
LA-UR-18-30509
Approved for public release; distribution is unlimited.

Title: Fitting Nuclear Data with Chebyshev Polynomials

Author(s): Josey, Colin James
Brown, Forrest B.

Intended for: 2018 American Nuclear Society Winter Meeting and Nuclear Technology
Expo, 2018-11-11/2018-11-15 (Orlando, Florida, United States)

Issued: 2018-11-02



Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for
the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396.  By approving this
article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published
form of this contribution, or to allow others to do so, for U.S. Government purposes.  Los Alamos National Laboratory requests that the
publisher identify this article as work performed under the auspices of the U.S. Department of Energy.  Los Alamos National Laboratory
strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.



Fitting Nuclear Data with Chebyshev Polynomials

Colin Josey, Forrest B. Brown

2018 ANS Winter Meeting
November 13, 2018

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

Los Alamos National Laboratory LA-UR-18-NNNNN



Introduction

In Monte Carlo, nuclear data often dominates:
• the memory footprint
• the runtime performance
of a simulation.
These effects can be compounded with large numbers of nuclides or many
temperatures.

Most codes store nuclear data linear-linear pointwise.

In this presentation, we experiment with using piecewise Chebyshev polynomials.
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Data Lookup with Linear-Linear

Energy

Reaction 1

Reaction 2

1. Binary Search
    O(log(n)) Operations

2. Read Pair
    (No Sequential Access)

3. Interpolate
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Linear-Linear Pros and Cons

Advantages

• Easy to generate

• Easy to plot

• Good compression

Disadvantages

• Binary search yields many cache
misses

• Each reaction loaded separately

Performance could be improved with some focus on cache management.
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Other Attempts to Reduce Costs

Many people focus on reducing the cost of the binary search:

• Hashing
Perform O(1) operation to reduce domain to search

• Fractional Cascading
Amortize cost of current search through previous searches on other nuclides

• Unionization
Put all nuclides on the same grid so only one search is done

Or completely eliminating the search, as is done in the windowed pole representation
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Chebyshev Format

Our approach is to make the following changes:

• Replace lin-lin with piecewise Chebyshev
Higher order→ fewer regions needed to achieve an error→ quicker binary search.

• Adjust the storage format to keep data at a given energy together
Fewer cache misses reading multiple reactions.

How this was done will be discussed in the following slides.
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Chebyshev Example
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Same memory usage, but Chebyshev has 1/4 the points in the energy grid.
Los Alamos National Laboratory 11/13/2018 | 7



Library Construction

Fit Chebyshev

over [E, E+δE]

Choose δE

Save Polynomial
Move Start EDone?

Is Error in
[0.95ε, ε]?

Start: 
E = minimum Energy

No

YesNo
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Fitting Chebyshev Polynomials

Stage 1: Form a Chebyshev Interpolant a with N terms

an ≈
2− δ0n

N

N−1∑
k=0
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)
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)
f (xk )

xk = cos
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π
(
k + 1

2

)
N

)

Here, f (x) is the Doppler broadened cross section and x is energy.
For speed, the cosine sum can be performed with a discrete cosine transform.

Stage 2: Truncate a to first M terms, M � N.
For large N, this generates a good approximation to the “minimax” polynomial.
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Checking Error

To check error, we’d want a global maximum on some user-defined error.

Option 1: perform global optimization.
Requires numerous evaluations of f (x) over the domain.

Option 2: compute error for the xk , f (xk ) pairs we already have.
As N →∞, this gives the global maximum.

To avoid missing features, local minima and maxima of the unbroadened cross section
should be pre-broadened and added to the test points.
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Library Construction
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All coefficients for an energy range are stored together.
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Choosing Nuclides to Test

Best Case: very smooth, complex data
The ideal nuclide has continuous (C∞) data in which high order derivatives have a
meaningful contribution. Resolved resonances with no File 3 data is ideal.
235U used for testing. Only has occasional discontinuities.

Worst Case: jagged or discontinuous data
This appears frequently in File 3 contributions.
56Fe used for testing.
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56Fe Data, ENDF/B-VII.1
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Discontinuous at 850 keV, C1 discontinuous beyond.
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Testing Process

Libraries were:

• Generated at 293.6K

• to an accuracy of 0.1%

• with a variety of terms M

Performance was calculated:

• by timing 50 million evaluations (with
random uniform lethargy)

• with 500 libraries in memory randomly
selected for each evaluation (to
eliminate cache effects)
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56Fe Memory Usage
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• Best size reduction: 2.9
• Nearly asymptotic at

M = 10

Los Alamos National Laboratory 11/13/2018 | 15



235U Memory Usage
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• Best size reduction: 5.8
• Smooth data

compresses much better
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56Fe Performance
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235U Performance
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≈ 0% speedup - one reaction

42% speedup - all reactions
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Summary

With regard to memory:
• The smoother the data, the more compressible.

• Even fairly rough data compressed by a factor of 2.9.

With regard to speed:
• Single reaction lookup was approximately the same.

• Looking up all reactions at once resulted in a 35-40% speedup.
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