
The Intrinsic Source Constructor (ISC) and
MCNPTools Libraries

Clell J. (CJ) Solomon Cameron R. Bates

Los Alamos National Laboratory
PO Box 1663

Los Alamos, NM 87545

28 Sept. 2016

LA-UR-16-27265

Slide 1

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

Outline

Intrinsic Source Constructor
Overview
Using MISC to Generate Source Terms for MCNP
ISC Library Usage

MCNPTools
Overview
Widgets
MCNPTools Accessor Classes

Mctal Class
Meshtal (mesh-tally type B) Class
Ptrac Class

Interactive MCNPTools Demo (time permitting)

Slide 2

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

ISC Overview

ISC is a library for generating intrinsic radiation sources for inputs into
radiation transport codes
ISC is written in C++ and bound to Python (via SWIG)
ISC uses a CMake build system to build the C++ library and utilities
and a Python setuptools setup.py to build the Python extensions
ISC has with it a single binary utility MISC–the MCNP Intrinsic Source
Constructor–that will generate SDEF distributions

Slide 3

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

ISC Data Files

ISC has three classes of data files
1. natural abundance files–contains naturally occurring abundances of

isotopes
2. radioactive decay data files–contains decay mechanisms, branching

ratios, and daughter isotopes
3. particle emission data files–contains the particle emissions from the

decay of an isotope

The data files are C++ Boost Serialized versions of ISC data storage
classes
The data files are typically stored in XML formats that can be
interrogated in an editor (if one knows what they are looking for)

Slide 4

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

To SZAs ... and Beyond

to adequately capture decay channels, emissions, etc., ZA identifiers
are insufficient
ISC uses SZA identifiers where S is the long-lived isomeric state
number (not necessarily the isomer’s level number)

SZA = S ⇤ 1000000 + Z ⇤ 1000 + A

For example, Pa-234m1 would be 1091234

Slide 5

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

Natural Abundance Files

intended to facilitate usability
allows a user to specify a natural ZA (i.e., A=000) and automatically
expand it to isotopic ZAs
Currently, the only available data set is the NIST natural abundances

Slide 6

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

Radioactive Decay Data Files

This file contains information about decay mechanisms, branching
ratios, and decay daughters of SZAs
Currently, these files do not include any information about
spontaneous fission products
Available data sets include data from ENDF/VI (not recommended)
and ENDF/VII.1 radioactive decay sublibrary

Slide 7

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

Particle Emission Data Files

For each SZA, a file exists that has the emissions by particle type
The emission files do not contain any information about coincident
emissions
Beta-particle spectra are reconstructed based on Fermi theory from
end-point energies
Watt spectrum parameters exist for many/most spontaneously
fissioning isotopes (taken from the SOURCES 4C) data set
The currently available set of particle emission data are from the
ENDF/VI (not recommended) and ENDF/VII.1 radioactive decay
sublibraries (RDSL)

Slide 8

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

Why ENDF7.1 and not ENDF6
vast improvements were made to the ENDF RDSL from ENDF/VI to
ENDF/VII.0 and important corrections made in ENDF/VII.1
below is a comparison of dose measurements to simulation from a
DU sphere

ENDF/VI ENDF/VII

Slide 9

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

Aging Material

ISC has built into it a Bateman solver
Materials compositions can be specified, aged, reset, and aged again
if desired
Emission spectra can be generated for either or both the original
material composition and the aged composition

Slide 10

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

MISC Overview

1. MISC is a standalone binary utility that generates SDEF source
distributions for MCNP

2. MISC reads and input file with entries generally of the form

hkeywordi = hvaluei

3. MISC has a User’s Manual, but an example input is given herein
4. MISC generates source distributions for a single particle type at a

time, but each distribution may have discrete and continuous
components

5. MISC outputs two files and output file summarizing the run and a
source file that contains the MCNP SDEF distributions

Slide 11

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

Example MISC Input File (Natural U)

lines beginning with ’#’ are comments
#
specify output file
output=test001.out
#
specify source distribution file
srcout=test001.src
#
specify the natural abundance file
abundfile=nist.na.xml
#
specify the decay data file
decayfile=endf7.dk.xml
#
specify the default particle emission library
pelib=endf7
#
specify the material isotopic description with
SZAs (+/- = atom/mass fracs)

matspec= 92000 -1
#
specify the material density
density=-18.0
#
specify the aging of the material in seconds
age = 3.14e7
#
specify the particle type for the source
particle=p
#
specify vertical (v) or horizontal (h) formatted
SDEF distributions
format=v
#
specify that electron sources should be converted
to photon sources via a thick-target bremsstrahlung
approximation
estobrems=y

Slide 12

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

Example MISC Output File

USER INPUT MATERIAL SPECIFICATION:

SZA Isotope Mass Frac

92000 U-Nat 1.00000e+00

Material density: 1.80000e+01 g/cmˆ3

The material was aged for 3.14000e+07 s using data from endf7.dk.xml

RESULTING MATERIAL SPECIFICATION:

SZA Isotope Atom Frac Mass Frac

80206 Hg-206 1.27980e-33 1.10747e-33

81205 Tl-205 1.51722e-47 1.30653e-47

81206 Tl-206 4.29461e-32 3.71630e-32

81207 Tl-207 2.37491e-23 2.06509e-23

81210 Tl-210 2.18313e-28 1.92596e-28

82206 Pb-206 1.79148e-22 1.55023e-22

82207 Pb-207 5.40613e-19 4.70085e-19

82209 Pb-209 2.78302e-30 2.44339e-30

82210 Pb-210 9.45370e-20 8.33986e-20

82211 Pb-211 1.80241e-22 1.59765e-22

82214 Pb-214 2.14297e-23 1.92664e-23

83209 Bi-209 1.69762e-27 1.49045e-27

83210 Bi-210 5.50424e-23 4.85572e-23

83211 Bi-211 1.06845e-23 9.47069e-24

83214 Bi-214 1.59138e-23 1.43072e-23

83215 Bi-215 3.93728e-29 3.55639e-29

84210 Po-210 4.90580e-22 4.32777e-22

84211 Po-211 1.18508e-28 1.05045e-28

84214 Po-214 2.18935e-30 1.96829e-30

84215 Po-215 1.48237e-28 1.33895e-28

84218 Po-218 2.47808e-24 2.26965e-24

85215 At-215 1.91435e-35 1.72913e-35

85218 At-218 3.99948e-30 3.66309e-30

85219 At-219 4.92028e-30 4.52716e-30

86218 Rn-218 9.33212e-35 8.54709e-35

86219 Rn-219 3.29601e-25 3.03264e-25

86222 Rn-222 4.40417e-21 4.10792e-21

87223 Fr-223 1.93298e-24 1.81109e-24

88223 Ra-223 8.21964e-20 7.70130e-20

88226 Ra-226 6.93897e-16 6.58905e-16

89227 Ac-227 7.29169e-17 6.95469e-17

90227 Th-227 1.45707e-19 1.38973e-19

90230 Th-230 1.51702e-10 1.46606e-10

90231 Th-231 2.97954e-14 2.89201e-14

90234 Th-234 1.44078e-11 1.41666e-11

91231 Pa-231 7.02967e-12 6.82315e-12

91234 Pa-234 2.66978e-16 2.62508e-16

92234 U-234 5.40000e-05 5.30953e-05

92235 U-235 7.20400e-03 7.11366e-03

92238 U-238 9.92742e-01 9.92833e-01

1091234 Pa-234m1 4.81174e-16 4.73117e-16

Atom density: 4.55401e-02 a/b*cm

Mass density: 1.80000e+01 g/cmˆ3

TOTAL PARTICLE EMISSION RATES

Particle cmˆ-3 sˆ-1 gˆ-1 sˆ-1 Frac. Rate

n 2.42704e-01 1.34835e-02 3.80112e-07

p 1.86172e+05 1.03429e+04 2.91574e-01

a 4.52334e+05 2.51297e+04 7.08425e-01

Total 6.38506e+05 3.54726e+04 1.00000e+00

Slide 13

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

Example MISC Source File

the source emission rate
normalization is given per unit
volume or mass of the source
the source is broken into two
pieces, the discrete and
continuous spectra
the source can also be output as
a function of isotope if desired
the starting source distribution
number can be set in the input
file

c wgt should equal 1.86172e+05*VOL or 1.03429e+04*MASS

si001 s 2 3

sp001 d 5.89603e-01 4.10397e-01

si002 sp002

l d

2.29873e-03 3.35218e-11

2.29880e-03 3.26936e-21

2.29892e-03 4.66760e-19

2.29965e-03 2.08984e-14

2.37789e-03 7.33374e-14

.

.

.

3.09400e+00 1.45646e-14

3.14256e+00 4.59933e-14

3.14900e+00 3.29619e-15

3.16050e+00 1.80141e-14

3.18363e+00 5.09759e-14

si003 sp003

h d

0.00000e+00 0.00000e+00

2.00000e-02 2.89830e-01

4.00000e-02 1.37373e-01

6.00000e-02 8.78325e-02

8.00000e-02 6.35485e-02

1.00000e-01 4.92536e-02

.

.

.

4.28000e+00 3.38511e-22

4.30000e+00 1.56604e-22

4.32000e+00 5.99534e-23

4.34000e+00 1.66812e-23

4.36000e+00 2.36227e-24

Slide 14

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

Interactive MISC example (Co-60)

Slide 15

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

MISC Co-60 Example

specify output file

output=co60.out

#

specify source distribution file

srcout=co60.src

#

specify the natural abundance file

abundfile=nist.na.xml

#

specify the decay data file

decayfile=endf7.dk.xml

#

specify the default particle emission library

pelib=endf7

#

specify the material isotopic description with

SZAs (+/- = atom/mass fracs)

matspec= 27060 1.0

#

specify the material density

normalize to 1 a/b-cm

density=1.0

#

specify the aging of the material in seconds

1 hl = 5.271 a = 1.663355e+8 s

age=1.663355e+8

#

specify the particle type for the source

particle=p

specify vertical (v) or horizontal (h) formatted

SDEF distributions

#

format=v

Slide 16

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

Examples of Using the ISC Library

MISC is useful...but the true power of ISC is that YOU can write your
own scripts/programs to do whatever you want with decay data
the ISC library supports C++ with Python bindings
examples of using the library in Python follow

Slide 17

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

ISC Example 1a: Loading Data Files

this example (next slide) demonstrates how to load abundance,
decay, and particle emission data files
the natural abundance and decay data files load information for all
SZAs
the particle emission data is loaded on an SZA basis (loading all the
data takes time)

Slide 18

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

ISC Example 1a: Loading Data Files Continued
import os
import isc # import the isc module

set the path to the ISC data
iscdata = os.getenv(”ISCDATA”)

open an abundance data file and convert it to an abundance library
abund file = isc.AbundanceFile(os.path.join(iscdata,”nist.na.xml”))
abund lib = isc.AbundanceLib(abund file)

open a decay data file and convert it to a decay data library
decay file = isc.DecayFile(os.path.join(iscdata,”endf7.dk.xml”))
decay lib = isc.DecayLib(decay file)

open an emission file index (contains relative paths to emission data files)
emission index = isc.EmissionFileIndex(os.path.join(iscdata,”endf7.idx.xml”))
initialize an empty emission library
emission lib = isc.EmissionLib()

loop over all SZAs and import the emission data
NOTE: one need not load everything, only the things you need
for sza in emission index.GetSZAs():

print(”loading emission data for isotope {:d}”.format(sza))
emission file = isc.EmissionFile(os.path.join(iscdata,emission index.GetPath(sza)))
emission lib.SetFromEmissionFile(emission file)

Slide 19

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

ISC Example 1b: Loading Binary Data Files

for convenience and speed, sets of abundance, data, and particle
emission data are bundled into binary data files
these binary data files can be used to load sets of the data
this is much faster than the previous example, but it loads all the
emission data

Slide 20

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

ISC Example 1b: Loading Binary Data Files Continued

import os
import isc # import the isc module

set the path to the ISC data
iscdata = os.getenv(”ISCDATA”)

initialize an empty abundance lib
abund lib = isc.AbundanceLib()

initialize an empty decay lib
decay lib = isc.DecayLib()

initialize an empty emission library
emission lib = isc.EmissionLib()

load the libraries from the prebuilt binary file
isc.loadLibs(abund lib, decay lib, emission lib, os.path.join(iscdata,”endf7.isc.bin”))

Slide 21

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

ISC Example 2: Querying Abundance Data

this example (next slide) demonstrates how to get mass and natural
abundance data out of the abundance library
First, a set of all U isotopes the library knows about is generated
Second, a loop is constructed over the set of all U isotopes and the
mass and natural abundance is obtained
Last, if the abundance is greater than zero, the SZA is added to the
list of naturally occurring U isotopes

Slide 22

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

ISC Example 2: Querying Abundance Data Continued
import os
import isc # import the isc module

load the data
iscdata = os.getenv(”ISCDATA”)
abund lib = isc.AbundanceLib()
decay lib = isc.DecayLib()
emission lib = isc.EmissionLib()
isc.loadLibs(abund lib, decay lib, emission lib, os.path.join(iscdata,”endf7.isc.bin”))

get all U isotopes with data
u isos = abund lib.GetIsosForZ(92)
print(u isos)

get mass and abundance for each naturally occuring isotope
nat u isos = list()
for iso in u isos:

get mass and abundance for iso
mass = abund lib.GetMass(iso)
abundance = abund lib.GetAbundance(iso)
print(”{:7d} {:7.3f} {:12.5e}”.format(iso, mass, abundance))

if abundances is non�zero add it to the list of naturally occurring isos
if(abundance > 0.0):

nat u isos.append(iso)
print(nat u isos)

Slide 23

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

ISC Example 3: Querying Decay Data

this example shows how to query the decay data to obtain information
such as half life, daughters, and branching ratios
First, all the daughters of Cs-137 are requested
Next, a loop over the number of decay pathways is constructed
Then, for each decay pathway, the daughter and branching ratio is
obtained

Slide 24

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

ISC Example 3: Querying Decay Data Continued
import os
import isc # import the isc module

load the data
iscdata = os.getenv(”ISCDATA”)
abund lib = isc.AbundanceLib()
decay lib = isc.DecayLib()
emission lib = isc.EmissionLib()
isc.loadLibs(abund lib, decay lib, emission lib, os.path.join(iscdata,”endf7.isc.bin”))

get all the daughters of Cs�137
cs137 daughters = decay lib.GetAllDaughters(55137)
print(cs137 daughters)

get the decay data for Cs�137
cs137 decay data = decay lib.GetDecayData(55137)
print(”Cs�137 half life = {:12.5e} s”.format(cs137 decay data.GetHalfLife()))

loop over the number of decay pathways
for i in range(cs137 decay data.GetNumber()):

get daughter SZA is branching ratio
daughter = cs137 decay data.GetDaughter(i)
branching ratio = cs137 decay data.GetBranchingRatio(i)
print(”{:7d} {:12.5e}”.format(daughter, branching ratio))

Slide 25

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

ISC Example 4: Querying Emission Data

This example demonstrates how to get emission spectra of particular
particle type out of the emission data
First, all the spectra from Co-60 are requested
Second, the gamma emission spectrum is obtained (an emission
spectrum can have discrete and continuous pieces)
Lastly, a loop over the discrete emissions is created and the energy
and #/decay are printed

Slide 26

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

ISC Example 4: Querying Emission Data Continued

import os
import isc # import the isc module

load the data
iscdata = os.getenv(”ISCDATA”)
abund lib = isc.AbundanceLib()
decay lib = isc.DecayLib()
emission lib = isc.EmissionLib()
isc.loadLibs(abund lib, decay lib, emission lib,\

os.path.join(iscdata,”endf7.isc.bin”))

get the emission spectra for Co�60
co60 spectra = emission lib.GetSpectra(27060)

get a list of isc particle types for which spectra exist
co60 particle types = co60 spectra.GetParticleTypes()
print(co60 particle types)

loop over the particle types
for ptype in co60 particle types:

if ptype == isc.ENDF DECAY GAMMA:
print(”Co�60 emits gammas, ptype = {:d}”.format(ptype))

elif ptype == isc.ENDF DECAY BETAM:
print(”Co�60 emits beta�, ptype = {:d}”.format(ptype))

elif ptype == isc.ENDF DECAY BETAP:
print(”Co�60 emits beta+, ptype = {:d}”.format(ptype))

elif ptype == isc.ENDF DECAY IT:
print(”Co�60 has internal transition, ptype = {:d}”.format(ptype))

elif ptype == isc.ENDF DECAY ALPHA:
print(”Co�60 emits alphas, ptype = {:d}”.format(ptype))

elif ptype == isc.ENDF DECAY ELECTRON:
print(”Co�60 emits electrons, ptype = {:d}”.format(ptype))

elif ptype == isc.ENDF DECAY XRAY:
print(”Co�60 emits xrays, ptype = {:d}”.format(ptype))

get the gamma spectrum
co60 gammas = co60 spectra.GetSpectrum(isc.ENDF DECAY GAMMA)
print(”The number of discrete emissions per decay is {:.3f}”.format(\

co60 gammas.GetDNorm()))

loop over all the discrete emissions
print(”{:12s} {:12s}”.format(”energy”,”#/decay”))
for i in range(co60 gammas.GetDNumber()):

get the emission energy and probability/decay
energy = co60 gammas.GetDEnergy(i)
intensity = co60 gammas.GetDIntensity(i)
print(”{:12.5e} {:12.5e}”.format(energy,intensity))

Slide 27

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

MCNPTools History and Overview

MCNPTools was born out the continual need to process MCNP
outputs
MCNPTools is a library that provides object-oriented access to MCNP
outputs

1. MCTAL files
2. MESHTAL B (MCNP5 style) files
3. PTRAC files
4. LNK3DNT files (not herein discussed)

MCNPTools is is written in C++ and bound to Python and Perl
MCNPTools also has some binary “widgets”

Slide 28

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

l3dcoarsenWidget
USAGE: l3dcoarsen [--help] [--novoid] [--ifact ifact] [--jfact jfact]

[--kfact kfact] [--maxmats maxmats] <LNK3DNT> [OUTPUT]

DESCRIPTION:

l3dcoarsen coarsens a LNK3DNT file mesh by specified factors

OPTIONS:

--help, -h : print usage infomation

--novoid, -n : Make voids material ’0’ rather than the assumed material

’1’ (not recommended)

--ifact, -i : Factor by which to coarsen in the first mesh dimension

--jfact, -j : Factor by which to coarsen in the second mesh dimension

(if applicable)

--kfact, -k : Factor by which to coarsen in the third mesh dimension (if

applicable)

--maxmats, -m : Maximum umber of materials to keep include on the

coarsened LNK3DNT file (default: same as original)

LNK3DNT : LNK3DNT file name to coarsen

OUTPUT : coarsened LNK3DNT output name (Default: lnk3dnt.coarse)

AUTHOR: Clell J. (CJ) Solomon [csolomon@lanl.gov]

Slide 29

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

l3dinfoWidget

USAGE: l3dinfo [--full] [--help] <LNK3DNT [LNK3DNT ...]>

DESCRIPTION:

l3dinfo produces information about LNK3DNT files to stdout

OPTIONS:

--full, -f : Produce a full listing of the LNK3DNT contents (can

greatly increase runtime)

--help, -h : print usage infomation

LNK3DNT : LNK3DNT files about which to produce information

AUTHOR: Clell J. (CJ) Solomon [csolomon@lanl.gov]

Slide 30

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

l3dscaleWidget

USAGE: l3dscale [--help] <LNK3DNT> <FACTOR> [OUTPUT]

DESCRIPTION:

l3dscale scales the dimensions of a LNK3DNT file

OPTIONS:

--help, -h : print usage infomation

LNK3DNT : LNK3DNT file to be scaled

FACTOR : Scaling factor to be applied to the file

OUTPUT : Output LNK3DNT file name [Default: LNK3DNT.scaled]

AUTHOR: Clell J. (CJ) Solomon [csolomon@lanl.gov]

Slide 31

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

mergemctalsWidget
USAGE: mergemctals [--help] [--verbose] [--output output] <MCTAL [MCTAL ...]>

DESCRIPTION:

mergemctals statistically merges multiple MCNP MCTAL files into a single MCTAL

file.

OPTIONS:

--help, -h : print usage infomation

--verbose, -v : Increase output verbosity

--output, -o : Output MCTAL file name [Default: mergemctals.out]

MCTAL : MCTAL file names to be merged

AUTHOR: Clell J. (CJ) Solomon [csolomon@lanl.gov]

Note:
This is an alternative, not yet a replacement for, the Perl script that ships
with MCNP. However, this binary can be compiled with MPI (requires C++
Boost Libraries), which speeds up merging.

Slide 32

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

mergemeshtalsWidget
USAGE: mergemeshtals [--help] [--verbose] [--output output]

<MESHTAL [MESHTAL ...]>

DESCRIPTION:

mergemeshtals statistically merges multiple MCNP MESHTAL files into a single

MESHTAL file.

OPTIONS:

--help, -h : print usage infomation

--verbose, -v : Increase output verbosity

--output, -o : Output MESHTAL file name [Default: mergemeshtals.out]

MESHTAL : MESHTAL file names to be merged

AUTHOR: Clell J. (CJ) Solomon [csolomon@lanl.gov]

Note:
This is an alternative, not yet a replacement for, the Perl script that ships
with MCNP. However, this binary can be compiled with MPI (requires C++
Boost Libraries), which speeds up merging.

Slide 33

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

mctal2radWidget
USAGE: mctal2rad [--direct] [--help] [--log] [--transpose] <MCTAL>

[TALLY [TALLY ...]]

DESCRIPTION:

mctal2rad converts an image tally from an MCNP MCTAL file into a TIFF image

OPTIONS:

--direct, -d : Produce an image of the direct contribution

--help, -h : print usage infomation

--log, -l : Produce an image of the log of the MCTAL values

--transpose, -t : Transpose the image

MCTAL : MCTAL file containing one or more image tallies

TALLY : Tally number for which to produce the images

AUTHOR: Clell J. (CJ) Solomon [csolomon@lanl.gov]

NOTE:
This utility requires the TIFF libraries be installed.

Slide 34

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

mctal Overview

The Mctal class stores information regarding mctal files
Tally and Kcode data are stored in the MctalTally and MctalKcode
classes, respectively
Tally and Kcode data are only read into memory when requested via
the getTally and getKcode methods of the Mctal class are called

Slide 35

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

Mctal Class Accessors

general Mctal accessors
GetCode() – return the generating code name
GetVersion() – return the code version
GetProbid() – return the problem id number
GetDump() – return the corresponding runtpe dump number
GetNps() – return the number of histories
GetRandoms() – return the number of random numbers
GetTallyList() – return a list of the tally numbers
SummaryString() – return a summary string of the mctal file

tally and kcode object accessors
GetTally(NUM) – return a MctalTally object for tally NUM
GetKcode() – return a MctalKcode object

Slide 36

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

MctalTally Class Accessors I

general MctalTally accessors
ID() – return the tally id (number)
SummaryString() – return a summary string of the tally
MctalTally bin accessors
GetFBins() – return the facet bins
GetDBins() – return the flagged/direct/collided bins
GetUBins() – return the user bins
GetSBins() – return the segment bins
GetMBins() – return the multiplier bins
GetCBins() – return the cosine bins
GetEBins() – return the energy bins
GetTBins() – return the time bins

Slide 37

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

MctalTally Class Accessors II

MctalTally value accessors
GetValue(F,D,U,S,M,C,E,T,PERT=NUM) –
return the tally value corresponding to the bin specified by the set of
indices F, D, U, S, M, C, E, and T for perturbation NUM (defaults to
unperturbed) [a negative value for any bin indicates use of the tally
fluctuation chart index]

GetError(F,D,U,S,M,C,E,T,PERT=NUM) –
return the tally relative error corresponding to the bin specified by the
set of indices F, D, U, S, M, C, E, and T for perturbation NUM (defaults
to unperturbed) [a negative value for any bin indicates use of the tally
fluctuation chart index]

Slide 38

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

MctalKcode Class Accessors

general MctalKcode accessors
GetCycles() – return the number of total kcode cycles
GetSettle() – return the number of inactive kcode cycles
GetNdat() – return the number of data elements in a kcode entry
SummaryString() – return a summary string for the kcode data
MctalKcode data accessor
GetValue(VAL,CYCLE) – return the kcode value VAL for cycle CYCLE
(defaults are averaged combined keff and last cycle). VAL is an integer
between 0 and the number of data elements (see the manual for details)

Slide 39

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

mctal Examples

1. read tally 4 out of mctal file “my mctal”, extract the energy bin
boundaries, store the tally values for each of the energy bins, and
print the tally values for each of the energy bins

2. read the kcode data from mctal file “my mctal” and print the keff value
and error as a function of active cycle

Slide 40

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

mctal Example 1 – Python
from mcnptools import Mctal, MctalTally

construct the mctal class from mctal file "my_mctal"

m = Mctal("my_mctal")

tfc = MctalTally.TFC; # alias for -1

get tally 4 from the mctal file

t4 = m.GetTally(4);

get the energy bins of tally 4

t4_e = t4.GetEBins();

loop over energy bin indices to store and print tally bin value

using the TFC bin for all other bins

store the tally values with list comprehension

f d u s m c e t

t4_evals = [t4.GetValue(tfc,tfc,tfc,tfc,tfc,tfc,i,tfc) for i in range(len(t4_e))];

print the tally values

for i in range(len(t4_evals)):

print t4_evals[i];

Slide 41

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

mctal Example 2 – Python

from mcnptools import Mctal, MctalKcode

construct the mctal class from the mctal file "my_mctal"

m = Mctal("my_mctal")

get the kcode data

kc = m.GetKcode()

alias for average combined keff

keff = MctalKcode.AVG_COMBINED_KEFF

alias for average combined keff standard deviation

keff_std = MctalKcode.AVG_COMBINED_KEFF_STD

loop over active cycles and print

for i in range(kc.GetSettle(),kc.GetCycles()):

print i, " ", kc.GetValue(keff,i), " ", kc.GetValue(keff_std,i)

Slide 42

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

meshtal Overview

The Meshtal class stores information about the mesh-tally type B
data
The MeshtalTally class stores information about a mesh tally
The tally data is not read in until the getTally method of the
Meshtal class is called

Slide 43

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

Meshtal Class Accessors

general Meshtal accessors
GetCode() – return the generating code name
GetVersion() – return the code version
GetProbid() – return the problem id number
GetComment() – return the problem comment
GetNps() – return the number of histories
SummaryString() – return a summary string
GetTallyList() – return a list of tallies in the file

tally object accessor
GetTally(NUM) – return a tally data object corresponding to tally NUM

Slide 44

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

MeshtalTally Class Accessors I

general MeshtalTally accessors
ID() – return the tally id (number)
GetXRBounds() – return the x/r bin boundaries
GetYZBounds() – return the y/z bin boundaries
GetZTBounds() – return the z/theta bin boundaries
GetEBounds() – return the energy bin boundaries
GetTBounds() – return the time bin boundaries
GetXRBins() – return the x/r bin centers
GetYZBins() – return the y/z bin centers
GetZTBins() – return the z/theta bin centers
GetEBins() – return the energy bins
GetTBins() – return the time bins
GetVolume(I,J,K) – return the volume of specified element

Slide 45

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

MeshtalTally Class Accessors II

MeshtalTally value accessors
GetValue(I,J,K,E,T) – return the tally value for (I,J,K)th element for
energy bin E and time bin T. E and T default to the totals if left
unspecified.
GetError(I,J,K,E,T) – return the tally relative error for the (I,J,K)th
element for energy bin E and time bin T. E and T default to the totals if
left unspecified.

Slide 46

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

meshtal Examples

1. read in a meshtal file, extract tally 4, and print the 2-D slice for the z
index of 5

Slide 47

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

meshtal Example 1 – Python
from mcnptools import Meshtal, MeshtalTally

from sys import stdout

construct the meshtal class from meshtal file "my_meshtal"

m = Meshtal("my_meshtal")

get tally 4 from the meshtal file

t4 = m.GetTally(4)

get the x and y bin centers

x = t4.GetXRBins()

y = t4.GetYZBins()

loop over x and y bins indices and print the tally value for

z index of 5

for i in range(len(x)):

for j in range(len(y)):

stdout.write("{:12.5e}".format(t4.GetValue(i,j,5)))

stdout.write("\n")

Slide 48

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

Outline

Intrinsic Source Constructor
Overview
Using MISC to Generate Source Terms for MCNP
ISC Library Usage

MCNPTools
Overview
Widgets
MCNPTools Accessor Classes

Mctal Class
Meshtal (mesh-tally type B) Class
Ptrac Class

Interactive MCNPTools Demo (time permitting)

Slide 49

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

ptrac Overview

The Ptrac class manages data for MCNP’s ptrac files and can
handle BOTH text and binary versions (assumes binary as default)
The PtracHistory class manages data for an individual history
The PtracNps class handles the starting information for a history
the PtracEvent class handles information for particle events

Slide 50

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

Ptrac Class Accessors

ReadHistories(NUM) – reads NUM histories and all associated events
into memory as a list; allows “chunk” processing of a file without filling
memory

Slide 51

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

PtracHistory Class Accessors

GetNPS() – return a PtracNps class to the history (NPS) information
GetNumEvents() – return the number of events recorded for the
history
GetEvent(NUM) – return a PtracEvent class to the history’s NUMth
event

Slide 52

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

PtracNps Class Accessors

NPS() – return the history number
Cell() – return the filtering cell from CELL keyword (if present)
Surface() – return the filtering surface from SURFACE keyword (if
present)
Surface() – return the filtering tally from TALLY keyword (if present)
Value() – return the tally score from TALLY keyword (if present)

Slide 53

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

PtracEvent Class Accessors

Type() – return the event type
Has(DATA) – return true if the event has data type DATA
Get(DATA) – return the value of the data type DATA

Slide 54

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

ptrac Examples

1. Open a ptrac file named “my ptrac”, read in histories, and print the x,
y, and z location and energy of all bank events (this is when particles
are pulled from the bank)

2. Open at ptrac file named “my ptrac”, read in histories, and, for all
surface crossings, print the x, y, and z location and the angle (in
degrees) of the crossing with respect to the surface normal

Slide 55

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

ptrac Example 1 – Python
from mcnptools import Ptrac

from sys import stdout

explicitly open the file as a binary ptrac

p = Ptrac("my_ptrac", Ptrac.BIN_PTRAC)

initialize counter

cnt = 0

read histories in batches of 10000

hists = p.ReadHistories(10000)

while hists:

loop over all histories

for h in hists:

loop over all events in the history

for e in range(h.GetNumEvents()):

event = h.GetEvent(e)

if event.Type() == Ptrac.BNK:

cnt += 1

stdout.write("{:13d}{:13.5e}{:13.5e}{:13.5e}{:13.5e}\n".format(\

cnt,

event.Get(Ptrac.X), \

event.Get(Ptrac.Y), \

event.Get(Ptrac.Z), \

event.Get(Ptrac.ENERGY) \

))

hists = p.ReadHistories(10000)

Slide 56

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

ptrac Example 2 – Python
from mcnptools import Ptrac

from sys import stdout

explicitly open the file as a binary ptrac

p = Ptrac("my_ptrac", Ptrac.BIN_PTRAC)

read histories in batches of 10000

hists = p.ReadHistories(10000)

while hists:

loop over all histories

for h in hists:

loop over all events in the history

for e in range(h.GetNumEvents()):

event = h.GetEvent(e)

if event.Type() == Ptrac.SUR:

stdout.write("{:13.5e}{:13.5e}{:13.5e}{:13.5e}\n".format(\

event.Get(Ptrac.X), \

event.Get(Ptrac.Y), \

event.Get(Ptrac.Z), \

event.Get(Ptrac.ANGLE) \

))

hists = p.ReadHistories(10000)

Slide 57

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

Interactive MCNPTools Demo

Slide 58

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

	Intrinsic Source Constructor
	Overview
	Using MISC to Generate Source Terms for MCNP
	ISC Library Usage

	MCNPTools
	Overview
	Widgets
	MCNPTools Accessor Classes
	Interactive MCNPTools Demo (time permitting)

