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Introduction

Overview

Derive transport equations for the first and second statistical moments
that describe the mean and variance of the forced-collision process

Develop discrete ordinates (SN ) scheme for solving the equations in
slab geometry

Show agreement of SN calculation with Monte Carlo reference
solution for illustrative test problem
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Introduction

Forced Collision Variance Reduction

Upon entering a designated region (cell), the particle history is split
into two parts: collided and transmitted.

The collided part is forced to undergo a collision prior to exiting the
cell

Distance to collision sampled from truncated exponential distribution:

fc(x) =
Σte

−Σtx

1− e−Σt`
, 0 ≤ x < `(x, Ω̂).

Weight modified by collision probability:

wc = ρcw, ρc = 1− e−Σt`.

The transmitted part is transported to the next region without
collision, with weight modified by transmission probability

wt = ρtw, ρt = 1− ρc = e−Σt`.
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Introduction

Motivation

Hybrid deterministic-Monte Carlo methods are used to accelerate
convergence of Monte Carlo calculations

Current state-of-the-art methods (e.g., CADIS) may produce
suboptimal results in problems where collisions are improbable and
important

Forced collisions are effective in these cases, but currently no
automated method exists for applying them

Creating equations for forced collisions is the first step in developing
such an automated approach
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Introduction

Motivating Test Problem

200 keV photon source in air in lower-left part of problem, shielded by
thick tungsten block; want to find flux in lower-right part

Analog MCNP:

8.-11

.15

1.7-8

.0000035

.00073

 08/01/19 22:27:02
Transport 200 KeV photons around
 a block of tungsten using
 forced collisions
probid =  08/01/19 22:22:46
basis:   XZ
( 1.000000, 0.000000, 0.000000)
( 0.000000, 0.000000, 1.000000)
origin:
(     0.00,     0.00,     0.00)
extent = (   150.00,   150.00)

Mesh Tally        4
nps       10000000
runtpe = runtpe
dump             2

Calculations by Eric Pearson at Univ. of Michigan.
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Introduction

Motivating Test Problem

200 keV photon source in air in lower-left part of problem, shielded by
thick tungsten block; want to find flux in lower-right part

MCNP with optimized weight windows (only): (FOM improvement
4x)

2.3-14

.15

3.7-11

5.9-8

.000095

 08/01/19 22:47:44
Transport 200 KeV photons around
 a block of tungsten using
 forced collisions
probid =  08/01/19 22:43:00
basis:   XZ
( 1.000000, 0.000000, 0.000000)
( 0.000000, 0.000000, 1.000000)
origin:
(     0.00,     0.00,     0.00)
extent = (   150.00,   150.00)

Mesh Tally        4
nps       10000000
runtpe = runtpe
dump             2

Brian C. Kiedrowski1, Joel A. Kulesza2, Clell J. Solomon2 (1Department of Nuclear Engineering and Radiological Sciences, University of Michigan 2Computational Physics Division, Los Alamos National Laboratory M&C 2019, Portland, OR, USA)Discrete Ordinates Prediction of the Forced-Collision Variance Reduction Technique in Slab GeometryAugust 25-29, 2019 6 / 37



Introduction

Motivating Test Problem

200 keV photon source in air in lower-left part of problem, shielded by
thick tungsten block; want to find flux in lower-right part

MCNP with optimized weight windows with forced collisions: (FOM
improvement 35x)

2.-34

.15

3.3-26

5.5-18

9.2-10

 08/01/19 22:20:54
Transport 200 KeV photons around
 a block of tungsten using
 forced collisions
probid =  08/01/19 22:17:28
basis:   XZ
( 1.000000, 0.000000, 0.000000)
( 0.000000, 0.000000, 1.000000)
origin:
(     0.00,     0.00,     0.00)
extent = (   150.00,   150.00)

Mesh Tally        4
nps       10000000
runtpe = runtpe
dump             2
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Theory

History Score Density Equations

Consider a problem with or without regions with forced collisions and
a surface current estimator.

Define augmented phase space p = (r, w) = (x, Ω̂, E, w). Here w is
the statistical weight factor. (In analog transport w = 1 always.)

Define the history score probability density function:

ψ(p, s)ds = probability that a particle at phase space p will

contribute a score in ds about s.

From the history score PDF we can calculate statistical moments (for
mean and variance):

Ψk(p) =

∫ ∞
0

skψ(p, s)ds.

Note: Ψ1 is the adjoint flux ψ†.
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Theory

Phase Space Indexing

p0 = reference point

p1 = pre-collision point

p2 = secondary emergence

p3 = surface crossing point

p4 = arrival into next region
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Theory

Analog History Score Density Equation

Write integral transport equation for history score density function for
analog physics with no local tallies in operator form:

ψ(p0, s) = T (p0,p1)K(p1)E(p1,p2)ψ(p2, s)

+ T (p0,p3)S(p3)A(p3,p4)ψ(p4, s).

collision event

surface crossing event

free flight collide scatter emergence

free flight reach surface arrival at adjacent region

Note + between events denotes one or the other occurs.
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Theory

Analog History Score Density Equation

Analog history score density with surface current tally:

ψ(p0, s) = T (p0,p1)K(p1)E(p1,p2)ψ(p2, s)

+ T (p0,p3)S(p3)

∫ ∞
0

f(p3, s3)A(p3,p4)ψ(p4, s−s3)ds3.

Now contains an additional surface current scoring function f(p, s),

f(p, s) = δ(s− w), x ∈ ∂Γm, Ω̂ · n̂ > 0,

and integral over the possible scores s3 at p3. Scoring is done before
arrival into adjacent region.

The term ψ(p4, s− s3) are the additional scores after crossing surface.
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Theory

Analog First Statistical Moment Equation

Multiply by s and integrate over all scores to get first statistical
moment (adjoint transport) equation:

Ψ1(p0) = T (p0,p1)K(p1)E(p1,p2)Ψ1(p2)

+T (p0,p3)S(p3)

[
s(p3) +A(p3,p4)Ψ1(p4)

]
.

expected (mean)
score at surface

expected score
after arrival into
adjacent region

expected score
after collision
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Theory

Analog Second Statistical Moment Equation

Multiply by s2 and integrate over all scores to get second statistical
moment equation:

Ψ2(p0) = T (p0,p1)K(p1)E(p1,p2)Ψ2(p2)

+T (p0,p3)S(p3)

[
s2(p3) + 2s(p3)A(p3,p4)Ψ1(p4)

+ A(p3,p4)Ψ2(p4)

]
.

mean squared
score at surface

second moment
after arrival into
adjacent region

product of mean
score at surface
and mean score
after arrival

second moment
after collision
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Theory

Forced Collision Operators

We define the following operators for forced collisions:

Bc(p,p′) = operator for particles entering a forced-collision

region at p and undergoing forced-collision processing:

moving the particle to p′, initiating a collision, and

reducing its weight by ρc;

Bt(p,p′) = operator for particles entering a forced-collision

region at p and being transported to p′ on the

exterior surface and having its weight reduced by ρt.
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Theory

Forced Collision History Score Density Equation

Forced collision history score density with surface current tally:

ψ(p0, s) = Bc(p0,p1)K(p1)E(p1,p2)

∫ ∞
0
ψ(p2, s2)

× Bt(p0,p3)S(p3)

∫ ∞
0

f(p3, s3)A(p3,p4)ψ(p4, s−s2 − s3)ds3ds2.

The transmission operators T have been replaced by Bc and Bt in the
collision and surface crossing events respectively.

The × replaces the + because both events occur.

There is an integral over s2, the scores accrued after the collision, as
well as s3, the scores accrued after crossing into the adjacent region.

Note: this equation only applies for particles that have just
entered a forced collision region.
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Theory

Forced Collision First Statistical Moment Equation

Multiply by s and integrate over all scores to get first statistical
moment (adjoint transport) equation:

Ψ1(p0) = Bc(p0,p1)K(p1)E(p1,p2)Ψ1(p2)

+ Bt(p0,p3)S(p3) [s(p3) +A(p3,p4)Ψ1(p4)] .

The equation should be identical to the analog process,

Ψ1(p0) = T (p0,p1)K(p1)E(p1,p2)Ψ1(p2)

+ T (p0,p3)S(p3) [s(p3) +A(p3,p4)Ψ1(p4)] ,

as all valid variance reduction schemes should preserve the mean.

This is straightforward to show.
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Theory

Forced Collision First Statistical Moment Equation

Forced collisions are done independent of statistical weight, so we can
apply the relationship:

Ψk(p) = wkΨk(r, 1),

where Ψk(r, 1) is the kth statistical moment for the analog process.

Recall that the weight of the collided and transmitted parts are
modified to ρc and ρt respectively.

For the collided part of the forced collision equation:

Bc(p0,p1)K(p1)E(p1,p2)Ψ1(p2)

= ρcBc(p0,p1)K(p1)E(p1,p2)Ψ1(r2, 1)

= T (p0,p1)K(p1)E(p1,p2)Ψ1(r2, 1),

with ρcBc reducing to T because the process is otherwise identical
except for the modified weight.
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Theory

Forced Collision First Statistical Moment Equation

Since all scoring functions are modified by weight as well

sk(p) = wksk(r, 1),

Therefore the transmitted part of the forced collision equation:

Bt(p0,p3)S(p3) [s(p3) +A(p3,p4)Ψ1(p4)]

= Bt(p0,p3)S(p3) [ρts(r3, 1) + ρtA(p3,p4)Ψ1(r4, 1)]

= T (p0,p3)S(p3) [s(r3, 1) +A(p3,p4)Ψ1(r4, 1)] .

Therefore the mean of the forced collision and analog processes are
identical.
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Theory

Forced Collision Second Statistical Moment Equation

Multiply by s2 integrate over all scores, and apply properties to put in
terms of analog process to obtain second statistical moment equation:

Ψ2(p0) = ρcT (p0,p1)K(p1)E(p1,p2)Ψ2(r2, 1)

+ ρtT (p0,p3)S(p3)

[
s2(r3, 1) + 2s(r3, 1)A(p3,p4)Ψ1(r4, 1)

+A(p3,p4)Ψ2(r4, 1)

]
+2

[
T (p0,p1)K(p1)E(p1,p2)Ψ1(r2, 1)

]
×
[
T (p0,p3)S(p3)

(
s(r3, 1) +A(p3,p4)Ψ1(r4, 1)

)]
.

Differences from analog equation highlighted in red.
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Theory

Forced Collision Second Statistical Moment Equation

The collided and transmitted terms are now scaled by the collision
and transmission probabilities respectively.

ρcT (p0,p1)K(p1)E(p1,p2)Ψ2(r2, 1)

ρtT (p0,p3)S(p3)

[
s2(r3, 1) + 2s(r3, 1)A(p3,p4)

+ Ψ1(r4, 1) +A(p3,p4)Ψ2(r4, 1)

]
There is a cross term from the product of the first statistical moment
terms for both the collided and transmitted events.

2

[
T (p0,p1)K(p1)E(p1,p2)Ψ1(r2, 1)

]
×
[
T (p0,p3)S(p3)

(
s(r3, 1) +A(p3,p4)Ψ1(r4, 1)

)]
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Computation

Discrete Ordinates Indexing

The first and second statistical moment equations are solved in 1-D
slab geometry to demonstrate the idea.

Since the problem needs to map onto Monte Carlo regions with
scoring occurring upon a forward particle leaving the region (or
adjoint entering), the calculation involves separate regions.

The following indexing convention is used:

Ψk,m,i,n = kth statistical moment of the history scoring

density function in spatial region m with local

spatial element i traveling in direction n.
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Computation

Discrete Ordinates Spatial Discretization

Use the standard discretization and indexing in slab geometry with
cell-centered and cell-edge quantities (statistical moment and
direction indices suppressed):

Ψm,I+1/2

Ψm,I

Ψm,I−1/2

Ψm,I−1

Ψm,I−3/2Ψm,1/2

Ψm,1

Ψm,3/2

Ψm,2

Ψm,5/2

Ψm+1,1/2Ψm−1,I+1/2

Ψm−1,I Ψm+1,1

Ψm−1,I−1/2 Ψm+1,3/2

Note the overlapping element at region edges, which is important for
handling the location of the scoring.
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Computation

Sweep Algorithm

Solution method for both statistical moments uses source iteration
with reverse sweeps involving the diamond difference method.

The right-to-left sweep (µn > 0):

Ψk,m,i,n =

[
Ψk,m,i+1/2,n +

qk,m,i,n∆m

2|µn|

]
·
[
1 +

Σt,m∆m

2|µn|

]−1

,

Ψk,m,i−1/2,n = 2Ψk,m,i,n −Ψk,m,i+1/2,n.

Here qk,m,i,n is the scattering source for the kth statistical moment.
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Computation

First Statistical Moment Sweep

The region interface condition for the first statistical moment (for the
right-to-left sweep) is

Ψ1,m,I+1/2,n = δm,I+1/2 + Ψ1,m+1,1/2,n

where δm,I+1/2 is one if a surface current estimator is present on the
right edge and zero otherwise. (Analogous for left-to-right sweep.)

Otherwise equivalent to the backwards sweeping scheme used to find
the adjoint flux in a fixed-source calculation.
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Computation

Second Statistical Moment Sweep

Second statistical moment sweep is similar except the region interface
condition (for the right-to-left sweep) is

Ψ2,m,I+1/2,n = δm,I+1/2(1 + 2Ψ1,m+1,1/2,n) + Ψ2,m+1,1/2,n.

Forced collision regions require special sweeps for computing the edge
values of adjoint particles exiting forced collision regions, i.e.,

Ψ2,m,1/2,n, µn > 0,

Ψ2,m,I+1/2,n, µn < 0

(corresponding to forward particles entering forced collision regions).
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Computation

Second Statistical Moment Sweep

Perform a special sweep from one edge of the forced collision region
to the other with only collision source and zero boundary source for
the collided term:

ρcT (p0,p1)K(p1)E(p1,p2)Ψ2(r2, 1),

scaling the resulting value by ρc.

Perform another special sweep from one edge of the forced collision
region to the other with only boundary source and zero collision
source for the transmitted term:

ρtT (p0,p3)S(p3)

[
s2(r3, 1) + 2s(r3, 1)A(p3,p4)

+ Ψ1(r4, 1) +A(p3,p4)Ψ2(r4, 1)

]
scaling the resulting value by ρt.
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Computation

Second Statistical Moment Sweep

Store separated first statistical moment sweeps with only collision
source and zero boundary source and vice versa for cross term:

2

[
T (p0,p1)K(p1)E(p1,p2)Ψ1(r2, 1)

]
×
[
T (p0,p3)S(p3)

(
s(r3, 1) +A(p3,p4)Ψ1(r4, 1)

)]
,

taking twice the product of their resulting values.

Add the result of the three terms together to get the exiting (in
adjoint sense) edge value for a forced collision region.
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Results

Test Problem Description

Test problem selected to ensure each of the three terms in the
forced-collision second statistical moment equation have a significant
impact on the overall solution.

Σt = 1.0 cm−1

Σs = 0.9 cm−1
Σt = 0.5 cm−1

Σs = 0.45 cm−1
Σt = 1.0 cm−1

Σs = 0.9 cm−1

1.0 cm 1.0 cm 1.0 cm

Vacuum Vacuum

Current EstimatorSource

Forced CollisionAnalog Analog
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Results

Test Problem Description

The kth statistical moment of the response current is calculated by
integrating Ψk with the forward boundary source (normalized with
intensity of two) over directions µn > 0,

Rk = 2

N/2∑
n=1

ωnµnΨk,1,1/2,n.

Here ωn are the Gauss-Legendre quadrature weights.

Discrete ordinates calculations were run with the S64 Gauss-Legendre
angular quadrature with 100 spatial cells in each region.

Reference Monte Carlo calculation is continuous in space and
direction and run with 108 histories, which is sufficient to converge
the estimates of R1 and R2.
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Results

Particle Current Statistical Moments Comparison

Test problem is run in both analog-only mode and also with forced
collisions turned on using both SN and Monte Carlo.

Analog Forced Collision

R1 R2 R1 R2

Discrete Ordinates 0.551288 1.212050 0.551288 0.865821

Monte Carlo 0.551112 1.211550 0.551160 0.865341

The R2 results for the forced-collision case have an error of 0.055%.

Analog versus forced collisions have the R1 values, as expected;
however, R2 is reduced using forced collisions (again, expected).
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Results

Scalar Flux Statistical Moments

Also calculate the scalar first and second statistical moments from the
SN calculation

Φk,m,i =

N∑
n=1

ωnΨk,m,i,n

corresponding to the spatially-dependent, directionally-integrated
expected contribution to the first and second statistical moment of
the response.

Results provided forced collisions. No Monte Carlo comparison was
performed; however, should illustrate the mathematics of the Monte
Carlo simulation.
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Results

Scalar Flux Statistical Moments
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Results

Scalar Flux Statistical Moment Discussion

The first scalar flux statistical moment Φ1 increases toward the
estimator. Function is continuous with discontinuous derivatives at
interfaces. (Expected behavior for adjoint scalar flux.)

The second scalar flux statistical moment Φ2 exhibits a similar
increase, but is discontinuous at the interface of the forced collision
region. (Very apparent on left edge, but very small on the right edge
for this problem).

This discontinuity in Φ2 at the forced collision region interface is
expected since particles in the region to the left of the forced collision
region are much more likely to experience a forced collision and have a
reduced variance of the estimator than those to the right of the
interface which do not.
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Conclusions

Summary

Equations for the first and second statistical moments of the forced
collision problem were derived.

A numerical scheme to solve these equations using SN was developed
for 1-D slab geometry.

Results of an illustrative test problem of the SN equation show
agreement (� 1% error) with those from a reference Monte Carlo
calculation.
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Conclusions

Future Work

Apply algorithm to a greater variety of scenarios of greater complexity,
e.g., 2/3D, cell flux estimators, include rouletting on collided
particles, allow collided particles to undergo forced collisions, etc.

Combine with other variance reduction techniques.

See Kulesza’s talk for these techniques applied to the forced flight
(DXTRAN) variance reduction technique.

Develop automated approaches to optimally apply forced collisions
and other variance reduction techniques beyond weight windows.
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Conclusions

Questions?

Contact Brian Kiedrowski (Email: bckiedro@umich.edu).
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