

LA-UR-18-28060

Approved for public release; distribution is unlimited.

Title: Criticality Accident Alarm System (CAAS) CSG-UM Hybrid Example

Author(s): Alwin, Jennifer Louise

Spencer, Joshua Bradly

Intended for: ANS Radiation Protection and Shielding Division Topical Meeting,

2018-08-26 (Santa Fe, New Mexico, United States)

Issued: 2018-08-23

Criticality Accident Alarm System (CAAS) CSG-UM Hybrid Example

ANS 20th Topical Meeting of the RPSD 2018
Workshop: Attila4MC for simplifying MCNP,
Including CAD integrated CADIS and FW-CADIS

Jennifer L. Alwin – <u>jalwin@lanl.gov</u>

Joshua B. Spencer – <u>jspencer@lanl.gov</u>

Monte Carlo Methods, Codes, and Applications (XCP-3)

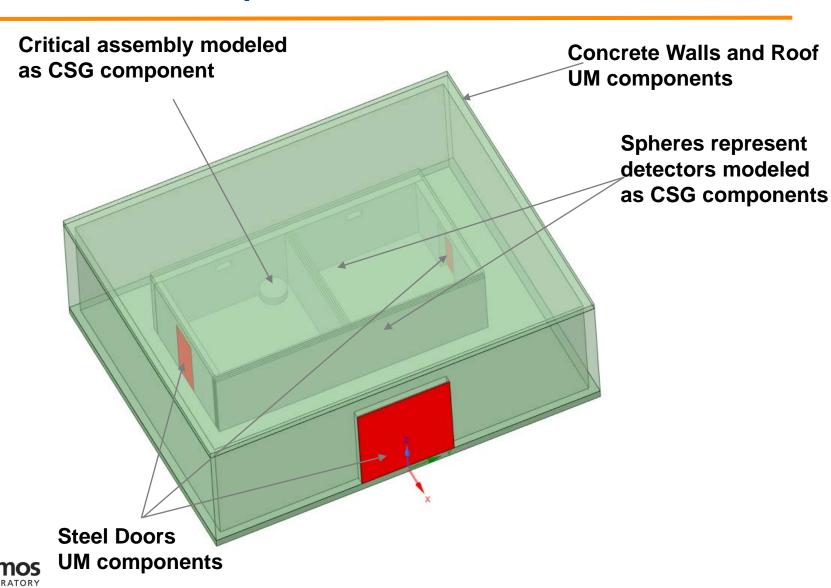
Criticality Accident Alarm Systems

criticality and shielding calculation methods.

UM for facility details

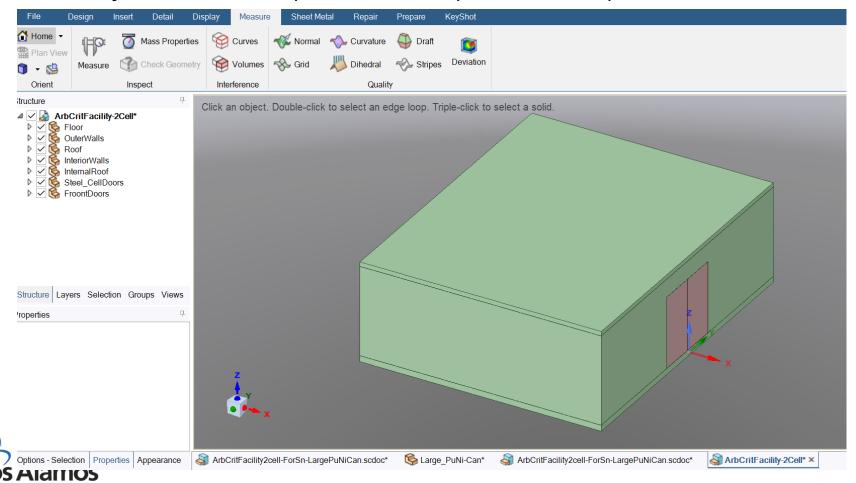
import of existing facility drawings.

CSG used for criticality and detector cells


- place criticality/detector cells in multiple locations
- conserve mass/volume geometry for criticality cells

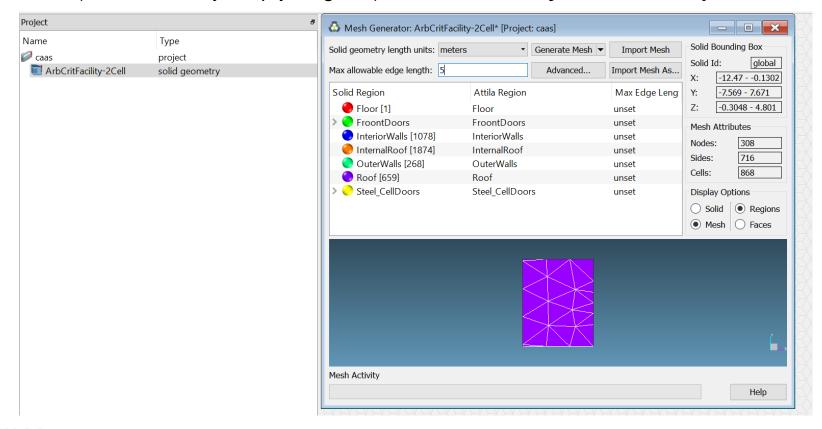
Objective: Demonstrate a hybrid method using UM for facility and CSG for criticality & detector cells

- Import solid geometry, generate mesh, create calculation in Attila4MC and create MCNP6.2 UM file
- Insert CSG cells for criticality tank and detectors into MCNP6.2 UM file
- Run MCNP6.2 KCODE calculation ensuring convergence and generate source
- Define tallies for energy deposition to detectors and run MCNP6.2 fixed source calculation
- Employ MCNP6.2 and Attila variance reduction techniques for reliable tally results



Solid geometry import into Attila4MC

ArbCritFacility-2Cell.x_t -- view parasolid file in Spaceclaim → import into Attila4MC



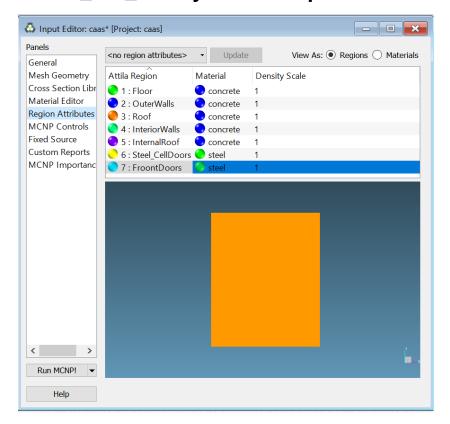
Generate Mesh in Attila4MC:

File: New: Project: caas

Project: Import file: Solid Geometry: ArbCritFacility-2Cell.x_t

Generate Mesh (unclick Identify Empty Regions) → ArbCritFacility-2cell.mesh.inp

Create calculation in Attila4MC and pack for MCNP


Project: Create Object > Calculation

Library Name: MCNP_Isotopes_Lib.xs.aux.inp (must have cross sections imported)

Material – choose material for each Attila region

Project: Import MCNP Attributes...arb_crit_facility-CSG.mcnp.i

Calculation> Pack for MCNP arbcritfacility-2cell.mcnp.i arbcritfacility-2cell.abaq

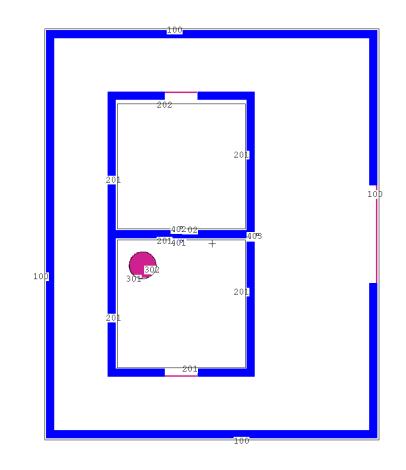
Cell Cards Showing only UM Geometry										
c										
1	2	-2.3 0	u=1							
2	2	-2.3 0	u=1							
3	2	-2.3 0	u=1							
4	2	-2.3 0	u=1							
5	2	-2.3 0	u=1							
6	1	0.08636 0	u=1							
7	1	0.08636 0	u=1							
8	0	0	u=1 \$ background							
9	0	100 -1	01 102 -103 104 -105 fill=1 \$ fill cell							
10	0	(-100:101:-102:103:-104:105)								
c End Cell Cards 80										

Cell Cards Showing only UM-CSG Geometry										
c Cell Cards 80										
1		-2.3 0		o:n=1	u=1					
		-2.3 0		o:n=1	u=1					
3		-2.3 0		o:n=1	u=1					
4		-2.3 0		o:n=1	u=1					
5		-2.3 0		o:n=1	u=1					
			•	o:n=1						
	1		•	o:n=1	u=1					
8	0				u=1 \$ background					
9	0	-100	0 201 202 203	3 fill=1 in	np:n=1 \$ fill cell					
С										
		ality Cells CS								
21		-20)1 #30 #31 #3	2 #40 im	np:n=1					
22	0	-202 #41 imp:n=1								
23	0	-20	3 #42	im	np:n=1					
С										
сΡ	u Nit	trate solution	in cell 1							
30	94	9.9270e-2	-301 -303	imp:n=	1					
31	0		-301 303	imp:n=	1					
32	1	0.08636	-302 301	imp:n=	1					
С				•						
сD	etec	tor Spheres								
40 96 -0.92 -401 imp:n=1										
		5 -0.92 -402 imp:n=1								
		-0.92 -403 imp:n=1								
C		-	I.							
c outside world										
99 0 100 imp:n=0										
c End Cell Cards 80										
C Elia Celi Calus 80										

c ------ End Surface Cards ----- 80

Cell Cards Showing only UM-CSG Geometry					
c Surface Cards 80					
C					
c 100 px -1252.46					
c 101 px -8.0175					
c 102 py -761.92					
c 103 py 772.08					
c 104 pz -35.48					
c 105 pz 485.06					
100 RPP -1252.46 -8.0175 -761.92 772.08 -35.48 485.06					
C					
c Crititicality Storage Cells with 5cm buffer to UM walls					
201 RPP -983.38 -505.7 -492.83 -15.15 5.0 269.32					
202 RPP -983.38 -505.7 25.15 492.83 5.0 269.32					
203 SPH -460.2175 5.085 100 7					
C					
c Plutonium-Nitrate Container in inside corner of cell 1					
301 RCC -888.38 -110.15 100.0 0. 0. 131.7 50					
302 RCC -888.38 -110.15 99.0 0. 0. 132.7 50.5					
303 pz 117.0					
C					
c Detector Sphere in inside corner of cell 2					
401 sph -744.5375 -20.1549 100.0 5					
402 sph -744.5375 30.3251 100.0 5					
403 sph -460.2175 5.085 100.0 5					
c End Surface Cards 80					

Call Carde Showing only LIM CSG Goometry



MCNP6.2 Geometry Plot of UM-CSG cells

U5/11/18 11:48:14 Caas Hybrid CSG-UM

UT RT DN LF Origin .1 .2 200m 5. 10

probid = 05/11/18 11:47:54
pasis: XY
(1.000000, 0.000000, 0.000000)
(0.000000, 1.000000, 0.000000)
prigin:
(-629.65, -29.75, 100.00)
extent = (956.25, 956.25)

- MCNP6.2 KCODE calculation with SSW
- Generated with the SSW or "Surface Source Write" card.
- Form: SSW CEL = C1 C2 ...
 - CEL keyword lists cells to store fission source points from KCODE calculation.
 - Produces a file with default name wssa.
 - The source file may be used as the source from a criticality accident.

```
...
KCODE 20000 1.0 50 150
KSRC -888.38 -110.15 108.5
ssw cel=30
...
mcnp6 i = caas1.txt o = caas10.txt wssa = source
```

- Note: This will generate 2 million source points and will take a long time.
- Examine results, verify run was successful and Shannon entropy check confirms source convergence

- MCNP6.2 fixed source calculation with SSR
- Form: SSR CEL = C1 C2 ... WGT = W PSC = P
 - CEL lists cells to use from the surface source file.
 - W is the intensity of the source (neutrons released from the burst).
 - PSC is the probability of scattering cosine. From fission this is isotropic and 0.5.
 This is needed for F5 tallies and DXTRAN.
- Since fission was already treated in the KCODE calculation, it must be treated as capture.
- Form: NONU N1 N2 ... N(NCEL)
 - Specifies a list of cells where fission is treated as capture
 - = 0, do not perform fission (treat as capture)
 - = 1, perform fission
- The neutron energy deposited in a cell may be obtained with an F6 tally.
- Form: F6:n C1 C2 ...
- Computes energy deposition for each cell listed on the card in MeV/gram.

MCNP6.2 KCODE

.

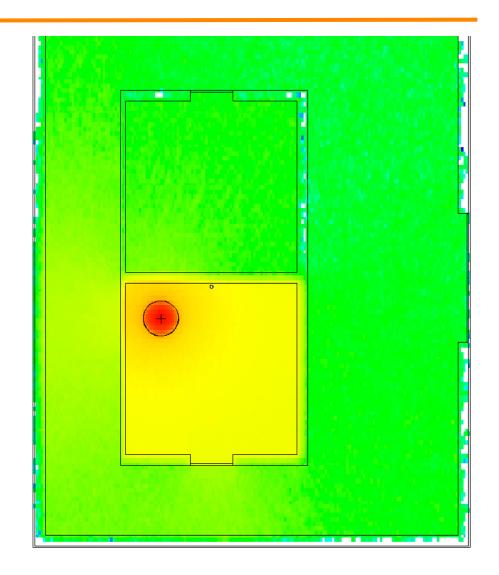
kcode 20000 1.0 50 150 KSRC -888.38 -110.15 108.5 ssw cel=30

.

MCNP6.2 fixed source

c Source Definition ssr cel=30 wgt=2.9e15 psc=0.5 nonu 0 18r С c Histories (or Computer Time Cutoff) nps 1e6 С c Tallies or embee cards fmesh4:n ORIGIN=-1255, -750, 0. IMESH=0. IINTS=184 JMESH=750. JINTS=124 KMESH=450. KINTS=36 С f16:n 40 fm16 1.6022e-10 \$1.602e-10 convert MeV/gram to J/kg fc16 Criticality Accident Dose at Detector 1 in Gy

```
mcnp6 i = caas3.txt o = caas30.txt rssa = source
```

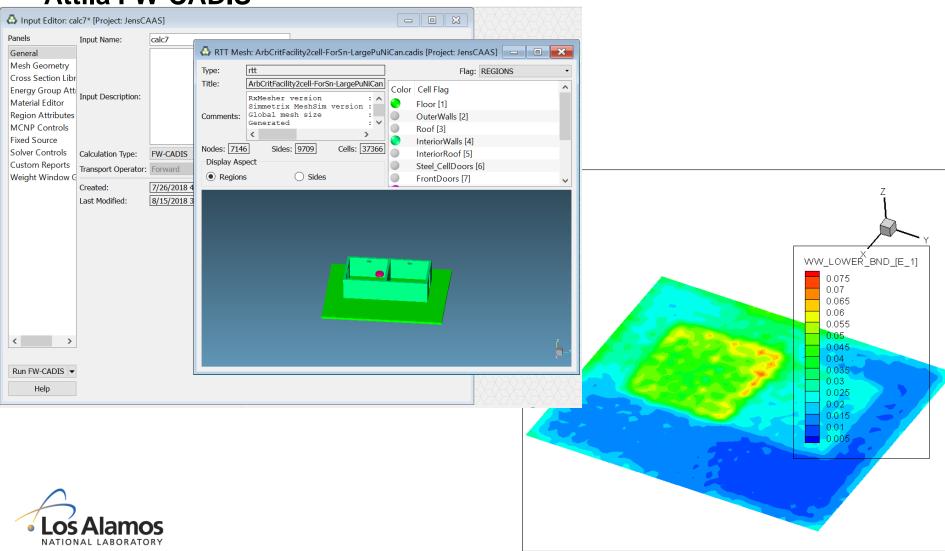
MCNP6.2 Fmesh results

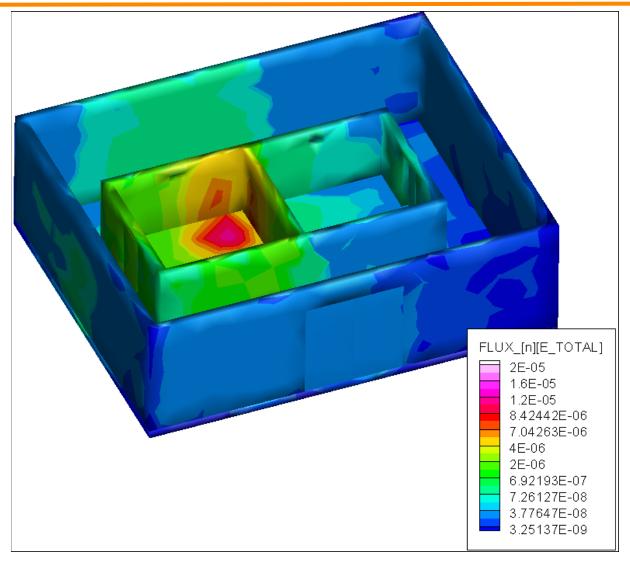
fmesh tally in input file:

fmesh4:n ORIGIN=-1255. -750. 0. IMESH=0. IINTS=184 JMESH=750. JINTS=124 KMESH=450. KINTS=36

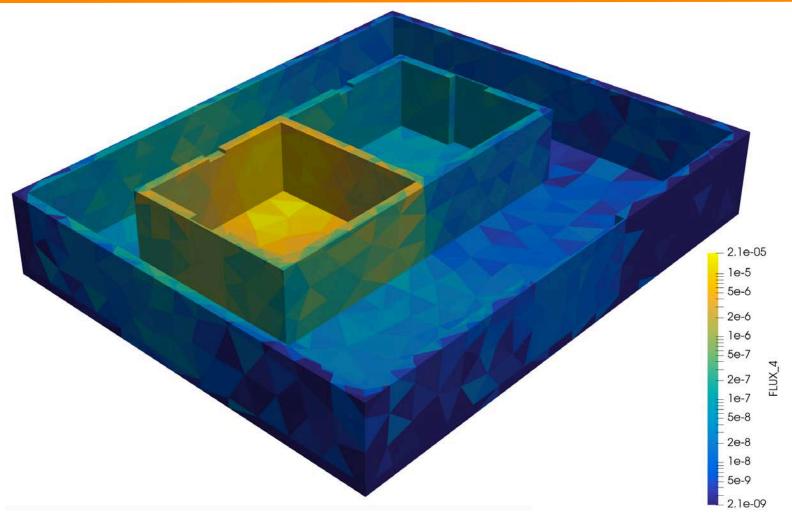
After successful run, plot fmesh tally: mcnp6 z r=caas3.r

MCNP6.2 Neutron Energy Deposition Results

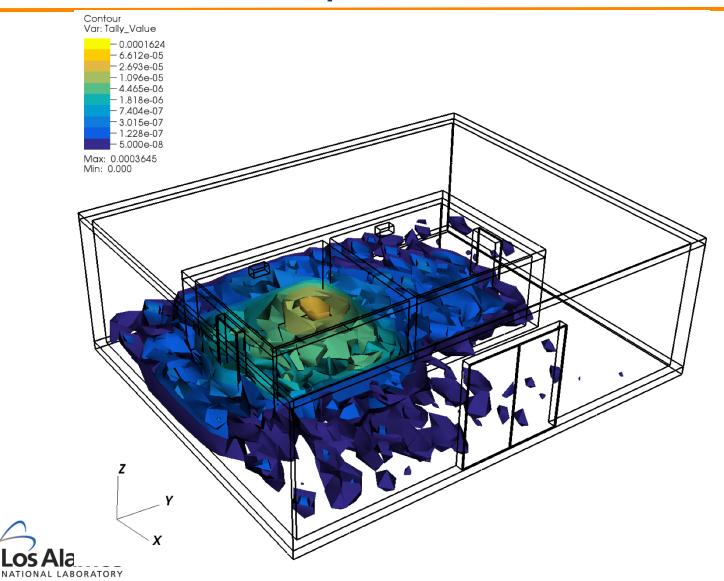

Run	Detector 1 Mean Estimate (Gy)	Relative Error Estimate	Detector 2 Mean Estimate (Gy)	Relative Error Estimate	Detector 3 Mean Estimate (Gy)	Relative Error Estimate
1: UM-CSG using FW-CADIS	2.2870E-02	0.0397	6.3406E-04	0.0367	1.0857E-04	0.0512
2: UM-CSG using DXT, ESPLT	2.3486E-02	0.0374	6.3958E-04	0.0345	9.7151E-05	0.0710
3: CSG using DXT, ESPLT	2.2815E-02	0.0131	6.2337E-04	0.0128	1.0838E-04	0.0305
Difference 1-2	-2.69%		-0.87%		10.52%	
Difference 1-3	0.24%		1.69%		0.18%	


Attila FW-CADIS

Tecplot from MCPN6.2 eeout file



Slide 16



Acknowledgements:

Gregory Failla and Dan Oranski – Varex Imaging:

Thanks for assistance with mesh, CADIS and FW-CADIS and providing Attila

Joel Kulesza – LANL:

Thanks for assistance with visualization Visit and

