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Introduction & Terminology

Objective: perform computational-cost optimization of Monte Carlo
calculations using forced-flight variance reduction

» Process overview

» Deduce biasing operator(s) for forced-flight variance reduction
Construct history-score probability density function (HSPDF, v (p, s))
Derive history-score moment equations (HSMEs, ¥, 5 (p))

Construct future-time probability density function (FTPDF, v (p))
Derive future-time equation (FTE, T (p))

Calculate computational cost

v

v

v

v

v

AAAAAAAAAAAAAAAAAA UNCLASSIFIED Slide 4/24
943

L VYA L o0%)
NISA




Forced-flight Variance Reduction Overview

v

Forced-flight: directly biases particle direction of flight
» “DXTRAN” in the MCNP code
» Developed in the late 1970s, not clear by who
» Best reference: MCNP theory manual (X-5 Monte Carlo Team, 2008)
» “Forced flight” in the MCBEND code
» (Chucas et al., 1994; Shuttleworth et al., 2000)
» “Forced scattering” in a research version of the EGSnrc code
» (Tickner, 2009; Kawrakow et al., 2017)
» Diverse fields of use
» Medical physics
» Research reactor irradiation beam port flux characterization
Neutron generator device design
» Spacecraft nuclear propulsion
> Inertial confinement fusion reactor design

v

AAAAAAAAAAAAAAAA
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Simplified Spherical Forced-flight Variance Reduction

» User-defined geometry cell-wise rouletting fraction, . (i.e., DXC)
» Occurs following every valid non-absorptive collision

» Weight balance by terminating particles entering the sphere
> No rouletting on transmission for weight control; no weight cutoffs

~w g (p) exp [ (x, xg, F)]
vy ()
Be g (1) 1
N
/—
- Los Alamos UNCLASSIFIED Slide 6/24
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1-D Cartesian Forced-flight Region

> X
Y Q’/,,/”’ ff
Y \v T
X\Q/ U 0 Xc a

» User-defined geometry cell-wise rouletting fraction, f. (i.e., DXC)
» Occurs following every valid non-absorptive collision
» No rouletting on transmission for weight control; no weight cutoffs

~w g (p)exp [—A(x,xg, F)]
wg = — = (3)
Be g (n) 1
> Kulesza et al. (2018)
A
AN
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2-D Cartesian Forced-flight Region

-
-
-

.-~ | Forced-flight
Region

» User-defined geometry cell-wise rouletting fraction, j. (i.e., DXC)
» Occurs following every valid non-absorptive collision
> No rouletting on transmission for weight control; no weight cutoffs

—-A E
we = 29 (1) exp [=A (x, xg, E)] )
Be g (1) 1
» Kulesza et al. (2018)
A
AN
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HSME Methodology Overview

» History-score moment equations (HSMEs)
» Describe Monte Carlo random walk statistical moments
» HSME-based methods are Monte Carlo code agnostic
» Specific implementations are directly related to a Monte Carlo code
» Descriptions of geometry, materials, tallies, sources, etc.
» VR technique availability & implementation
» Must deterministically model Monte Carlo transport code processes
» Different random walks available
» Terminates with absorptive collision, continues with collision with
emergence, continues with surface crossing
» Modified as a function of variance reduction
» First, assemble history-score probability distribution function (HSPDF)
» Probability of contributing score ds about s from p

¥ (p,s)ds =Y i (p,s)ds ()
A
. IRAIamos
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HSME Components: Transport Operators

» HSPDF is constructed from transport operators and scoring functions
» Transport operators
» Describe particles undergoing phase-space change

T (p,p’) for particles undergoing free flight from p to p’
S

(p,p’) for particles crossing a Monte Carlo surface (combining S and A from
Kiedrowski et al. (2019))

K (p,p’) for particles undergoing collision

& (p,p’) for particles undergoing emergence (e.g., scattering) from a
non-absorptive collision

A (p) for particles undergoing absorption, which is considered terminal in
this work

Bg (p,p’) for the forced-flight process
T (p,p’) for free flight, with truncation, following forced-flight

A

Y
.
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HSME Components: Scoring Functions

v

Scoring functions
» Probability density functions giving history-scoring behavior
Surface-crossing tally scoring function:

fS(p>5):6(S_w)7X68F87Q'n>0a (6)

v

v

Expected track-length tally scoring function (Solomon, 2010):

Fr(pys) =0 ( 1 exp(~d(x,9) -5 <x>>1) xely, (7)

w

VS (x)

v

Construct HSPDF from transport operators and scoring functions, e.g.,
analog collision with emergence:

Ve (po, S) = T(Po; pl) K (Ph pz) £ (p2, ps)
< [ sty (passr) 0 (pucs = sr). ®)
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Forward Random Walk Interpretation (—)

¢6 (p07 S) =

» Los Alamos
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Forward Random Walk Interpretation (—)

¢6 (p07 S) =
T(p07 Pl)

» Los Alamos
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Forward Random Walk Interpretation (—)

¢6 (p07 5) =
T(p07 Pl)
XK (p1,P2)

AAAAAAAAAAAAAAAA

ek

T K
DEOSS D
T K
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Forward Random Walk Interpretation (—)

Yo
=)
=)

O

Ve (Po, 5) = A £ O
T (Po, P1) 5 5 o /@

xK (p1,P2) O i gg o

x& (p2, p3) £ €
SN

X /dSTfT (P3,57) @‘/5 T K g,,@

X1 (P3, s — ST) a. TT’C;:;D

&

@<_85 @ ’C g
o £ 0

ﬁ/?ﬁ
(e
o

o Fe £ €O
N S0
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Forward Random Walk Interpretation (—)

Yo
=)
=)

O

Ve (P073) = @\ < g /@
T (po, P1) 5 5 ® o
xK (p1,p2) . g o
x& (p2, P3)

m&m
A
PKQ:}

x / dstfr (3, 57)

Xw (p37 s — ST)

™

QTP QY P
®
=L
©
L2
4
$i%

ﬁ/?ﬁ
(e

o
&

o Fe £ €O
N S0
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Adjoint Random Walk Interpretation ()

11[}5 (PO’ S) =

x& (p2, P3)

o [dsetr uor

Xw (p37 s — ST)

AAAAAAAAAAAAAAAA

o
O—¢ 36
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Adjoint Random Walk Interpretation ()

Ve (Po, 5) = @\Qg ? ?g@

Pe,
Y \y ¢
x K (pl, p2) @\ IC IC ?5 /ED
x& (p2, P3) @_55\. IC—> /5
X/dSTfT (P3,s7) @/5 ‘li g/@
_ @)k —~P2e—0)
X1 (P3, s — sT) @\S ; 5\@
o 2
@/S K K I; 55\@
A, I
g £
G SN
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Adjoint Random Walk Interpretation ()

Ve (Po, 5) = @\Qg ? ?g@

Pe,
T (po. p1) ek E
x K (pl, p2) @\ IC IC ?5 /ED
x& (p2, P3) @_55\. IC—> /5
X/dSTfT (Ps3, s7) @/5 T K g/@
X (p3, 8 — 57) ‘_T ( ’ng_@
@\5 T K e
SR D) ®2)
@/S K K I; 55\@
A b
i A€
G fe O
S0
e
« Los Alamos
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HSME Calculation and Use

» The m moments of the history-score distribution are:

o0

Vo (Po) = / s™ (po, s) ds

—00

v

For m = 1: comparable to adjoint integral transport equation

v

My, / @ (po) dpo

v

Population variance is:
o? = My — M}

Difficulty of solving for V.- (po) affected by VR techniques used

\{

AAAAAAAAAAAAAAAAAA UNCLASSIFIED
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Associated tally responses (with physical source term @ (py)) are:

Slide 14/24

L VYA L o0%)
NISA




Forced-flight Biasing & Transmission Kernels

» Forced-flight biasing kernel (for notational convenience):

Bi (p, p') /dV’/dQ’/dE’/dw

1(x ¢ {xg})d (X—Xﬂr(xﬂ)
xg(ﬂ,E—>Q’ )

, w g(QE—Q E)
<[ (v- s rs e

+(1—B(X))(5(w’—0)]

exp A (. xi, )

where
x ¢ {xg}) indicator function whether original position is inside or on surface of
forced-flight region
() Dirac delta
xg (x, Q) nearest boundary point of forced flight to = along €’

A

)
o
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Forced-flight Biasing & Transmission Kernels

» Complementary 1-D forced-flight-associated free-flight transmission
kernel

x ¢ {xg} and
0, o= iy = land | Vhe {x¢—x}
I = x| = ||

T (p,p’), otherwise

Analog Forced Flight

» Los Alamos .
NATIONAL LABORATORY UNCLASSIFIED Slide 16/24




Forced-flight Biasing & Transmission Kernels

Forced-flight
Region

» Los Alamos
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Random Walk Incorporating Forced-flight

» The Monte Carlo random walk with forced-flight is:

Y (Po, s) = T (Po, P1) K (P1, P2)
X 5(P2,P3)/d87f7' (P3,87)/d85¢(P3>85)

XBff(p27p4)7/J(P473_ST_3€>7 (13)

» Forced-flight acts as a conditional splitting process
» Applied in concert with analog non-absorptive collision and surface
crossing
» Truncating transmission kernel applies for all random walks

A

)
o
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Forced-flight Second HSME Solution Approach

v

Operate on both sides as [ dss? (-)
Substitute © = s — s+ s0 s = u + s+ and ds = du to obtain

v

Uy (Po) = T (Po, P1) K (P1, P2)
Xg(p2>p3)/dSTfT (P3,ST)/d85¢(P3,85)

% By (p2, p1) / du (u+t se +57)2 ¢ (pru).  (14)

v

Distribute the binomial and perform the integrations to obtain moments
Separate into ¥, 4 and (), to ease incorporation into solver
» Result on next slide

v
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Forced-flight Second HSME Result

Uy (Po) = Tt (Po, P1) K (P1,P2) € (P2, P3) Y2 (P3)
+ T (Po, P1) K (P1,P2) Bit (P2, pa) P2 (Pa)
+ Q2.6 (Po) (15a)

Q2,1 (Po) = Tt (Po, P1) K (P1, P2) € (P2, P3) 527 (P3)
+ 27 (Po, P1) K (P1,P2) € (P2, P3) Y1 (P3) 57 (P3)
+ 27 (Po, P1) K (P1, P2) Bit (P2, P4)357 (P3) V1 (P4)
+ 27 (Po, P1) K (P1,P2) € (P2, P3) Y1 (P3) Bt (P2, p4) V1 (ps)  (15b)

Cross term

°
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Future Time Equation (FTE)

» Each event e requires some processing time 7., which is represented by a
time “scoring” function

fe(p:T):é(T_Te) (16)

from the events

Ttally
Tecol
Txs

Tgeom
Trt

T
Tsurf
Thank

Tsrc

A
. IRAIamos

NATIONAL LABORATORY
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time to process a tally event,

time to process a collision event,

time to process a cross-section lookup,

time to perform transmission along a free-flight trajectory,

time to perform ray tracing, per Monte Carlo surface, for forced-flight
variance reduction,

time to perform all other forced-flight variance reduction processing,
time to process surface-crossing,

time to process a particle bank event, and

time to process a forward source event as noted previously.
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Future Time Equation (FTE), cont.

» Construct FTPDF

v (Po, ) = Us (Po, 7) + v (Po, T) + v.4 (Po, V) (17)
compared with the analog FTPDF
v (Po, T) = vs (Po, T) + Ve (Po, T) + v.4 (Po, V) (18)
> Integrate to get the first moment, the future-time equation (FTE)
T(po):/dTTU(poyT) (19)

» The partial forced-flight biased FTE is:

T (Po) = Ta (Pos P1) {Tgeom (P2) + K (P1, P2) [Teal (P2)
+ Bg (P2, Pa) [B (P4) Tt (Pa) + B (P4) st (P4) T (Pa) + T (Py)]
+ £ (P2, P3) [Trany (P3) + Tas (P3) + T (P3)]]}- (20)

AAAAAAAAAAAAAAAAAA UNCLASSIFIED Slide 22/24
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Summary & Future Work

» History-score moment equations
» Biasing kernel deduced, HSPDF constructed, HSMEs derived
» Show reasonable moment-ordered quantities and cross terms
» Future time scales according to

» Local forced flight rouletting parameter, 5
» Number of Monte Carlo surfaces along forced-flight trajectory

» Future work:

» Apply forced-flight variance reduction to source-emission events
» Analyze multiple forced-flight regions
» Incorporate forced-flight weight cutoffs

A

Y
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Contact Information

Joel A. Kulesza
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Email: jkulesza@lanl.gov
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Office: +1 (505) 665-5720
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Brian C. Kiedrowski
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Inner/Outer Sphere Polar Cosine Biasing PDF
p(n)

a1o
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Arbitrary Convex Polyhedral DXTRAN Process
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CADIS & FW-CADIS Overview

Adjoint Solution Forward Solution
Forward flux, M*y* = ¥4 Forward flux, My = ¢
Total response, R = (g, ¢™*) Total response, R = (X4, )
CADIS FW-CADIS
Forward flux, My = ¢
Adjoint flux, M*y* = X4 Adjoint flux, M*y* = X3/ (34, 7) p.o
Total response, R = (g, ¢™*) Total response, R = (g, ¥*)
Weight targets, w = R/y* Weight targets, w = R/y*
Biased source, § = ¥*q/R Biased source, § = ¥*q/R
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History-Score-Moment Equation Weight Separability

» Weight separability! with weight-independent VR techniques:
U, (R,aw) =a™¥,, (R,w) =a"™w™V,, (R,w=1) (21)

» This separability shows that weight-independent techniques do not
require a discretized weight mesh for any moments

» Reduced memory requirements
» Reduced deterministic solver computational time
» Permits easier incorporation into pre-existing deterministic solver

' T.E. Booth et al., Nucl. Sci. & Eng., vol. 71, pp. 128—142, Aug. 1979.
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