

The Impact of Chemistry in Criticality Safety Analysis

Jennifer Alwin

Monte Carlo Codes Group

X Computational Physics Division

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

LA-UR-16-28482

Impact of Pu Chemistry in Analysis Los Ala

- Density of Solution
- Oxidation State
 - Common in processing
 - Changes
 - Radiolysis
 - Temperature
- Speciation

LA-UR-16-28482

- Common ligands
 - Neutronics
 - Validation tools

Clark, D. L., *The Chemical Complexities of Plutonium*. Los Alamos Science Number 26. 2000.

Impact of Pu Chemistry in Analysis

- Density
 Predictive capability
 - improvements
- Isopiestic Density
 Law of Nitrates ^[1]
- Pitzer Method^[2]
- H density of metal-water mixture vs. actual solution density
- 1. Leclaire, N. P., J. A. Anno, and G. Courtois. Criticality Calculations Using the Isopiestic Density Law of Actinide Nitrates. *Nuclear Technology*. 144. 2003.
- 2. Weber, C. F., and C. M. Hopper. Application of the Pitzer Method for Modeling Densities of Actinide Solutions in the Scale Code System. *Nuclear Technology*. 53. 2006.

LA-UR-16-28482

S LOS Alamos

Impact of Pu Chemistry in Analysis Oxidation States for Pu Nitrate

- Pu forms Pu(III), Pu(IV), Pu(V), Pu(VI) and Pu(VII) in solution
- In acid solution

LA-UR-16-28482

- Pu(III), Pu(IV), Pu(V), Pu(VI) can exist simultaneously
- III, IV, and VI are most common
- Oxidants/Reductants
 - change/stabilize oxidation states

Clark, D. L., The Chemical Complexities of Plutonium. Los Alamos Science Number 26. 2000.

Clark, D. L., The Chemical Complexities of Plutonium. Los Alamos Science Number 26. 2000.

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Impact of Pu Chemistry in Analysis Pu(IV) nitrate disproportionation

- Pu self-oxidation/reduction
- 8M nitric acid Pu(IV) stabilized
- Dilute acid

LA-UR-16-28482

- Mix III, IV, VI
- Irreversible
- Unavoidable

Impact of Pu Chemistry in Analysis

- Pu(IV) Nitrate
- Radiolysis
 - Alpha emissions from Pu can alter oxidation state
 - Example: PuO₂²⁺ reduced to Pu⁴⁺ ~ 1.5% per day
- Temperature

LA-UR-16-28482

 Changes in temperature can alter oxidation state

Impact of Pu Chemistry in Analysis **Pu(IV)** Nitrate

- Pu(IV) forms various species
 - Depends on free nitric acid present
 - $-Pu(NO_3)_2^{2+}$
 - highest concentration in 2 M nitric acid
 - Pu(NO₃)₄ and Pu(NO₃)₆²⁻
 - present in ~equal concentrations in 7 M nitric acid

$-Pu(NO_3)_6^{2-1}$

LA-UR-16-28482

major species in 13 M nitric acid

Marsh S.F., D. K. Veirs, G. D. Jarvinen, M. E. Barr, and E. W. Moody., Molecularly Engineered Resins for Plutonium Recovery. Los Alamos Science Number 26. 2000.

Impact of Pu Chemistry in Analysis. Los Alamos

Whisper with MCNP6

- Nuclear Criticality Safety analysis requires validation of computational methods
- Neutron spectra are complex functions of geometry, materials, nuclear cross-section, etc.^{**}
- MCNP-WHISPER Methodology:
- MCNP determines sensitivity profiles to characterize neutronics of an application or benchmark, S(energy, reaction, isotope) S=(dk/k)/(dσ/σ)
- WHISPER uses:
 - Sensitivity profile data for application
 - Covariance files for nuclear data
- To determine
 - Baseline upper subcritical limit (USL) with bias, bias uncertainty, margin of subcriticality
 - Similar benchmarks from library of 1100+ ICSBEP experiments
- Can support traditional validation and help determine or support validation weaknesses

Brown, F. E., M. Rising, and J. L. Alwin., MCNP-WHISPER Methodology for Nuclear Criticality Safety Validation. LA-UR-16-23757

LA-UR-16-28482

 $v\Sigma_F \Phi$ production spectrum

EST.1943 -----

- Pu chloride solutions similarity to Pu nitrate solutions
 - Whisper & MCNP6

	Chloride	Nitrate
EALF (MeV)	9.04e-08	8.65e-08
ANECF (MeV)	1.33e-02	1.29e-02

LA-UR-16-28482

