)Q(p)dp, (14)

where Q(p) is the source distribution and τsource is defined in Sec. 1.1.4. The FTE is derived in integral form
by finding the expected value of the collision and surface-crossing FTPDFs given in Eqs. 10 and 11 separately
and summing the results. This derivation follows that given in Ref. [3, Sec. 4.3] closely. After the FTE is
derived in integral form, it is converted to integro-differential form, which has the form of an adjoint neutron
transport equation as it is typically expressed before discretization and solution but with unique source terms.
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tive collision events.
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(b) Phase spaces connected by
transition-to-collision and scattering
collision events.
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Figure 2: Representation of the connections between phase spaces accounted for in analog, non-multiplying
neutral particle future time considerations where the light gray region is a cell and the vertical black line is
the cell boundary. Note that phase space subscripts map directly to those used in Eq. 25.

2.1 Expected Collision Event Time

The expected time required by a particle simulated at phase space p given that it undergoes a collision event
before crossing the surface bounding the cell it resides in is found by taking the first time moment of the
collision event probability density function,

ΥC(p) =

∫
τυC(p, τ)dτ. (15)

Substituting in the definition of υC(p, τ) from Eq. 10,

ΥC(p) =

∫
τ

(
TC(p,p1)

∫
dτtransfTC (p1, τtrans)

×
(
CA(p1,p2)

∫
fCA(p2, τcol,A)δ(τ − τtrans − τcol,A)dτcol,A

+ CS (p1,p3)

∫
fCS (p2, τcol,S)υ(p3, τ − τtrans − τcol,S)dτcol,S

))
dτ.

(16a)

Distributing the integration over τ ,

ΥC(p) = TC(p,p1)

∫
dτtransfTC (p1, τtrans)

×
(
CA(p1,p2)

∫
dτcol,AfCA(p2, τcol,A)

∫
τδ(τ − τtrans − τcol,A)dτ

+ CS(p1,p3)

∫
dτcol,SfCS (p3, τcol,S)

∫
τυ(p3, τ − τtrans − τcol,S)dτ

)
.

(16b)

Using δ(τ − τtrans − τcol,A) = δ(τ − (τtrans + τcol,A)),

ΥC(p) = TC(p,p1)

∫
dτtransfTC (p1, τtrans)

×
(
CA(p1,p2)

∫
fCA(p2, τcol,A)(τtrans + τcol,A)dτcol,A

+ CS(p1,p3)

∫
dτcol,SfCS (p3, τcol,S)

∫
τυ(p3, τ − τtrans − τcol,S)dτ

)
.

(16c)

7



Distributing (τtrans + τcol,A),

ΥC(p) = TC(p,p1)

∫
dτtransfTC (p1, τtrans)

×

(
CA(p1,p2)

(
τtrans

∫
fCA(p2, τcol,A)dτcol,A +

∫
τcol,AfCA(p2, τcol,A)dτcol,A

)

+ CS(p1,p3)

∫
dτcol,SfCS (p3, τcol,S)

∫
τυ(p3, τ − τtrans − τcol,S)dτ

)
.

(16d)

Using
∫
fCA(p2, τcol,A)dτcol,A = 1 because it is a probability density function,

ΥC(p) = TC(p,p1)

∫
dτtransfTC (p1, τtrans)

×

(
CA(p1,p2)

(
τtrans +

∫
τcol,AfCA(p2, τcol,A)dτcol,A

)

+ CS(p1,p3)

∫
dτcol,SfCS (p3, τcol,S)

∫
τυ(p3, τ − τtrans − τcol,S)dτ

)
.

(16e)

Distributing the integration over τtrans,

ΥC(p) = TC(p,p1)

(
CA(p1,p2)

∫
τtrans fTC (p1, τtrans)dτtrans

+ CA(p1,p2)

∫
fTC (p1, τtrans)dτtrans

∫
τcol,AfCA(p2, τcol,A)dτcol,A

+

∫
dτtransfTC (p1, τtrans)CS(p1,p3)

∫
dτcol,SfCS (p3, τcol,S)

∫
τυ(p3, τ − τtrans − τcol,S)dτ

)
.

(16f)

Using
∫
fTC (p1, τtrans)dτtrans = 1 and collecting terms,

ΥC(p) = TC(p,p1)

(
CA(p1,p2)

(∫
τtransfTC (p1, τtrans)dτtrans +

∫
τcol,AfCA(p2, τcol,A)dτcol,A

)

+

∫
dτtransfTC (p1, τtrans)CS(p1,p3)

∫
dτcol,SfCS (p3, τcol,S)

∫
τυ(p3, τ − τtrans − τcol,S)dτ

)
.

(16g)

Setting q = τ − τtrans − τcol,A,

ΥC(p) = TC(p,p1)

(
CA(p1,p2)

(∫
τtransfTC (p1, τtrans)dτtrans +

∫
τcol,AfCA(p2, τcol,A)dτcol,A

)

+

∫
dτtransfTC (p1, τtrans)CS(p1,p3)

∫
dτcol,SfCS (p3, τcol,S)

∫
(q + τtrans + τcol,S)υ(p3, q)dq

)
.

(16h)

Distributing (q + τtrans + τcol,S),

ΥC(p) = TC(p,p1)

(
CA(p1,p2)

(∫
τtransfTC (p1, τtrans)dτtrans +

∫
τcol,AfCA(p2, τcol,A)dτcol,A

)
+

∫
fTC (p1, τtrans)dτtransCS(p1,p3)

∫
fCS (p3, τcol,S)dτcol,S

∫
qυ(p3, q)dq

+

∫
τtransfTC (p1, τtrans)dτtransCS(p1,p3)

∫
fCS (p3, τcol,S)dτcol,S

∫
υ(p3, q)dq

+

∫
fTC (p1, τtrans)dτtransCS(p1,p3)

∫
τcol,SfCS (p3, τcol,S)dτcol,S

∫
υ(p3, q)dq

)
.

(16i)
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Using Υ(p) =
∫
qυ(p, q)dτ ,

∫
fe(p, τe)dτe = 1, and

∫
υ(p, q)dq = 1,

ΥC(p) = TC(p,p1)

(
CA(p1,p2)

(∫
τtransfTC (p1, τtrans)dτtrans +

∫
τcol,AfCA(p2, τcol,A)dτcol,A

)
+ CS(p1,p3)Υ(p3)

+ CS(p1,p3)

∫
τtransfTC (p1, τtrans)dτtrans

+ CS(p1,p3)

∫
τcol,SfCS (p3, τcol,S)dτcol,S

)
.

(16j)

Collecting terms yields the final result,

ΥC(p) = TC(p,p1)

(
CA(p1,p2)

(∫
τtransfTC (p1, τtrans)dτtrans +

∫
τcol,AfCA(p2, τcol,A)dτcol,A

)

+ CS(p1,p3)

(
Υ(p3) +

∫
τtransfTC (p1, τtrans)dτtrans +

∫
τcol,SfCS (p3, τcol,S)dτcol,S

))
.

(17)

Eq. 17 can be interpreted in the forward sense as a particle being transmitted to a collision and undergoing
either an absorption or scattering event. If an absorption event takes place, the expected time required to
process a transmission and absorption event is contributed. If a scattering event takes place, the expected
time required to process a transmission and scattering event as well as to continue on in the simulation is
contributed. Alternatively, Eq. 17 may also be interpreted in the adjoint sense identically to Eq. 10 except
that the absorptive and scattering operators now act on the expected execution time of events rather than
the probability of events requiring some execution time.

2.2 Expected Surface-Crossing Event Time

The expected time required by a particle simulated at phase space p given that it crosses the surface
bounding the cell it resides in before it undergoes a collision is found by taking the first time moment of the
surface-crossing event probability density function,

ΥS(p) =

∫
τυS(p, τ)dτ. (18)

Substituting the definition of υS(p, τ) from Eq. 11,

ΥS(p) =

∫
τ

(
TS(p,p4)

∫
dτtransfTS (p4, τtrans)

×S(p4,p5)

∫
fS(p5, τsurf)υ(p5, τ − τtrans − τsurf)dτsurf

)
dτ.

(19a)

Distributing the integration over τ ,

ΥS(p) = TS(p,p4)

∫
dτtransfTS (p4, τtrans)

× S(p4,p5)

∫
dτsurffS(p5, τsurf)

∫
τυ(p5, τ − τtrans − τsurf)dτ.

(19b)

Setting q = τ − τtrans − τsurf,

ΥS(p) = TS(p,p4)

∫
dτtransfTS (p4, τtrans)

× S(p4,p5)

∫
dτsurffS(p5, τsurf)

∫
(q + τtrans + τsurf)υ(p5, q)dq.

(19c)
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Distributing (q + τtrans + τsurf),

ΥS(p) = TS(p,p4)

(∫
fTS (p4, τtrans)dτtransS(p4,p5)

∫
fS(p5, τsurf)dτsurf

∫
qυ(p5, q)dq

+

∫
τtransfTS (p4, τtrans)dτtransS(p4,p5)

∫
fS(p5, τsurf)dτsurf

∫
υ(p5, q)dq

+

∫
fTS (p4, τtrans)dτtransS(p4,p5)

∫
τsurffS(p5, τsurf)dτsurf

∫
υ(p5, q)dq

)
.

(19d)

Using Υ(p) =
∫
qυ(p, q)dτ ,

∫
fe(p, τe)dτe = 1, and

∫
υ(p, q)dq = 1,

ΥS(p) = TS(p,p4)

(
S(p4,p5)Υ(p5)

+ S(p4,p5)

∫
τtransfTS (p4, τtrans)dτtrans

+ S(p4,p5)

∫
τsurffS(p5, τsurf)dτsurf

)
.

(19e)

Collecting terms yields the final result,

ΥS(p) = TS(p,p4)S(p4,p5)

(
Υ(p5) +

∫
τtransfTS (p4, τtrans)dτtrans +

∫
τsurffS(p5, τsurf)dτsurf

)
. (20)

Eq. 20 can be interpreted in the forward sense as a particle being transmitted to a surface-crossing event.
This process contributes the computational time required to process transmitting the particle and crossing
the surface as well as the time required to continue the simulation on the other side of the surface (which,
by the definition of the surface-crossing operator and Eq. 12b, is zero after crossing a system boundary).
Alternatively, Eq. 20 may also be interpreted in the adjoint sense identically to Eq. 11 except that the
surface-crossing operator now acts on the expected execution time of events rather than the probability of
events requiring some execution time.

2.3 Future Time Equation in Integral Form

The FTPDF given in Eq. 12 is the sum of the collision FTPDF given in Eq. 10 and the surface-crossing
FTPDF given in Eq. 11. The expected value of the FTPDF is then the sum of the expected value of the
collision and surface-crossing FTPDFs. For ease of notation define

τe(p) =

∫
τfe(p, τ)dτ (21)

and note that by the definitions given in Sec. 1.1.4,

τe(p) =

∫
τδ(τ − τe)dτ = τe. (22)

The FTE is then given by
Υ(p) = ΥC(p) + ΥS(p). (23)

Using Eq. 10 and 11,

Υ(p) = TC(p,p1)

(
CA(p1,p2)

(∫
τtransfTC (p1, τtrans)dτtrans +

∫
τcol,AfCA(p2, τcol,A)dτcol,A

)

+ CS(p1,p3)

(
Υ(p3) +

∫
τtransfTC (p1, τtrans)dτtrans +

∫
τcol,SfCS (p3, τcol,S)dτcol,S

))
(24a)

+ TS(p,p4)S(p4,p5)

(
Υ(p5) +

∫
τtransfTS (p4, τtrans)dτtrans +

∫
τsurffS(p5, τsurf)dτsurf

)
.
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Using
∫
τfe(p, τ)dτ = τe,

Υ(p) = TC(p,p1)
(
CA(p1,p2)(τtrans + τcol,A)

+ CS(p1,p3)(Υ(p3) + τtrans + τcol,S)
)

(24b)

+ TS(p,p4)S(p4,p5)(Υ(p5) + τtrans + τsurf).

This may be rewritten in the form

Υ(p) = TC(p,p1)CS(p1,p3)Υ(p3) + TS(p,p4)S(p4,p5)Υ(p5) +QΥ(p), (25a)

where
QΥ(p) = TC(p,p1)(CA(p1,p2)(τtrans + τcol,A) + CS(p1,p3)(τtrans + τcol,S))

+ TS(p,p4)S(p4,p5)(τtrans + τsurf).
(25b)

In the above form, Υ(p) governs how computational time moves through phase space as a result of transition,
collision, and surface-crossing events while QΥ(p) acts as a fixed source contributing the time required to
process these events.

2.4 Future Time Equation in Integro-differential Form

The integro-differential form of the FTE is found by first restricting it to be defined over a single Monte Carlo
cell, Γ. The integral form of the FTE may then be expressed in expanded notation, cast into characteristic
coordinates, and simplified. This simplified integral formulation is then transformed into the integro-differential
form.

2.4.1 Characteristic Future Time Equation in Integral Form

Eq. 25a with the source term temporarily neglected to ease notation may be written as

Υ(x, Ω̂, E, w) = TC(p,p1)CS(p1,p3)Υ(p3)

+ TS(p,p4)S(p4,p5)Υ(p5).
(26)

After restricting the FTE to a single cell, Γ, operators are expanded,

Υ(x, Ω̂, E, w) =

∫
dx1

∫
dΩ1

∫
dE1

∫
dw1 exp

(
−
∫ ‖x−x1‖

0

Σt(x + `Ω̂, E)d`

)
× δ(Ω̂1 − Ω̂)δ(E1 − E)δ(w1 − w)

×
∫
dx3

∫
dΩ3

∫
dE3

∫
Σs(x1, Ω̂1 → Ω̂3, E1 → E3)Υ(x3, Ω̂3, E3, w3)

× δ(x3 − x1)δ(w3 − w1)dw3

+

∫
dx4

∫
dΩ4

∫
dE4

∫
dw4 exp

(
−
∫ ‖x−x4‖

0

Σt(x + `Ω̂, E)d`

)
× δ(x4 − xs)δ(Ω̂4 − Ω̂)δ(E4 − E)δ(w4 − w)

×
∫
dx5

∫
dΩ5

∫
dE5

∫
Υ(x5, Ω̂5, E5, w5)δ(x5 − x4)δ(Ω̂5 − Ω̂4)δ(E5 − E4)δ(w5 − w4)dw5.

(27a)
Note that because δ(w5 − w4) is used, it is implied by the definition of the surface-crossing operator that the
first surface intersected by the particle-direction vector is an internal surface rather than a boundary surface.
The case of a boundary surface is later accounted for by the boundary condition of Eq. 39. In the meantime,
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evaluating integrals with Dirac delta functions on the statistical weight variables of integration, wi,

Υ(x, Ω̂, E, w) =

∫
dx1

∫
dΩ1

∫
dE1 exp

(
−
∫ ‖x−x1‖

0

Σt(x + `Ω̂, E)d`

)
δ(Ω̂1 − Ω̂)δ(E1 − E)

×
∫
dx3

∫
dΩ3

∫
Σs(x1, Ω̂1 → Ω̂3, E1 → E3)Υ(x3, Ω̂3, E3, w)δ(x3 − x1)dE3

+

∫
dx4

∫
dΩ4

∫
dE4 exp

(
−
∫ ‖x−x4‖

0

Σt(x + `Ω̂, E)d`

)
δ(x4 − xs)δ(Ω̂4 − Ω̂)δ(E4 − E)

×
∫
dx5

∫
dΩ5

∫
Υ(x5, Ω̂5, E5, w)δ(x5 − x4)δ(Ω̂5 − Ω̂4)δ(E5 − E4)dE5.

(27b)
Evaluating integrals with Dirac delta functions on the position variables of integration, xi,

Υ(x, Ω̂, E, w) =

∫
dx1

∫
dΩ1

∫
dE1 exp

(
−
∫ ‖x−x1‖

0

Σt(x + `Ω̂, E)d`

)
δ(Ω̂1 − Ω̂)δ(E1 − E)

×
∫
dΩ3

∫
Σs(x1, Ω̂1 → Ω̂3, E1 → E3)Υ(x1, Ω̂3, E3, w)dE3

+

∫
dΩ4

∫
dE4 exp

(
−
∫ ‖x−xs‖

0

Σt(x + `Ω̂, E)d`

)
δ(Ω̂4 − Ω̂)δ(E4 − E)

×
∫
dΩ5

∫
Υ(xs, Ω̂5, E5, w)δ(Ω̂5 − Ω̂4)δ(E5 − E4)dE5.

(27c)

Evaluating integrals with Dirac delta functions on the energy variables of integration, Ei,

Υ(x, Ω̂, E, w) =

∫
dx1

∫
dΩ1 exp

(
−
∫ ‖x−x1‖

0

Σt(x + `Ω̂, E)d`

)
δ(Ω̂1 − Ω̂)

×
∫
dΩ3

∫
Σs(x1, Ω̂1 → Ω̂3, E → E3)Υ(x1, Ω̂3, E3, w)dE3

+

∫
dΩ4 exp

(
−
∫ ‖x−xs‖

0

Σt(x + `Ω̂, E)d`

)
δ(Ω̂4 − Ω̂)

×
∫
dΩ5Υ(xs, Ω̂5, E, w)δ(Ω̂5 − Ω̂4).

(27d)

Evaluating integrals with Dirac delta functions on the direction variables of integration, Ω̂i, yields the
simplified result,

Υ(x, Ω̂, E, w) =

∫
dx1 exp

(
−
∫ ‖x−x1‖

0

Σt(x + `Ω̂, E)d`

)

×
∫
dΩ3

∫
Σs(x1, Ω̂→ Ω̂3, E → E3)Υ(x1, Ω̂3, E3, w)dE3

+ exp

(
−
∫ ‖x−xs‖

0

Σt(x + `Ω̂, E)d`

)
Υ(xs, Ω̂, E, w).

(27e)
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Now defining x1 = x+ aΩ̂ and as to be the distance along Ω̂ to the boundary of Γ, equal to ‖x− xs‖, yields

Υ(x, Ω̂, E, w) =

∫ as

0

exp

(
−
∫ ‖x−x−aΩ̂‖

0

Σt(x + `Ω̂, E)d`

)

×
∫
dΩ3

∫
dE3Σs(x + aΩ̂, Ω̂→ Ω̂3, E → E3)Υ(x + aΩ̂, Ω̂3, E3, w)da

+ exp

(
−
∫ ‖x−xs‖

0

Σt(x + `Ω̂, E)d`

)
Υ(x + asΩ̂, Ω̂, E, w).

(27f)

Simplifying the integral bounds within the exponential functions,

Υ(x, Ω̂, E, w) =

∫ as

0

exp

(
−
∫ a

0

Σt(x + `Ω̂, E)d`

)
×
∫
dΩ3

∫
dE3Σs(x + aΩ̂, Ω̂→ Ω̂3, E → E3)Υ(x + aΩ̂, Ω̂3, E3, w)da

+ exp

(
−
∫ as

0

Σt(x + `Ω̂, E)d`

)
Υ(x + asΩ̂, Ω̂, E, w).

(28)

This process is repeated for the source term starting with Eq. 25b. Expanding operator notation,

QΥ(x, Ω̂, E, w) =

∫
dx1

∫
dΩ1

∫
dE1

∫
dw1 exp

(
−
∫ ‖x−x1‖

0

Σt(x + `Ω̂, E)d`

)
× δ(Ω̂1 − Ω̂)δ(E1 − E)δ(w1 − w)

×

(∫
dx2

∫
dΩ2

∫
dE2

∫
(τtrans + τcol,A)Σa(x1, E1)

× δ(x2 − x1)δ(Ω̂2 − Ω̂1)δ(E2 − E1)δ(w2 − 0)dw2

+

∫
dx3

∫
dΩ3

∫
dE3

∫
(τtrans + τcol,S)Σs(x1, Ω̂1 → Ω̂3, E1 → E3)

× δ(x3 − x1)δ(w3 − w1)dw3

)

+

∫
dx4

∫
dΩ4

∫
dE4

∫
dw4 exp

(
−
∫ ‖x−x4‖

0

Σt(x + `Ω̂, E)d`

)
× δ(x4 − xs)δ(Ω̂4 − Ω̂)δ(E4 − E)δ(w4 − w)

×
∫
dx5

∫
dΩ5

∫
dE5

∫
(τtrans + τsurf)δ(x5 − x4)δ(Ω̂5 − Ω̂4)δ(E5 − E4)δ(w5 − w4)dw5.

(29a)
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Evaluating integrals with Dirac delta functions on the statistical weight variables of integration, wi,

QΥ(x, Ω̂, E, w) =

∫
dx1

∫
dΩ1

∫
dE1 exp

(
−
∫ ‖x−x1‖

0

Σt(x + `Ω̂, E)d`

)
δ(Ω̂1 − Ω̂)δ(E1 − E)

×

(∫
dx2

∫
dΩ2

∫
(τtrans + τcol,A)Σa(x1, E1)δ(x2 − x1)δ(Ω̂2 − Ω̂1)δ(E2 − E1)dE2

+

∫
dx3

∫
dΩ3

∫
(τtrans + τcol,S)Σs(x1, Ω̂1 → Ω̂3, E1 → E3)δ(x3 − x1)dE3

)

+

∫
dx4

∫
dΩ4

∫
dE4 exp

(
−
∫ ‖x−x4‖

0

Σt(x + `Ω̂, E)d`

)
δ(x4 − xs)δ(Ω̂4 − Ω̂)δ(E4 − E)

×
∫
dx5

∫
dΩ5

∫
(τtrans + τsurf)δ(x5 − x4)δ(Ω̂5 − Ω̂4)δ(E5 − E4)dE5.

(29b)
Evaluating integrals with Dirac delta functions on the position variables of integration, xi,

QΥ(x, Ω̂, E, w) =

∫
dx1

∫
dΩ1

∫
dE1 exp

(
−
∫ ‖x−x1‖

0

Σt(x + `Ω̂, E)d`

)
δ(Ω̂1 − Ω̂)δ(E1 − E)

×

(∫
dΩ2

∫
(τtrans + τcol,A)Σa(x1, E1)δ(Ω̂2 − Ω̂1)δ(E2 − E1)dE2

+

∫
dΩ3

∫
(τtrans + τcol,S)Σs(x1, Ω̂1 → Ω̂3, E1 → E3)dE3

)

+

∫
dΩ4

∫
dE4 exp

(
−
∫ ‖x−xs‖

0

Σt(x + `Ω̂, E)d`

)
δ(Ω̂4 − Ω̂)δ(E4 − E)

×
∫
dΩ5

∫
(τtrans + τsurf)δ(Ω̂5 − Ω̂4)δ(E5 − E4)dE5.

(29c)

Evaluating integrals with Dirac delta functions on the energy variables of integration, Ei,

QΥ(x, Ω̂, E, w) =

∫
dx1

∫
dΩ1 exp

(
−
∫ ‖x−x1‖

0

Σt(x + `Ω̂, E)d`

)
δ(Ω̂1 − Ω̂)

×

(∫
dΩ2(τtrans + τcol,A)Σa(x1, E)δ(Ω̂2 − Ω̂1)

+

∫
dΩ3

∫
(τtrans + τcol,S)Σs(x1, Ω̂1 → Ω̂3, E → E3)dE3

)

+

∫
dΩ4 exp

(
−
∫ ‖x−xs‖

0

Σt(x + `Ω̂, E)d`

)
δ(Ω̂4 − Ω̂)

×
∫
dΩ5(τtrans + τsurf)δ(Ω̂5 − Ω̂4).

(29d)
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Evaluating integrals with Dirac delta functions on the direction variables of integration, Ω̂i, yields the
simplified result,

QΥ(x, Ω̂, E, w) =

∫
dx1 exp

(
−
∫ ‖x−x1‖

0

Σt(x + `Ω̂, E)d`

)(
(τtrans + τcol,A)Σa(x1, E)

+

∫
dΩ3

∫
(τtrans + τcol,S)Σs(x1, Ω̂→ Ω̂3, E → E3)dE3

)

+ exp

(
−
∫ ‖x−xs‖

0

Σt(x + `Ω̂, E)d`

)
(τtrans + τsurf).

(29e)

Again defining x1 = x + aΩ̂ and as to be the distance along Ω̂ to the boundary of Γ, equal to ‖x− xs‖,
yields

QΥ(x, Ω̂, E, w) =

∫ as

0

exp

(
−
∫ ‖x−x−aΩ̂‖

0

Σt(x + `Ω̂, E)d`

)(
(τtrans + τcol,A)Σa(x + aΩ̂, E)

+

∫
dΩ3

∫
(τtrans + τcol,S)Σs(x + aΩ̂, Ω̂→ Ω̂3, E → E3)dE3

)
da

+ exp

(
−
∫ ‖x−xs‖

0

Σt(x + `Ω̂, E)d`

)
(τtrans + τsurf).

(29f)

Simplifying the integral bounds of the exponents,

QΥ(x, Ω̂, E, w) =

∫ as

0

exp

(
−
∫ a

0

Σt(x + `Ω̂, E)d`

)(
(τtrans + τcol,A)Σa(x + aΩ̂, E)

+

∫
dΩ3

∫
(τtrans + τcol,S)Σs(x + aΩ̂, Ω̂→ Ω̂3, E → E3)dE3

)
da

+ exp

(
−
∫ as

0

Σt(x + `Ω̂, E)d`

)
(τtrans + τsurf).

(30)

The integral FTE may now be formed in characteristic coordinates by combining Eqs. 28 and 30 and changing
notation from phase space with a specific subscript, Xi, to phase space of integration, X ′,

Υ(x, Ω̂, E, w) =

∫ as

0

exp

(
−
∫ a

0

Σt(x + `Ω̂, E)d`

)
×
∫
dΩ′

∫
dE′Σs(x + aΩ̂, Ω̂→ Ω̂′, E → E′)Υ(x + aΩ̂, Ω̂′, E′, w)da

+ exp

(
−
∫ as

0

Σt(x + `Ω̂, E)d`

)
Υ(x + asΩ̂, Ω̂, E, w)

+

∫ as

0

exp

(
−
∫ a

0

Σt(x + `Ω̂, E)d`

)(
(τtrans + τcol,A)Σa(x + aΩ̂, E) (31)

+ (τtrans + τcol,S)

∫
dΩ′

∫
Σs(x + aΩ̂, Ω̂→ Ω̂′, E → E′)dE′

)
da

+ (τtrans + τsurf) exp

(
−
∫ as

0

Σt(x + `Ω̂, E)d`

)
.
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Rearranging terms,

Υ(x, Ω̂, E, w) =

∫ as

0

exp

(
−
∫ a

0

Σt(x + `Ω̂, E)d`

)(
(τtrans + τcol,A)Σa(x + aΩ̂, E)

+

∫
dΩ′

∫
Σs(x + aΩ̂, Ω̂→ Ω̂′, E → E′)

(
τtrans + τcol,S + Υ(x + aΩ̂, Ω̂′, E′, w)

)
dE′

)
da

+
(
τtrans + τsurf + Υ(x + asΩ̂, Ω̂, E, w)

)
exp

(
−
∫ as

0

Σt(x + `Ω̂, E)d`

)
.

(32)
The above is a valid form of the FTE, however, further simplification may be applied by recognizing the
following,

(τtrans + τcol,A)Σa(x + aΩ̂, E)

+

∫
dΩ′

∫
Σs(x + aΩ̂, Ω̂→ Ω̂′, E → E′)

(
τtrans + τcol,S + Υ(x + aΩ̂, Ω̂′, E′, w)

)
dE′

is equivalent to

(τtrans + τcol,A)Σa(x + aΩ̂, E)

+ Σs(x + aΩ̂, E)

∫
dΩ′

∫
P (x, Ω̂→ Ω̂′, E → E′)

(
τtrans + τcol,S + Υ(x + aΩ̂, Ω̂′, E′, w)

)
dE′

by Eq. 6. Because P (x, Ω̂→ Ω̂′, E → E′) is a PDF it integrates to unity, so the above may be written as

(τtrans + τcol,A)Σa(x + aΩ̂, E) + τtransΣs(x + aΩ̂, E) + τcol,SΣs(x + aΩ̂, E)

+ Σs(x + aΩ̂, E)

∫
dΩ′

∫
P (x, Ω̂→ Ω̂′, E → E′)Υ(x + aΩ̂, Ω̂′, E′, w)dE′.

A factor of the total cross section may then be multiplied and divided across the time terms,

Σt(x + aΩ̂, E)

(
τtrans

(
Σa(x + aΩ̂, E)

Σt(x + aΩ̂, E)
+

Σs(x + aΩ̂, E)

Σt(x + aΩ̂, E)

)

+ τcol,A
Σa(x + aΩ̂, E)

Σt(x + aΩ̂, E)
+ τcol,S

Σs(x + aΩ̂, E)

Σt(x + aΩ̂, E)

)

+ Σs(x + aΩ̂, E)

∫
dΩ′

∫
P (x, Ω̂→ Ω̂′, E → E′)Υ(x + aΩ̂, Ω̂′, E′, w)dE′.

From Eq. 4 it is apparent that

Σa(x + aΩ̂, E)

Σt(x + aΩ̂, E)
+

Σs(x + aΩ̂, E)

Σt(x + aΩ̂, E)
= 1 (33)

and the following cross section weighted collision event processing time term,

τcol,W (x + aΩ̂, E) = τcol,A
Σa(x + aΩ̂, E)

Σt(x + aΩ̂, E)
+ τcol,S

Σs(x + aΩ̂, E)

Σt(x + aΩ̂, E)
, (34)

is defined so that

(τtrans + τcol,A)Σa(x + aΩ̂, E)

+

∫
dΩ′

∫
Σs(x + aΩ̂, Ω̂→ Ω̂′, E → E′)

(
τtrans + τcol,S + Υ(x + aΩ̂, Ω̂′, E′, w)

)
dE′ =

Σt(x + aΩ̂, E)
(
τtrans + τcol,W (x + aΩ̂, E)

)
+ Σs(x + aΩ̂, E)

∫
dΩ′

∫
P (x, Ω̂→ Ω̂′, E → E′)Υ(x + aΩ̂, Ω̂′, E′, w)dE′. (35)
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Inserting Eq. 35 into Eq. 32 results in

Υ(x, Ω̂, E, w) =

∫ as

0

exp

(
−
∫ a

0

Σt(x + `Ω̂, E)d`

)(
Σt(x + aΩ̂, E)

(
τtrans + τcol,W (x + aΩ̂, E)

)
+

∫
dΩ′

∫
Σs(x + aΩ̂, Ω̂→ Ω̂′, E → E′)Υ(x + aΩ̂, Ω̂′, E′, w)dE′

)
da

+
(
τtrans + τsurf + Υ(x + asΩ̂, Ω̂, E, w)

)
exp

(
−
∫ as

0

Σt(x + `Ω̂, E)d`

)
.

(36)

This form may be further simplified by defining the following function,

Υb(x + asΩ̂, Ω̂, E, w) = τtrans + τsurf + Υ(x + asΩ̂, Ω̂, E, w). (37)

Note that Υ(x+asΩ̂, Ω̂, E, w) in Eq. 37 arises from the surface-crossing operator S(p,p′) operating on Υ(p′),
as shown in the derivation of Eq. 28. This means that, although not explicitly given by the phase space,
Υ(x + asΩ̂, Ω̂, E, w) represents the expected future time on the outside of δΓ, i.e., the expected future time
before the surface-crossing event required to enter the current cell is accounted for. The following subscript is
introduced to make this distinction evident,

Υb(x + asΩ̂, Ω̂, E, w) = τtrans + τsurf + Υoutside(x + asΩ̂, Ω̂, E, w), (38a)

For consistency with the definition of the surface-crossing operator and Eq. 12b the following is also defined,

Υoutside(x, Ω̂, E, w) = 0,x ∈ {xBoundary Surfaces}. (38b)

The simplified form of the integral FTE in characteristic coordinates is then

Υ(x, Ω̂, E, w) =

∫ as

0

exp

(
−
∫ a

0

Σt(x + `Ω̂, E)d`

)(
Σt(x + aΩ̂, E)

(
τtrans + τcol,W (x + aΩ̂, E)

)
+

∫
dΩ′

∫
Σs(x + aΩ̂, Ω̂→ Ω̂′, E → E′)Υ(x + aΩ̂, Ω̂′, E′, w)dE′

)
da

+ Υb(x + asΩ̂, Ω̂, E, w) exp

(
−
∫ as

0

Σt(x + `Ω̂, E)d`

)
,

where,

as is the distance along Ω̂ from x to δΓ,

Υb(x + asΩ̂, Ω̂, E, w) = τtrans + τsurf + Υoutside(x + asΩ̂, Ω̂, E, w), and

Υoutside(x, Ω̂, E, w) = 0, x ∈ {xBoundary Surfaces}.
(39)
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2.4.2 Transformation from Integral to Integro-differential Form

With the integral FTE in the simplified, characteristic-coordinates form given by Eq. 39, it may be converted
into the integro-differential form. The conversion begins by moving the boundary term to the left-hand side,

Υ(x, Ω̂, E, w)−Υb(x + asΩ̂, Ω̂, E, w) exp

(
−
∫ as

0

Σt(x + `Ω̂, E)d`

)
=∫ as

0

exp

(
−
∫ a

0

Σt(x + `Ω̂, E)d`

)(
Σt(x + aΩ̂, E)

(
τtrans + τcol,W (x + aΩ̂, E)

)
+

∫
dΩ′

∫
Σs(x + aΩ̂, Ω̂→ Ω̂′, E → E′)Υ(x + aΩ̂, Ω̂′, E′, w)dE′

)
da. (40)

First, observe from Eq. 40 that

Υ(x, Ω̂, E, w) = Υb(x, Ω̂, E, w), as = 0, (41)

which may be equivalently stated as

Υ(x, Ω̂, E, w) = Υb(x, Ω̂, E, w), x ∈ δΓ, Ω̂ · n > 0, (42)

where n is the outward-directed normal vector of δΓ, i.e., at the boundary of the cell the expected future
time is equivalent to the boundary function Υb. Next, recognize that the left-hand side of Eq. 40 is equivalent
to an integral over a along Ω̂ from zero to as of the negative derivative with respect to a of the expected
future time multiplied by an integrating factor,

Υ(x, Ω̂, E, w)−Υb(x + asΩ̂, Ω̂, E, w) exp

(
−
∫ as

0

Σt(x + `Ω̂, E)d`

)
=∫ 0

as

∂

∂a

[
Υ(x + aΩ̂, Ω̂, E, w) exp

(
−
∫ a

0

Σt(x + `Ω̂, E)d`

)]
da =

−
∫ as

0

∂

∂a

[
Υ(x + aΩ̂, Ω̂, E, w) exp

(
−
∫ a

0

Σt(x + `Ω̂, E)d`

)]
da. (43a)

Inserting Eq. 43a into Eq. 40,

−
∫ as

0

∂

∂a

[
Υ(x + aΩ̂, Ω̂, E, w) exp

(
−
∫ a

0

Σt(x + `Ω̂, E)d`

)]
da =∫ as

0

exp

(
−
∫ a

0

Σt(x + `Ω̂, E)d`

)(
Σt(x + aΩ̂, E)

(
τtrans + τcol,W (x + aΩ̂, E)

)
+

∫
dΩ′

∫
Σs(x + aΩ̂, Ω̂→ Ω̂′, E → E′)Υ(x + aΩ̂, Ω̂′, E′, w)dE′

)
da. (43b)

Because as in Eq. 43b is arbitrary, the integrands must be equal as well,

− ∂

∂a

[
Υ(x + aΩ̂, Ω̂, E, w) exp

(
−
∫ a

0

Σt(x + `Ω̂, E)d`

)]
=

exp

(
−
∫ a

0

Σt(x + `Ω̂, E)d`

)(
Σt(x + aΩ̂, E)

(
τtrans + τcol,W (x + aΩ̂, E)

)
+

∫
dΩ ′

∫
Σs(x + aΩ̂, Ω̂→ Ω̂′, E → E′)Υ(x + aΩ̂, Ω̂′, E′, w)dE′

)
. (43c)
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The derivative term may be expanded using the chain rule,

− ∂

∂a
Υ(x + aΩ̂, Ω̂, E, w) exp

(
−
∫ a

0

Σt(x + `Ω̂, E)d`

)
+ Σt(x + aΩ̂, E)Υ(x + aΩ̂, Ω̂, E, w) exp

(
−
∫ a

0

Σt(x + `Ω̂, E)d`

)
=

exp

(
−
∫ a

0

Σt(x + `Ω̂, E)d`

)(
Σt(x + aΩ̂, E)

(
τtrans + τcol,W (x + aΩ̂, E)

)
+

∫
dΩ′

∫
Σs(x + aΩ̂, Ω̂→ Ω̂′, E → E′)Υ(x + aΩ̂, Ω̂′, E′, w)dE′

)
. (43d)

Dividing out the integrating factor exp
(
−
∫ a

0
Σt(x + `Ω̂, E)d`

)
results in,

− ∂

∂a
Υ(x + aΩ̂, Ω̂, E, w) + Σt(x + aΩ̂, E)Υ(x + aΩ̂, Ω̂, E, w) =∫

dΩ′
∫

Σs(x + aΩ̂, Ω̂→ Ω̂′, E → E′)Υ(x + aΩ̂, Ω̂′, E′, w)dE′

+ Σt(x + aΩ̂, E)
(
τtrans + τcol,W (x + aΩ̂, E)

)
. (43e)

To transform back to Cartesian coordinates, note that
∂

∂a
Υ =

∂x

∂a

∂

∂x
Υ +

∂y

∂a

∂

∂y
Υ +

∂z

∂a

∂

∂z
Υ (44a)

and (
∂x

∂a
,
∂y

∂a
,
∂z

∂a

)
= Ω̂, (44b)

so
∂

∂a
Υ = Ω̂ · ∇Υ. (44c)

Using the above relation, redefining x + aΩ̂ as simply x, and recalling Eq. 42, the integro-differential form of
the FTE is then found to be

−Ω̂ · ∇Υ(x, Ω̂, E, w) + Σt(x, E)Υ(x, Ω̂, E, w) =

∫
dΩ′

∫
Σs(x, Ω̂→ Ω̂′, E → E′)Υ(x, Ω̂′, E′, w)dE′

+ Σt(x, E)(τtrans + τcol,W (x, E))

where,

Υ(x, Ω̂, E, w) = τtrans + τsurf + Υoutside(x, Ω̂, E, w), x ∈ δΓ, Ω̂ · n > 0,

and

Υoutside(x, Ω̂, E, w) = 0, x ∈ {xBoundary Surfaces}.
(45)

Because computational particles mirror physical particles in analog Monte Carlo simulations, Eq. 45 resembles
the adjoint neutron transport equation with specific source terms. The inhomogeneous source term of Eq. 45,

Σt(x, E)(τtrans + τcol,W (x, E)),

represents the computational time required to process particles transitioning to and undergoing collisions.
The boundary source term of Eq. 45,

τtrans + τsurf,

represents the computational time required required to process particles transitioning to and crossing surfaces.
Note that the statistical weight w is included in Eq. 45 for consistency, but is not necessary to solve the
equation because an analog Monte Carlo simulation was assumed.
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Conclusion

A detailed derivation of the Future Time Equation (FTE) in integro-differential form for analog Monte Carlo
simulation in non-multiplying media is presented in this report. The derivation begins with an event-based
description of Monte Carlo particle transport, forms the Future Time Probability Density Function (FTPDF)
in integral form, computes the FTE in integral form as the first time moment of the FTPDF, and converts
the FTE to the integro-differential form given in Eq. 45. Solving the FTE yields the expected computational
time required to simulate a particle from a point in phase space through a Monte Carlo history. It is hoped
that both the integro-differential form and detailed derivation shown in this work assists future researchers in
the field.
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