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Objectives

1. Accurately predict the bias of MCNP6 criticality calculations using
machine learning algorithms

e Using ensembles of decision trees

2. ldentify which isotope reactions lead to bias
o Using feature importances from decision trees

3. Determine if kog sensitivity profiles from MCNP6 are good
features for machine learning
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Motivations

e Bias (ksim — kexp) is extremely important for criticality safety
o Used for calculating upper subcritical limits

e Knowing what isotope reactions are leading to bias informs what
physics models or data can be improved

e ML algorithms are great for problems where traditional approaches
provide no solution

e Can model extremely complicated relationships, and provide insights
about large data sets
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Background - Computational Bias
Upper Subcritical Limit (USL)

o A calculated K.s j 1.0 is not sufficient to ensure subcriticality

e Must account for bias uncertainties in the calculational method

Kegr =1
¢ Bias = mean (K., K.,p) for a set of experiments that
are similar to the application

Bias Uncertainty, at 95% or 99% confidence level

!l! Margin of Subcriticality (MOS) = code & data uncertainties

MOS for Area of Applicability (AOA) = if benchmarks

USL are not similar enough to application

Image obtained from LANL Whisper presentation.
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Background - Whisper

e Statistical analysis code used to determine USL
o Uses sensitivity profiles from continuous energy MCNP6
e Uses covariance data for nuclear cross sections
e Finds applications that are neutronically similar to application of
interest
o Features:
e Calculates bias and bias uncertainty using extreme value theory
e Calculates margin for nuclear data uncertainty using generalized linear
least squares method
e Contains:

e 1,100 benchmarks with experimental and simulated kes
e Metal, composite, and solution experiments containing Pu and U
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Background - Sensitivity Profiles

e How sensitive is kg to uncertainty in some parameter?

e Defined as the ratio of relative change in a response to a relative
change in a system parameter:

s Ak/k
ox = Ax/x

H-1: elastic scattering cross-section sensitivity U-238: total cross-section sensitivity
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Background - Sensitivity Profiles

e Magnitude is proportional to its impact of the system's effective
multiplication

e The sign of the sensitivity coefficient gives the direction that k
would change

e The sensitivity coefficient has the property of being additive

H-1: elastic scattering cross-section sensitivity U-238: total cross-section sensitivity
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Machine Learning is the field of study that gives computers the
ability to learn from data without being explicitly programmed
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Machine Learning Tasks

Regression Classification

o Predict a target numeric variable e Identifying group membership

3-Class classification (k = 15, weights = 'uniform')

20 -10 10 20 30 40 50 60

Image obtained from
https:/ /sebastianraschka.com/faq/docs/evaluate-a-
model.html

Image obtained from Wikipedia's Linear Regression page
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Decision Trees

e A tree like model of decisions
based on features

Were you...

3

o All features are considered to w le? e
Sp||t the data ) An adult? ) In 31 class?
o Splits are chosen that s
minimize a cost function e kml %ml e S
(MSE) Y 9 QU 9
. Image obtained from
e More Important features are https://algobeans.com/2016/07 /27 /decision-trees-tutorial

found near the top

11/26



[ Oregon State University

" College of Engineering

Ensembles of Decision Trees

e Random Forest

e Each tree is trained on a random subset of the training instances
e Using a random subset of features from the total feature set

e Adaboost

o |terative process where new predictors pays more attention to the
cases that the previous predictors made errors on
e Pays more attention to the difficult cases

Decision Forest
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Methods - Features and Targets

e Sensitivity Profiles
o Inherently carry enough information to characterize a system
e Can be used to find patterns that influence bias

b ksim
e Generated with the sensitivity vectors from MCNP6
e Strong linear relationship between bias and kg,

e Predicting:

o Bias (ksim - kexp)
b kexp
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Methods - Training and Validating

Model Evaluation Model Complexity

e Ten fold cross-validation e Minimize model error

Fixed data size

| T |

Teaining folds Test fold

—
=

1% eration

'
2
Mean Error

Image obtained from

High bias High variance

https:/ /sebastianraschka.com/faq/docs/evaluate-a-
model.html

Model Complexity

Image obtained at
https://stats.stackexchange.com/questions /69549 /
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Results - Sensitivity Vectors as Features

Relative Frequency

o Are sensitivity profiles sufficient to characterize the problem?

e Beginning to model the relationship
e MSE = 2.723E-5, RMSE = 0.00521, MAE = .00374

Distribution of Error

| u=—-4.0574e - 04,0=0.0051

-0.03 -0.02 -0.01 0.00 0.01
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Results - Adaboost Predicting Bias

Oregon State University

College of Engineering

e Accurate for cases with high number of benchmarks
e Higher errors for Pu - composite, HEU composite, and MOX

solutions.

e MSE = 9.106E-6, RMSE = 0.00301, MAE = .00177

Errors of Adaboost on Predicting Bias
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Results - Random Forest Predicting Bias

e Slightly less accurate than Adaboost

e Higher errors for same cases
e MSE = 1.498E-5, RMSE = 0.00387, MAE = .00248

MSE Among Benchmark Types

Errors of Random Forest on Predicting Bias
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Results - Adaboost Predicting kieas

e Increased accuracy - same units as bias

e Different error profile
e MSE = 1.668E-6, RMSE = 0.00129, MAE = .00062

Errors of Adaboost on Predicting Kefr
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MSE Among Benchmark Types
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Results - Performance Statistics
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e Models that predict kmeass perform much better

e Average experimental uncertainty for kpmeas is 0.003

Model Mean Absolute Error | Root Mean Squared Error

Adaboost (Bias) 0.00142 0.00261
Random Forest (Bias) 0.00216 0.00348
Neural Network (Bias) 0.00492 0.00725
Adaboost (keas) 0.00062 0.00129
Random Forest (Kyeas) 0.00079 0.00136
Whisper (Bias) 0.00906 0.01329
GLLSM (kpeas) 0.00645 0.00959

Table 1: Statistics for the machine learning models from 10 fold cross validation, GLLSM, and
Whisper. The top ML models are predicting bias, and the middle are predicting kmeas
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Results - Feature Importances
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e Obtained from random forest regressor

e Mostly actinides and other elements common in dataset

e Some unexpected elements like U-234

Isotope Reaction

Relative Importance

92233.80c n,gamma
92232.80c total nu
92232.80c fission
92234.80c n,gamma
6000.80c n,gamma
92234.80c fission
92234.80c total nu
92232.80c n,gamma
6000.80c n,alpha
6000.80c inelastic

0.046818
0.045100
0.039334
0.035280
0.032351
0.031656
0.030931
0.027735
0.025528
0.024418
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Results - Feature Importances

e Break down importance by energy

e Again U 234 has three reactions in top 10

Thermal (0 - 0.625 ev)

Intermediate (1.0 ev - 0.1 Mev)

[ Oregon State University

Fast (0.4 Mev - 20 Mev)

y College of Engineering

6000.80c n,gamma, 0.014562
92233.80c total nu, 0.011437
92233.80c n,gamma, 0.010641
92234.80c n,gamma, 0.009479
1001.80¢ n,gamma, 0.009069
poly.20t inelastic, 0.008879

be.20t elastic, 0.008204
94239.80c n,gamma, 0.007522
94239.80c fission, 0.007427
9019.80c n,gamma, 0.007201

92233.80c n,gamma, 0.018457
92233.80c fission, 0.015724
92233.80c total nu, 0.012844
92234.80c n,gamma, 0.011945
94239.80c n,gamma, 0.011687
6000.80c n,gamma, 0.008924
94239.80c total nu, 0.008325
94239.80c¢ fission, 0.008208
6000.80¢ elastic, 0.007817
92232.80c total nu, 0.006668

92233.80c fission, 0.015264
92233.80c inelastic, 0.013543
92233.80c n,gamma, 0.012739
92233.80c total nu, 0.012644
9019.80c inelastic, 0.010355
6000.80c elastic, 0.009997
92233.80c fission chi, 0.008758
92234.80c total nu, 0.008494
92234.80c¢ fission, 0.008008
1001.80c elastic, 0.007938
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Results - Feature Importances

Importance of U-234 n,gamma

e U-234 n-gamma reaction .
o Leu-comp-therm-079-010 § ooms
g

e U-234 makes up 0.0074% of rod o
e ke n-gamma sensitivity is o
0 0.0000

12.58% of the average T

Energy {Mev)
e Pattern of low concentration Uncertainty o 234 Grossections
and high sensitivity importance ;
seen in other cases as well
§ 04
i 03
01
& & & & & T
& < & & @H@
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Conclusion

Sensitivity vectors are excellent features for ML algorithms

ML algorithms estimate bias very accurately for criticality
simulations

e Feature importances imply what iso-rxns are important to
predicting bias

These methods should be explored for applications
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Future Work

e Incorporating conservatism into models (NCS angle)
e Applying these methods to reactors
o Investigate high importance reactions

e Continued optimization of models and incorporating neural
networks
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Thank you!
Questions?
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