LA-UR-16-27332

Approved for public release; distribution is unlimited.

Title:	Validation of the MCNP6 electron-photon transport algorithm: multiple-scattering of 13- and 20-MeV electrons in thin foils
Author(s):	Dixon, David A. Hughes, Henry Grady III
Intended for:	13th International Conference on Radiation Shielding and 19th Topical Meeting of the Radiation Protection and Shielding Division of the American Nuclear Society, 2016-10-03/2016-10-06 (Paris, France)

Issued: 2016-09-26 (Draft)

Disclaimer:

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Validation of the MCNP6 electron-photon transport algorithm: multiple-scattering of $13-$ and $20-\mathrm{MeV}$ electrons in thin foils For ICRS 13 - RPSD 2016

David Dixon ${ }^{1}$
H. Grady Hughes ${ }^{1}$
${ }^{1}$ Monte Carlo Methods and Applications Group
Los Alamos National Laboratory
ddixon@lanl.gov

October, 2016

MCNP6 electron-photon transport V \& V

- Motivated by:
- Information gap in electron-photon V \& V
- New physics/transport algorithm - i.e. the EPRDATA
- Current status:
- Completed comparison to Lockwood energy deposition experiment
- Wrapping up the work presented today
- Will revisit Gierga and Adams (Bremms, electron e-spec, so on)
- Early stages of collaboration with ANL for GeV range validation
- Might study the Tabata charge deposition experiments

The multiple-scattering experiment (Ross et al.)

- Purpose: obtain data used to test models of electron scattering
- Measurement of electron fluence at angles from from 0 to 9 degrees
- Materials tested include atomic numbers from 4 to 79
- Key References:
C. K. Ross et al., Measurement of Multiple Scattering of 13 and 20 MeV electrons by thin foils, Med. Phys., 35, 4121-4131(2008).
B. A. Faddegon et al., Accuracy of EGSnrc, Geant4, and PENELOPE Monte Carlo Systems for Simulation of Electron Scattering in External Beam Radiotherapy, Phys. Med. Biol., 54, 6151-6163 (2009).

Experimental setup

- Experimental features:
- Beam
- Scattering foil
- Monitor Chamber
- Mylar bag

Los Alamos
NATIONAL LABORATORY
national laboratory

Simulation setup

- Geometry:
- Each component approximated by a cylinder or cylindrical shell
- Several very thin regions
- Source:
- Mono-directional, mono-energetic beam with Gaussian spread in plane orthogonal to beam
- $n p s=1 e 9$
- Physics:
- Tranport algorithm and data:
- Electrons: condensed history (ELO3)
- photons: single event (EPRDATA)
- Parameterized step-size via ESTEP and EFAC
- Cut-offs: $1-k e V$ for electrons and photons (probably insignificant)
- Tallies:
- F2: surface flux tallies + surface divisor

$13-\mathrm{MeV}$ beam on various targets

Table 1: Comparison of measured and calculated characteristic angles for $13-\mathrm{MeV}$ electrons on $\mathrm{Be}, \mathrm{Al}, \mathrm{Cu}, \mathrm{Ta}$, and Au . Three different physics configurations are studied: default, $E S T E P$, and $E F A C=0.99$.

Material	Thickness (mg/cm2)	$\begin{aligned} & \text { Ross et al. } \\ & \quad \text { (deg.) } \end{aligned}$	Dixon \& Hughes (deg.)	Default		ESTEP		EFAC	
				Calc. (deg.)	Rel. Diff. (\%)	Calc. (deg.)	Rel. Diff. (\%)	Calc. (deg.)	Rel. Diff. (\%)
Be	926	8.143	8.089	8.363	3.382	8.846	9.353	9.081	12.26
AI	70.1	4.003	3.981	4.308	8.223	4.558	14.48	4.289	7.745
	140	5.268	5.226	5.602	7.196	5.798	10.93	5.652	8.150
Cu	43.0	4.219	4.167	4.541	8.968	4.745	13.86	4.450	6.786
	86.4	5.630	5.562	5.970	7.310	6.161	10.74	5.956	7.056
	129.6	6.861	6.803	7.115	4.593	7.323	7.645	7.210	5.989
	174.5	7.956	7.911	8.521	7.704	8.681	9.722	8.619	8.938
Ta	44.3	5.558	5.503	5.812	5.608	5.787	5.158	5.799	5.385
Au	31.2	4.878	4.798	5.061	5.473	5.346	11.43	5.164	7.626
	54.8	6.329	6.260	6.568	4.911	6.769	8.124	6.650	6.216
	93.7	8.243	8.231	8.812	7.052	9.013	9.495	8.986	9.163

$20-\mathrm{MeV}$ beam on various targets

Table 2: Comparison of measured and calculated characteristic angles for $20-\mathrm{MeV}$ electrons on $\mathrm{Be}, \mathrm{C}, \mathrm{Al}, \mathrm{Cu}, \mathrm{Ta}$, and Au . Three different electron physics configurations are studied: default, ESTEP, and $E F A C=0.99$.

Material	Thickness (mg/cm2)	$\begin{aligned} & \text { Ross et al. } \\ & \text { (deg.) } \end{aligned}$	Dixon \& Hughes (deg.)	Default		ESTEP		EFAC	
				Calc. (deg.)	Rel. Diff. (\%)	Calc. (deg.)	Rel. Diff. (\%)	Calc. (deg.)	Rel. Diff. (\%)
Be	926	5.238	5.214	5.434	4.234	5.694	9.208	5.839	11.99
C	546	5.132	5.108	5.198	1.764	5.456	6.825	5.561	8.873
AI	70.1	2.653	2.634	2.873	9.094	3.148	19.51	2.877	9.221
	140	3.484	3.463	3.657	5.611	4.018	16.02	3.823	10.39
	274	4.777	4.750	4.978	4.798	5.269	10.94	5.268	10.91
Cu	43.0	2.790	2.768	3.025	9.284	3.279	18.49	2.999	8.375
	86.4	3.714	3.685	3.891	5.605	4.245	15.21	4.041	9.666
	129.6	4.493	4.454	4.758	6.843	4.979	11.81	4.900	10.02
	174.5	5.198	5.147	5.429	5.496	5.724	11.22	5.688	10.51
Ta	206.3	7.913	7.809	8.207	5.099	8.306	6.364	8.793	12.60)
Au	54.8	4.127	4.111	4.382	6.590	4.652	13.17	4.563	10.9 doration
	164.2	7.278	7.258	7.593	4.605	7.775	7.113	8.025	10.57

Combined results

Table 3: Average of the relative differences between measured and calculated characteristic angles for $13-\mathrm{MeV}$ and $20-\mathrm{MeV}$ electrons for three different physics configurations including: default, ESTEP, and EFAC, along with results from Faddegon et al.

	Average Relative Difference	
Physics Setting	$13-\mathrm{MeV}$	$20-\mathrm{MeV}$
Default	6.4%	5.8%
ESTEP	10.1%	12.2%
EFAC	7.3%	9.5%
EGS	-1.3%	1.0%
Geant4	0.7%	0.9%
Penelope	1.1%	1.1%

Sources of disagreement

- Truncation error in the computation of the scattering distributions
- Tally type
- The underlying differential cross-section
- Simulation geometry and boundary crossings

Truncation Error

- The angular deflection distribution is computed from:

$$
F_{g s}(s, \theta)=\sum_{\ell=0}^{L} \frac{2 \ell+1}{2} \exp \left(-s G_{\ell}\right) P_{\ell}(\cos (\theta))
$$

- Currently, MCNP truncates at $\mathrm{L}=240$
- 240 terms is not appropriate for a wide range of parameters
- Particularly, for increasing energies and decreasing substeps
- New feature added to allow for arbitrary L

Truncation Error cont.

- Impact of new feature on results:

Table 4: Comparison of measured and calculated characteristic angles for $13-\mathrm{MeV}$ electrons on $\mathrm{Be}, \mathrm{Al}, \mathrm{Cu}, \mathrm{Ta}$, and Au before and after adding new feature. Three different physics configurations are studied: default, ESTEP, and EFAC=0.99.

Material	Thickness (mg/cm2)	Default		ESTEP		EFAC	
		Calc. (deg.)	Rel. Diff. (\%)	Calc. (deg.)	Rel. Diff. (\%)	Calc. (deg.)	Rel. Diff. (\%)
AI	70.1	4.308	8.223	4.558	14.48	4.289	7.745
Au	31.2	5.061	5.473	5.346	11.43	5.164	7.626
AI	70.1	4.265	7.124	4.543	14.119	4.256	6.923
Au	31.2	5.016	4.537	5.338	11.254	5.130	6.921

Los Alamos
NATIONAL LABORATORY
NATIONAL LTABORATOR

Tally type

- Used an F2 surface flux tally
- Other codes used a cell volume tally...
- Surface flux tallies make an approximation for grazing angles
- Unlikely that grazing angles are the problem
- Will attempt a *F8 tally

Differential cross-section model

- Screened Mott:

$$
\begin{equation*}
\sigma_{e l}^{M}(E, \mu)=\frac{(\tau+1)^{2}}{\tau^{2}(\tau+2)^{2}} \frac{2 \pi r_{0}^{2} Z^{2}}{[1+2 \eta-\mu]^{2}}\left[\frac{\sum_{e l}^{M}(\mu)}{\sum_{e l}^{R}(\mu)}\right] \tag{1}
\end{equation*}
$$

- Doubtful that the underlying DCS is the cause
- Will use EPRDATA14 to make determination
- Single-event electron-photon DCS library
- Well be included in MCNP6.2 release
- See Grady Hughes presentation for details

Simulation geometry

- Small regions + boundary crossing approximation could be a source of error
- Boundary crossing approximation

$$
\begin{equation*}
\tilde{\mu}=1-[1-\mu(s)]\left(\frac{\boldsymbol{s}_{\delta}}{s}\right) \tag{2}
\end{equation*}
$$

- Thin regions: scattering foil, monitoring chamber, and Mylar bag
- Sensitivity study
- Method of last resort
- Could help identify errors in model

Conclusions

- Overall performance not great (relative to class II codes)
- Uncertain about expectations
- Number of sources of disagreement

Figure 1: Comparison of Gaussian fits to experiment (solid curve) and. Eb5cAlatios (dashed curve) angular distributions for $13-\mathrm{MeV}$ electrons on various foils.

Conclusions cont.

- Overall performance not great (relative to class II codes)
- Uncertain about expectations
- Number of sources of disagreement

Figure 2: Comparison of Gaussian fits to experiment (solid curve) and Ebscalaれdes (dashed curve) angular distributions for $20-\mathrm{MeV}$ electrons on various foits.

Questions?

LOS Alamos

