

LA-UR-16-23533

Lecture Notes on Sensitivity-Uncertainty Based Nuclear Criticality Safety Validation

Jennifer Alwin, Forrest Brown, Michael Rising

Monte Carlo Codes Group, XCP-3 Los Alamos National Laboratory 2016-05-02

Contents

menp

Lecture Notes on Sensitivity-Uncertainty Based Nuclear Criticality Safety Validation

Nuclear Criticality Safety Validation - I

- Introduction background, standards, definitions, USL, calculational margin, margin of subcriticality
- Selection of benchmarks
- Bias & bias uncertainty
- Sensitivity-uncertainty analysis
- Validation approaches & technical review

Nuclear Criticality Safety Validation – II, Using MCNP & Whisper

- Whisper overview, methodology, status
- Sensitivity profiles, covariance data, correlation coefficients
- USLs & validation
- Using Whisper whisper_mcnp, whisper_usl, Whisper.out

Nuclear Criticality Safety Validation – III, Whisper Examples for NCS Analysts

Pyrochemical Processing

- 1. Typical model: ingot
- 2. Geometry: Annular
- 3. Material: Pu-NaCl
- 4. Reflection: Ta
- 5. Moderation: Oil

General Studies

- 6. Revisit a Practical Application of the Single-Parameter-Subcritical-Mass Limit for Pu Metal with Whisper
- 7. Critical-mass curves and USL-mass curves comparison

Appendix: Monte Carlo parameter studies & uncertainty analyses with MCNP6

References

(blank)

LA-UR-16-23533 - 3

(blank)

LA-UR-16-23533 - 4

Nuclear Criticality Safety

Validation - I

• Why do we care about Validation?

 ANSI/ANS-8.24 Foreword: "...the industry need to optimize operations and reduce unnecessary conservatism has increased. Thus, the scrutiny and importance placed on validation has increased in recent years."

- Ensure what NCS determines to be subcritical is actually subcritical

- People make mistakes
- Computer codes and nuclear data have approximations and errors

Criticality safety:

- Focus on avoiding worst-case combination of mistakes, uncertainties, errors, ...
- Rigor & conservatism always; never wishful thinking or "close enough"
- How can we be confident in assessing subcriticality?
 - Verify that codes work as intended
 - Validate codes + data + methods against nature (experiments)

- 10 CFR 830 Subpart A, Quality Assurance
- 10 CFR 830 Subpart B, Nuclear Safety Management
- DOE O 414.1C, Quality Assurance
- DOE G 414.1-4, Safety Software Guide for use with 10CFR 830 Subpart A, Quality Assurance Requirements
- DOE G 421.1-2, Implementation Guide for Use in Developing Documented Safety Analyses to Meet Subpart B of 10 CFR 830
- DOE O 420.1C, Facility Safety
- DOE O 426.2 Personnel Selection, Training, Qualification, and Certification Requirements
- DOE-STD-3007-2007, Guidelines for Preparing Criticality Safety Evaluations at DOE Nonreactor Nuclear Facilities
- DOE STD 1134-1999 Review Guide for Criticality Safety Evaluations
- DOE-STD-1158-2010, Self-Assessment Standard for DOE Contractor Criticality Safety Programs
- DOE-STD-3009-1994, Preparation Guide for U.S.
 Department of Energy Nonreactor Nuclear Facility Safety Analysis
- DOE-STD-1186-2004, Specific Administrative Controls
- DOE-STD-1027-1992, Hazard Categorization and Accident Analysis Techniques for Compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports
- SD130,R3 Nuclear Criticality Safety Program
- NCS-GUIDE-01,R2 Criticality Safety Evaluations

- ANSI/ANS-8.1-2014, Nuclear Criticality Safety in Operations with Fissionable Materials Outside Reactors
- ANSI/ANS-8.3-2003, Criticality Accident Alarm System
- ANSI/ANS-8.5-1996(R2007), Use of Borosilcate-Glass Raschig Rings as a Neutron Absorber in Solutions of Fissile Material
- ANSI/ANS 8.7-1998(R2012), Nuclear Criticality Safety in the Storage of Fissile Materials
- ANSI/ANS-8.10-2005, Criteria for Nuclear Criticality Safety Controls in Operations with Shielding and Confinement
- ANSI/ANS 8.14-2004, Use of Soluble Neutron Absorbers in Nuclear Facilities Outside Reactors
- ANSI/ANS 8.17-2004, Criticality Safety Criteria for the Handling, Storage, and Transportation of LWR Fuel Outside Reactors
- ANSI/ANS-8.19-2014, Administrative Practices for Nuclear Criticality Safety
- ANSI/ANS 8.20-1991(R2005), Nuclear Criticality Safety Training
- ANSI/ANS-8.21-1995(R2001), Use of Fixed Neutron Absorbers in Nuclear Facilities Outside Reactors
- ANSI/ANS-8.23-2007, Nuclear Criticality Accident Emergency Planning and Response
- ANSI/ANS 8.24-2007, Validation of Neutron Transport Methods for Nuclear Criticality Safety Calculations
- ANSI/ANS 8.26-2007, Criticality Safety Engineer Training and Qualification Program

MCNP Verification & Validation Suites

Verification Suites

- REGRESSION
 - 161 code test problems
 - Run by developers for QA checking (100s of times per day)
- VERIFICATION_KEFF
 - 75 analytic benchmarks (0-D and 1-D)
 - Exact solutions for k_{eff}
 - Past multigroup, New – continuous-energy

VERIFICATION_GENTIME

- 10 benchmarks (analytic or comparisons to Partisn) for reactor kinetics parameters
- KOBAYASHI
 - 6 void & duct streaming problems, with point detectors, exact solutions
- Ganapol Benchmarks [in progress]
 - Exact, semi-analytic benchmark problems
 - Fixed source, not criticality
- Gonzales Benchmark
- [in progress]
- Exact analytic benchmark with elastic scatter, including free-gas scatter

Validation Suites

VALIDATION_CRITICALITY

- 31 ICSBEP Cases
- Too small a suite for serious V&V
- Today, used for
 - Code-to-code verification, with real problems & data
 - Compiler-to-compiler verification, with real problems & data
 - Timing tests for optimizing MCNP coding & threading

VALIDATION_CRIT_EXPANDED

- 119 ICSBEP Cases

•

•

- Broad-range validation, for developers

VALIDATION_CRIT_WHISPER

- 1101 ICSBEP Cases
- Used with Whisper methodology for serious validation
- Will be expanded, as time permits

Establishing Subcriticality

- Any method used to determine the subcritical state of a fissionable material system must be validated.
- Preferred method is direct use of experimental data
 - Where applicable data are available, subcritical limits shall be established on bases derived from experiments, with adequate allowance for uncertainties in the data. In the absence of directly applicable experimental measurements, the limits may be derived from calculations made by a method shown by comparison with experimental data to be valid in accordance with Sec. 4.3 (ANSI/ANS-8.1-2014 4.2.7)

- Code-to-code comparison doesn't meet requirement

 Use of subcritical limit data provided in ANSI/ANS standards or accepted reference publications does not require further validation (ANSI/ANS-8.1-2014 4.3)

- From ANSI/ANS-8.24-2007, Validation of Neutron Transport Methods for Nuclear Criticality Safety Calculations:
 - Verification: The process of confirming that the *computer code system* correctly performs numerical calculations.
 - Validation: The process of quantifying (e.g., establishing the appropriate *bias* and *bias uncertainty*) the suitability of the computer code system for use in nuclear criticality safety analyses.
 - Computer code system: A calculational method, computer hardware, and computer software (including the operating system).
 - Calculational Method: The mathematical procedures, equations, approximations, assumptions, and associated numerical parameters (e.g., cross sections) that yield the calculated results.

- From ANSI/ANS-8.24-2007, Validation of Neutron Transport Methods for Nuclear Criticality Safety Calculations:
 - **Bias:** The systematic difference between calculated results and experimental data.
 - Bias Uncertainty: The uncertainty that accounts for the combined effects of uncertainties in the benchmarks, the calculational models of the benchmarks, and the calculational method.
 - Calculational Margin: An allowance for bias and bias uncertainty plus considerations of uncertainties related to interpolation, extrapolation, and trending.
 - Margin of Subcriticality: An allowance beyond the calculational margin to ensure subcriticality.
 - Validation Applicability: A domain, which could be beyond the bounds of the benchmark applicability, within which the margins derived from validation of the calculational method have been applied.

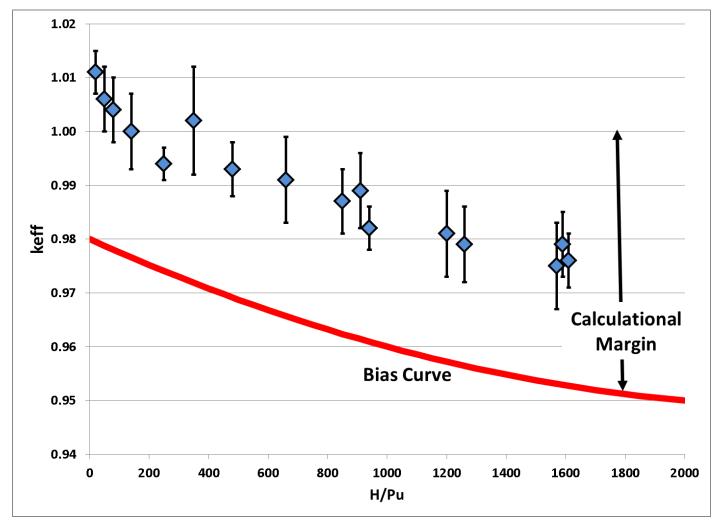
- 5.1 Appropriate system or process parameters that correlate the experiments to the system or process under consideration shall be identified.
- 5.2 Normal and credible abnormal conditions for the system or process shall be identified when determining the appropriate parameters and their range of values.
- 5.4 Selected benchmarks should encompass the appropriate parameter values spanning the range of normal and credible abnormal conditions anticipated for the system or process to which the validation will be applied.
- 7.2 The validation applicability should not be so large that a subset of the data with a high degree of similarity to the system or process would produce an upper subcritical limit that is lower than that determined for the entire set. This criterion is recommended to ensure that a subset of data that is closely related to the system or process is not nonconservatively masked by benchmarks that do not match the system as well.
- 8.1 The validation activity shall be documented with sufficient detail to allow for independent technical review.
- 8.1.5 The margin of subcriticality and its basis shall be documented.
- 8.2 An independent technical review of the validation shall be performed. The independent technical review should include, but is not limited to, the following:
 - (1) a review of the benchmark applicability;
 - (2) a review of the input files and output files to ensure accurate modeling and adequate convergence;
 - (3) a review of the methodology, and its use, for determining bias, bias uncertainty, and margins;
 - (4) concurrence with the validation applicability.

• To consider a simulated system subcritical, the computed keff must be less than the Upper Subcritical Limit (USL):

 $K_{calc} + 2\sigma < USL$

USL = 1 + (Bias) - (Bias uncertainty) - MOS

[additonal AoA margin may be appropriate, case-by-case basis]


- The bias and bias uncertainty are at some confidence level, typically 95% or 99%.
 - These confidence intervals may be derived from a normal distribution, but the normality of the bias data must be justified.
 - Alternatively, the confidence intervals can be set using nonparametric methods.

- The calculational margin is the sum of the bias and the bias uncertainty.
 - **Bias:** represents the systematic difference between calculation and benchmark experiments.
 - **Bias uncertainty:** relates to uncertainties in the experimental benchmarks and the calculations.
 - Bias & bias uncertainty are routine calculations, for a given application & set of benchmarks
 - Bias & bias uncertainty are only credible when the application & chosen benchmarks are neutronically similar
 - Often quoted as 95/95 confidence, meaning that the calculation margin bounds 95% of the benchmark deviations at the 95% confidence level (assuming normality).
 - May trend calculational margin based upon physical parameters.

Hypothetical bias curve

Selected experiments with Pu metal and water mixtures

- To establish a Margin of Subcriticality (MOS) need to consider the process, validation, codes, data, etc. holistically.
 - Confidence in the codes and data.
 - More mature codes that are widely used have greater confidence than newer ones.
 - Deterministic methods require additional margin beyond Monte Carlo because of numerical issues (e.g., ray effects, discretization errors, self-shielding approximations, etc.).

- Adequacy of the validation

- Unlikely to find a benchmark experiment that is exactly like the model being simulated.
- Based on trending analysis of physical parameters and/or sensitivity and uncertainty studies, can quantify "similarity".
- Sparsity of benchmark data, extrapolations, and wide interpolations necessitate larger margins.

Major contributors

- Margin for uncertainties in nuclear cross-section data
- Margin for unknown errors in codes
- Additional margin to consider the limitations of describing process conditions based upon sensitivity studies, operating experience, administrative limits, etc.

Nuclear Data

- Different use of nuclear data lead to different biases
 - Requires different critical experiments to validate different energy ranges
 - Systems with higher sensitivity to highly uncertain cross sections may have larger biases
 - Material missing from either experiments or safety models can affect bias accuracy
- Ideally, critical experiments used for validation will use the same data in the same way the criticality safety evaluations models do, thus they will have the same bias
 - Sensitivity and uncertainty analysis techniques can be used to do a quantitative comparison

- Select critical experiments that you expect have the same bias and the criticality safety evaluation models
 - Similar neutron energy spectrum (EALF, AEG, etc.)
 - Similar fissionable materials and isotopics
 - Similar neutron absorbers (Cd, Gd, B, Fe, Ti, etc.)
 - Similar neutron reflectors (air, water, steel, lead, concrete, etc.)
 - Similar geometries
- Due to variation in criticality safety evaluation models, you may need multiple sets or sets covering a parameter range
- How many experiments are needed?
 - As many experiments that are similar or "applicable" to the criticality safety evaluation models
 - If an experiment is exactly the same as the fissionable material operation, subcritical limits may be derived directly from experiments with no need to calculate the result
 - "Response to CSSG Tasking 2014-02, Validation with Limited Benchmark Data," September 21, 2015, http://ncsp.llnl.gov/cssg/taskandresponse/ 2014/2014-02_Response_on_Validation_with_Limited_Data_09-21-15.pdf
- If no benchmark experiments exist that match the system being evaluated, it may be possible to interpolate or extrapolate from existing benchmark data to that system. Sensitivity and uncertainty analysis tools may be used to assess the applicability of benchmark problems to the system being analyzed. (DOE-STD-3007-2007)

- Historically, engineering judgement ("expert") has been used
- Based on the analysts understanding of what is important to the problem
- This can, in some cases, lead to questions
 - Validation of U solution with U metal experiments
 - Experiments with strong absorbers included that were not present in safety models
 - Validation of fuel rod lattices with solution or metal experiments
 - Overly broad critical experiment set (i.e., single broad validation set) used. There is a temptation to try to create a validation that covers all operations.
 - The validation applicability should not be so large that a subset of the data with a high degree of similarity to the system or process would produce an upper subcritical limit that is lower than that determined for the entire set. This criterion is recommended to ensure that a subset of data that is closely related to the system or process is not nonconservatively masked by benchmarks that do not match the system as well (ANSI/ANS-8.24 7.2)

How do NCS analysts develop engineering judgement?

- Could take years of experience and study of individual benchmarks
- Could rely on guidance from other qualified analysts to caution (missing materials, neutron absorbers present in typical materials not always obvious, etc.)

- Identify the parameters that correlate experiments to the system or process being analyzed in the criticality safety evaluation (ANSI/ANS-8.24 5.1)
- Normal and credible abnormal conditions shall be considered when determining the parameters and range of parameters (ANSI/ANS-8.24 5.2)
 - The experiments selected need to be similar to the normal and abnormal conditions you need to evaluate
- Experiments shall be reviewed for completeness and accuracy before being used in a validation (ANSI/ANS-8.24 5.3)
 - An experiment may be useful for setting limits, but not be sufficiently complete or accurate to use as a benchmark (This can happen with subcritical experiments, process specific experiments, and in-situ experiments)
- Benchmarks should cover the parameter range (ANSI/ANS-8.24 5.4)
 - Avoid the need to extrapolate beyond the range of the available data
- Benchmarks selected should be consistent with the modeling capabilities of the code system being validated (ANSI/ANS-8.24 5.5)

- Benchmarks should be drawn from multiple sources to minimize systemic error (ANSI/ANS-8.24 5.6)
- Methods used to analyze benchmarks shall be the same *computational method* being used in the criticality safety evaluation (ANSI/ANS-8.24 5.7)
 - Albedos, variance reduction techniques, cross section processing, sometimes geometry options
- Benchmark modeling shall be the responsibility of individuals experienced in the use of the *computational method* (ANSI/ANS-8.24 5.8)
- Benchmark models prepared by outside organizations should be evaluated for appropriateness, completeness & accuracy (ANSI/ANS-8.24 5.9)
 - ICSBEP handbook cautions against using their input files without review
 - Modeling techniques used may not be adequately similar to that used in the criticality safety evaluation models

Calculating Bias and Bias Uncertainty

- There are many methods and codes used to calculate bias and bias uncertainty. Some examples are:
 - Site specific statistical analysis procedures
 - NUREG/CR-6698 (Methods originally developed at SRNL)
 - USLSTATS
 - Whisper
- The validation study should describe (i.e., either directly or by reference) the method used to calculate the bias and bias uncertainty.
- Make sure the data meets all prerequisites (e.g., normality, number of points, etc.) for the method used.
- If it does not, use a different method.
- In general, <u>positive biases</u>* (calculated value is higher than experiment value) are <u>not credited</u> for criticality safety purposes. If they are used, shall be justified based on an understanding of the cause of bias.
 (Positive biases are sometimes used in reactor or nuclear experiment design.)

*The sign of the bias is arbitrary. For the purposes of ANSI/ANS-8.24, it has been defined to be positive when the calculated values exceed the experimental values, but it could be defined otherwise.

- Some bias and bias uncertainty determination methods require that the distribution be "normal"
- Some examples of normality tests
 - Visual inspection of frequency bar charts (qualitative chi-square)
 - Chi-squared tests
 - Kolomogrov-Smirnov
 - Shapiro-Wilk
 - Anderson-Darling
- For trending analysis, look at normality of residuals (difference between best fit line and k_{eff,normalized}
- Most normality tests (e.g., those used in USLSTATS and NUREG/CR-6698) accept the distribution as normal unless 95% sure that it is not normal. This is a pretty low threshold.
- You should do numerical tests for normality, but a histogram plot is sometimes adequate.
- Look out for distributions with multiple peaks, skewed distributions, and tails that are obviously inconsistent with normal distribution
- Even if you do use numerical tests for normality, you should still do the histogram, and verify to yourself that the pictures and the numbers match.

 Sensitivity analysis quantifies how variation of material properties or nuclear data affects k_{eff}.

• Techniques:

Manual model variation

- Change material densities or temperatures
- Change dimensions
- Used to justify simplifications and to quantify the impact of manufacturing tolerances and uncertainties
- Used to support margin adopted for validation weaknesses

- Perturbation theory methods (Whisper and TSUNAMI)

- These systems use perturbation theory to provide nuclide, reaction, energy, and location dependent sensitivity data
- Typically in units of $(\Delta k/k)/(\Delta \sigma/\sigma)$, or the fractional change in k_{eff} due to a fractional change in the nuclear data value.
- Sensitivity analysis improves understanding of what is important for ${\sf k}_{\rm eff}$ determination

- Uncertainty analysis combines sensitivity data with nuclear data uncertainty information to yield:
 - Uncertainty in k_{eff} due to uncertainty in nuclear data for specific nuclides and reactions
 - These uncertainties can be used to provide a defensible basis for margin to cover validation weaknesses
 - The uncertainty information for two different systems may be compared to quantify how much uncertainty the systems have in common
 - If two systems are similarly sensitive to the same nuclear data, then they should have the same bias
 - The c_k correlation coefficient compares two systems, assessing the potential for common bias for each nuclide, reaction, and energy group
 - C_k = 1 means two systems use same data in same way

• S/U analysis:

- Sensitivity data can be used:
 - · Improve understanding of systems
 - Suggest or defend modeling simplifications
 - Suggest critical experiments that might be useful for validation
 - Critical experiment design
 - In GLLS for estimating margin for data uncertainties (Whisper and TSURFER)
- K_{eff} uncertainty data can be used:
 - Improve understanding of potential bias causes
 - Estimate how large biases related to a mixture or nuclide might be and provide a defensible basis for margin selection to cover validation weaknesses
- C_k can be used:
 - Select critical experiments
 - As a trending parameter in USL determination

• **CSSG Response on Validation with Limited Data:** *"For those situations where a nuclide is determined to be important and limited data exist, validation may still be possible. However, an additional margin should be used to compensate for the limited data. This margin is separate from, and in addition to, any margin needed for extending the benchmark applicability to the validation. Sensitivity and uncertainty tools may be used as part of the technical basis for determining the magnitude of the margin."*

Comparison of Validation Approaches (Simplified)

	Traditional, Simple	Traditional, Enhanced	Modern
Benchmark Collection	Expert judgment, 1 set, Geometry & materials cover applications	Expert judgment, Several subsets (metal, solutions, other)	Large collection with sensitivity profile data, Reject outliers, Estimate missing uncertainties
Selecting Benchmarks		Expert judgment, Select subset based on geometry & materials	Automatically select benchmarks with sensitivity profiles closest to application
Calculational Margin	Determine bias & bias uncertainty	Determine bias & bias uncertainty, Possible trending within subset	Determine bias & bias uncertainty, Automatically use weighting based on application-specific Ck similarities
Margin of Subcriticality	Expert judgment, Very large	Expert judgment, Large	Automatically determine specific margin for data uncertainty by GLLS, Code-expert judgment for code, Expert judgment for additional
Comment	Easy to use, Highly dependent on expert judgment, Requires large conservative MOS	More work if trending, Very dependent on expert judgment, Subsets & trending may permit smaller MOS	Computer-intensive, quantitative, Less reliance on expert judgment, Calculated estimate for most of MOS

• Documentation:

- Sufficient detail to allow for independent technical review
- Describe computer code system being validated
- Justify selection of benchmarks
 - Identify data sources through references
 - Document benchmark applicability (AoA)
- Methods and calculations supporting the determination of bias and bias uncertainty, calculational margin, validation applicability
 - If using trending analysis, document technical bases
- Validation applicability (extension beyond AoA)
 - Justification for extrapolations or wide interpolations
 - Discuss and justify differences between validation applicability and system or process parameters
 - Describe limitations (e.g., gaps in data, missing data)

Independent Technical Review:

- review benchmark applicability
- Input files and output files
- Methodology for determining bias, bias uncertainty, margins
- Concurrence with validation applicability

Nuclear Criticality Safety -Validation – II -Using MCNP & Whisper

Topics

- Whisper
 - Summary, methodology, status
 - Sensitivity profiles
 - Covariance data
 - Correlation coefficients
 - USLs & Validation
- whisper_mcnp
 - Usage, files, output
- whisper_usl
 - Usage, files, output
- Whisper.out
- Conclusions & Discussion

Whisper - Software for Sensitivity-Uncertainty-Based Nuclear Criticality Safety Validation

Whisper is computational software designed to assist the nuclear criticality safety (NCS) analyst with validation studies with the Monte Carlo radiation transport package MCNP. Standard approaches to validation rely on the selection of benchmarks based upon expert judgment. Whisper uses sensitivity/uncertainty (S/U) methods to select relevant benchmarks to a particular application or area of applicability (AOA), or set of applications being analyzed. Using these benchmarks, Whisper computes a calculational margin from an extreme value distribution. In NCS, a margin of subcriticality (MOS) that accounts for unknowns about the analysis. Typically, this MOS is some prescribed number by institutional requirements and/or derived from expert judgment, encompassing many aspects of criticality safety. Whisper will attempt to quantify the margin from two sources of potential unknowns, errors in the software and uncertainties in nuclear data. The Whisper-derived calculational margin and MOS may be used to set a baseline upper subcritical limit (USL) for a particular AOA, and additional margin may be applied by the NCS analyst as appropriate to ensure subcriticality for a specific application in the AOA.

Whisper provides a benchmark library containing over 1,100 MCNP input files spanning a large set of fissionable isotopes, forms (metal, oxide, solution), geometries, spectral characteristics, etc. Along with the benchmark library are scripts that may be used to add new benchmarks to the set; this documentation provides instructions for doing so. If the user desires, Whisper may analyze benchmarks using a generalized linear least squares (GLLS) fitting based on nuclear data covariances and identify those of lower quality. These may, at the discretion of the NCS analyst and their institution, be excluded from the validation to prevent contamination of potentially low quality data. Whisper provides a set of recommended benchmarks to be optionally excluded.

Whisper also provides two sets of 44-group covariance data. The first set is the same data that is distributed with SCALE 6.1 in a format that Whisper can parse. The second set is an adjusted nuclear data library based upon a GLLS fitting of the benchmarks following rejection. Whisper uses the latter to quantify the effect of nuclear data uncertainties within the MOS. Whisper also has the option to perform a nuclear covariance data adjustment to produce a custom adjusted covariance library for a different set of benchmarks.

Acknowledgements: Thanks to the XCP & NCS Division Leaders at LANL for promoting and supporting the XCP3-NCS interchange sessions. Thanks to the DOE Nuclear Criticality Safety Program for its long-term support for developing advanced MCNP6 capabilities, including the iterated fission probability, adjoint-weighted tallies, sensitivity/uncertainty features, and Whisper statistical analysis. Thanks to the LANL PF4-Restart program for supporting some of the LANL-specific portions of this work, including direct support for assisting the NCS criticality safety analysts.

• Whisper

- Statistical analysis code to determine baseline USLs
- Uses sensitivity profiles from continuous-energy MCNP6
- Uses covariance data for nuclear cross-sections
- Using Whisper

Run MCNP6 for an Application, & get Application sensitivity profile, S_A Run Whisper:

- ① Automated, physics-based selection of benchmarks that are neutronically similar to the application, ranked & weighted
 - Compare Application S_A to each of the Benchmark sensitivities $S_{B(i)}$
 - Select most-similar benchmarks (highest S_A-S_{B(i)} correlation coefficients)

② Bias + bias uncertainty from Extreme Value Theory

- Statistical analysis - based on most-similar Benchmarks selected

③ Margin for nuclear data uncertainty estimated by GLLS method

 Use benchmark sensitivities & cross-section covariance data to estimate the MOS for nuclear data uncertainties

MCNP6.1 – 2013, production version
MCNP6.1.1 – 2014, same criticality, faster, beta features for DHS
MCNP6.2 – 2016 (Fall), with Whisper code & benchmarks

ENDF/B-VII.1 data, updates, & older data Reference Collection – 700⁺ technical reports V&V Test Collection – 1434 test problems

• Whisper-1.1.0 (2016)

[original Whisper-1.0.0 (2014)]

- SQA
 - Whisper is now part of MCNP6, rigorous SQA
 - Portable to Linux, Mac, & Windows, same results
- Benchmark Suite
 - 1101 ICSBEP benchmarks, with sensitivity profiles from MCNP6 for all isotopes & reactions

- Software

- · Available to any DOE crit-safety group
- Will be included with MCNP6.2 release (Fall 2016)

- Documentation

mcnp.lanl.gov \rightarrow "Reference Collection" \rightarrow "Whisper – NCS Validation"

menp

Whisper-1.1.0 Update

Whisper code updates: $1.0.0 \rightarrow 1.1.0$

- Robust numerics, to avoid memory problems on Mac & Windows
 - Explicit threaded loops, to replace many instances of F90 matrix operators
 - Replaced Linpack coding by modern Fortran
 - Additional threading for some slow sections
 - No change to any results
- Methods
 - Chi-square & benchmark rejection changed from based on dk to dk/k. Gives some very minor diffs in list of rejected benchmarks
 - For USL, the list of benchmarks selected is sorted by weight (or Ck)
- Files
 - up to 256-character filenames
 - printed list of all files in use, full pathnames
 - TOC files permit blank lines & comment lines
 BenchmarkTOC.dat, ExcludedBenchmarks.dat
- Control
 - deprecate use of environment variables for filenames
 - use explicit command-line options instead (for whisper)
 - revised scripts handle this automatically

Whisper support updates: $1.0.0 \rightarrow 1.1.0$

- Build & test procedures completely revised, to be similar to mcnp6
- Previous C-shell scripts replaced by portable perl scripts
 - whimcnp \rightarrow whisper_mcnp.pl

ww \rightarrow whisper_usl.pl

 Mods to mcnp_pstudy.pl, to run on Windows & support Whisper scripts

Whisper files updates: $1.0.0 \rightarrow 1.1.0$

- Benchmarks
- Updated 27 files (per NCS)
 - 1 significant error
 - trivial Δk changes in others
- Added 15 new files
- Reran 42 benchmarks
 - new sensitivity profiles
 - new BenchmarkTOC.dat & ExcludedBenchmarks.dat
 - new adjusted covariance data files

Whisper? Who cares?

- Sensitivity/Uncertainty methods for validation have been under development for > 18 yrs at ORNL (Broadhead, Rearden, Perfetti, ...)
- Kiedrowski & Brown developed MCNP iterated fission probability, adjoint weighted tallies, & S/U capabilities, 2008-2013. Whisper in 2014.
- There are now 2 US calculational paths for S/U based validation:
 - SCALE/Tsunami
 - MCNP/Whisper
- International effort for comparisons being planned
 - LANL, ORNL, IRSN
- S/U based validation methods can supplement, support, & extend traditional validation methods

Traditional validation methods are 40+ years old; S/U methods are new

Should not argue for exclusive use of either traditional or S/U methods

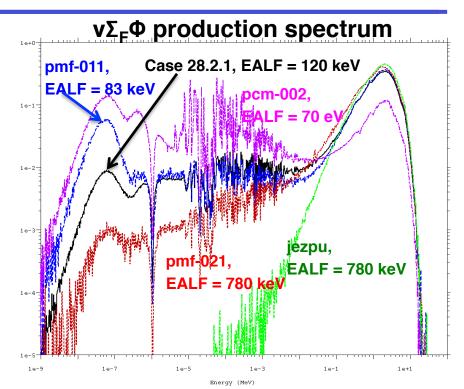
The foundation of criticality safety includes conservatism, continuous improvement, state-of-the-art tools & data, thorough checking,

Traditional & S/U methods complement each other, & provide greater assurance for setting USLs

Traditional methods provide a check on S/U methods

S/U approach to automated benchmark selection is quantitative, physics-based, & repeatable. Provides a check on traditional selection

Traditional methods use $MOS_{data+code}$ of 2-5%. Quantitative, physics-based, repeatable $MOS_{data+code}$ from S/U usually smaller


The next 5 years or so should be a transition period, where both traditional & S/U methods should be used

In today's environment of audits, reviews, & "justify everything", it is prudent to use both traditional & S/U methods for validation

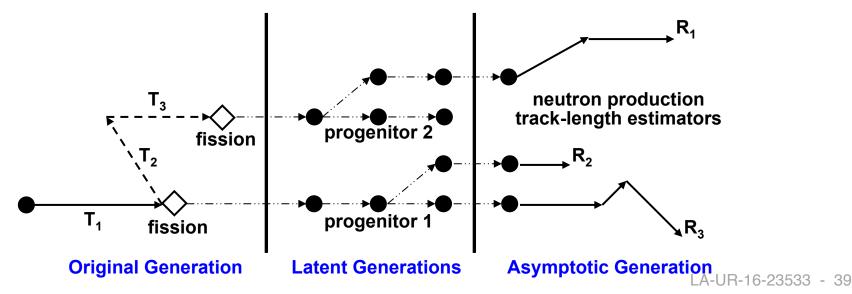
Neutronics of Applications & Benchmarks

menp

- Neutron spectra are complex functions of geometry, materials, nuclear cross-sections, etc.
- Simple metrics such as EALF or ANECF cannot capture the complexity of a fissile system
- During the past 20 years, a powerful set of tools has been developed based on sensitivity-uncertainty methods

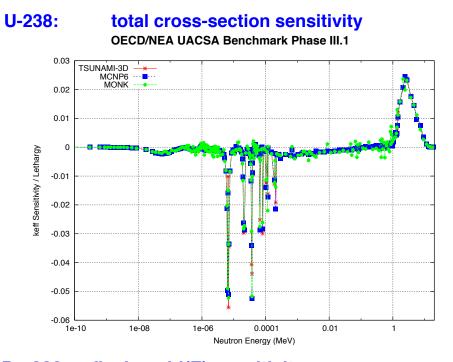
- Characterize the neutronics of an application or benchmark by means of sensitivity profiles, S(energy, reaction, isotope), $S = (dk/k) / (d\sigma/\sigma)$
- Fold in the uncertainties in nuclear data using covariance matrices
- MCNP6 determines sensitivity profiles for an application
- Whisper uses sensitivity profiles & data covariances to select similar benchmarks, determine bias, bias-uncertainty, & MOS

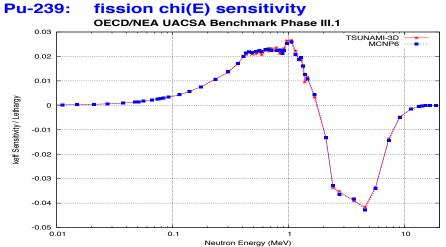
• The sensitivity coefficient is defined as the ratio of relative change in keffective to relative change in a system parameter:

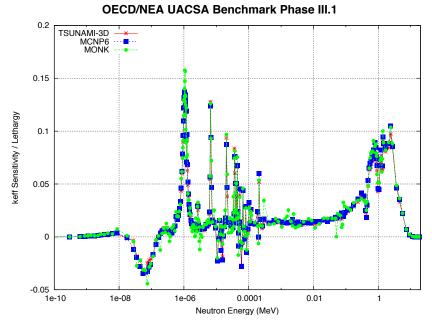

$$S_{k,x} = \frac{dk / k}{dx / x} = \frac{x}{k} \frac{dk}{dx}$$

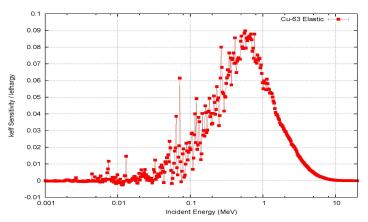
• This may be expressed using perturbation theory:

$$\boldsymbol{S}_{\boldsymbol{k},\boldsymbol{x}} = \frac{\boldsymbol{x}}{\boldsymbol{k}} \frac{\boldsymbol{d}\boldsymbol{k}}{\boldsymbol{d}\boldsymbol{x}} = -\frac{\left\langle \boldsymbol{\psi}^{\dagger}, \left(\boldsymbol{\Sigma}_{\boldsymbol{x}} - \boldsymbol{S}_{\boldsymbol{x}} - \boldsymbol{k}^{-1} \boldsymbol{F}_{\boldsymbol{x}}\right) \boldsymbol{\psi} \right\rangle}{\left\langle \boldsymbol{\psi}^{\dagger}, \boldsymbol{k}^{-1} \boldsymbol{F} \boldsymbol{\psi} \right\rangle}$$


- Includes both the forward & adjoint neutron fluxes.
- S = scatter operator, F = fission operator in integral transport eq
- x subscript implies that the perturbation is just for data x
- $S_{k,x}(E)$ is the sensitivity profile, a function of neutron energy


- Using the Iterated Fission Probability method, MCNP6 can compute adjoint-weighted integrals of any quantity.
- MCNP breaks active cycles into consecutive *blocks*:
 - Tally scores are collected in original generation, & progenitor neutrons tagged
 - All subsequent progeny within the latent generations remember their progenitor
 - Importance is the population of progeny from each progenitor in the asymptotic generation
 - (Score)*(importance) is tallied for adjoint-weighted results


Sensitivity Profiles - Examples


H-1: elastic scattering cross-section sensitivity

Cu-63:

Elastic Scattering Sensitivity

Copper-Reflected Zeus experiment:

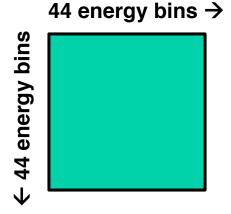
LA-UR-16-23533 - 40

where

- For each isotope, the sensitivity coefficients for a specific problem are • stored consistent with the layout of the covariance data
 - Recall that the sensitivity of Keff to a particular reaction type & energy bin is: . . / .

$$S_{k,x} = \frac{\Delta k/k}{\Delta x/x} = \frac{x}{k} \frac{dk}{dx}$$
where x is the cross-section for a particular isotope, reaction (MT), & energy bin

For a particular application problem, A, the sensitivity profiles for all • isotopes are combined into one sensitivity vector S_A



The sensitivity profile $S_{\Delta}(E, MT, iso)$ completely characterizes the neutronics of an application

size of $S_A = (44 \text{ E bins}) \times (12 \text{ reactions}) \times (number of isotopes})$

• For a <u>particular isotope</u> & <u>particular reaction</u> (MT), the nuclear data uncertainties are a G x G matrix, where G = number of energy groups = 44

- Each diagonal is the variance of the cross-section for a particular energy bin
- Off-diagonal elements are the shared variance between the data for pairs of energy bins

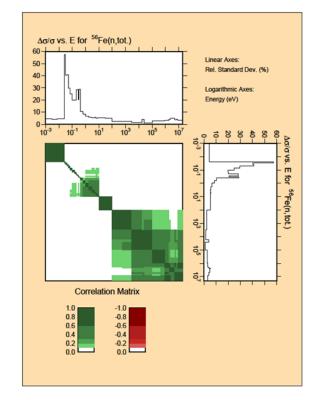
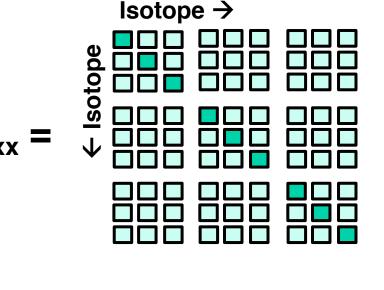
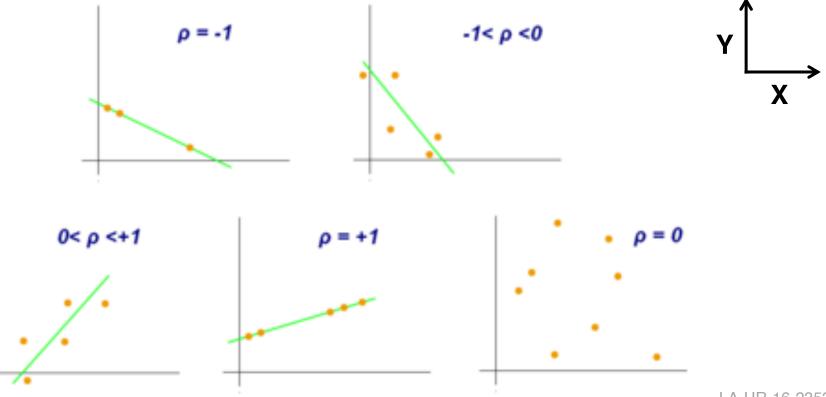



FIG. 9: A typical NJOY-generated plot of ENDF/B-VII.0 data downloaded from the National Nuclear Data Center, BNL, USA.

- The covariance matrices for all isotopes can be combined, including offdiagonal blocks that relate uncertainties in one iso-MT-E with a different iso-MT-E
 - Each diagonal element of C_{xx} is the variance of the cross-section for a particular isotope, MT, & energy bin
 - Off-diagonal elements of C_{xx} are the shared variance between pairs of Iso-MT-E & Iso'-MT'-E'
 - Very sparse (lots of zeros), block-structured matrix (Off-diagonal I-I' blocks would generally be zero)

size of $C_{xx} = [(44 \text{ E bins}) \times (12 \text{ reactions}) \times (number of isotopes)]^2$



Correlation coefficient

- Pearson product-moment correlation coefficient, r or ρ
- A measure of the linear correlation between variables X & Y
 - $\rho = +1$ total positive correlation
 - $\rho = -1$ total negative correlation
 - $\rho = 0$ no correlation

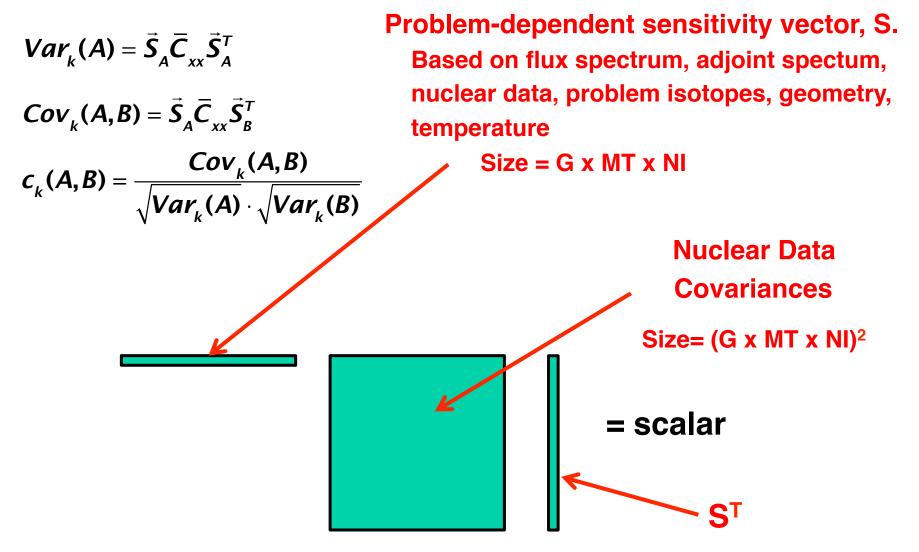
LA-UR-16-23533 - 44

Variance in Keff & Correlation Between Problems

menp

- Given: Application A, Sensitivity S_A computed by MCNP Benchmark B, Sensitivity S_B computed by MCNP
- Variance in Keff due to nuclear data uncertainties:

 $Var_{k}(A) = \vec{S}_{A}\vec{C}_{xx}\vec{S}_{A}^{T}$ $Var_{k}(B) = \vec{S}_{B}\vec{C}_{xx}\vec{S}_{B}^{T}$ = scalar


Covariance between A & B due to nuclear data uncertainties:

$$Cov_k(A,B) = \vec{S}_A \vec{C}_{xx} \vec{S}_B^T$$

Correlation between Problems A & B due to nuclear data:

$$c_{k}(A,B) = \frac{Cov_{k}(A,B)}{\sqrt{Var_{k}(A)} \cdot \sqrt{Var_{k}(B)}} = \frac{\overline{S}_{A}\overline{C}_{xx}\overline{S}_{B}^{T}}{\sqrt{\overline{S}_{A}\overline{C}_{xx}}\overline{S}_{A}^{T} \cdot \sqrt{\overline{S}_{B}\overline{C}_{xx}}\overline{S}_{B}^{T}}$$

Matrix-vector operations

menp

• To consider a simulated system subcritical, the computed keff must be less than the Upper Subcritical Limit (USL):

 $K_{calc} + 2\sigma_{Kcalc} < USL$ USL = 1 + (Bias) - (Bias uncertainty) - MOS

MOS = MOS_{data} + MOS_{code} + MOS_{application}

- The bias and bias uncertainty are at some confidence level, typically 95% or 99%.
 - These confidence intervals may be derived from a normal distribution, but the normality of the bias data must be justified.
 - Alternatively, the confidence intervals can be set using nonparametric methods.

To determine USL for applications

- Run MCNP6 for applications
 - Traditional: k_{eff} only
 - S/U-based: k_{eff} & sensitivity profiles

Select benchmarks similar to applications

- Traditional: Expert judgment
 S/U-based: Select benchmarks with highest C_k's
- Statistical analysis
 - Standard statistical methods, determine bias & bias-uncertainty using the set of selected benchmarks

Determine appropriate MOS_{data,code,applicability}

- Traditional: Expert judgment, usually 2% or 5%, more if warranted
- S/U-based: Use GLLS to estimate MOS_{data}, code-expert for MOS_{code}
- Determine USL
 - Is $k_{application} + 2\sigma < USL$?

• MCNP6

- Determine Sensitivity Profiles for Benchmarks B₁ ... B_N [setup, not user]
- Determine Sensitivity Profiles for Application A
- Whisper
 - Determine Benchmark c_k's
 - For each benchmark B_J, determine c_k^(J) correlation coefficient between A & B_J

- Determine Benchmark Weights & Select Benchmarks

• Iterative procedure using $c_k^{(J)}$ values, $c_{k,max}$, $c_{k,acc}$

- Determine Calculational Margin (CM)

- Extreme Value Theory, with weighted data, nonparametric
- Compute bias & bias uncertainty
- · Adjustment for non-conservative bias
- Handling small sample sizes

Determine portions of MOS

- Margin for nuclear data uncertainties
- Margin for unknown code errors

- As part of Whisper installation (not day-to-day use),
 - For each of the ~1100 benchmarks
 - MCNP6 is run to generate the sensitivity vector S_B for that benchmark
 - The sensitivity vector S_B for each benchmark is saved in a folder
 - The nuclear data covariance files are saved in a folder
 - Benchmarks are checked for consistency, some may be rejected
 - Missing uncertainties for some benchmarks are estimated
 - All of this is the responsibility of the Admin person & needs to be done only once at installation (or repeated if the code, data, or computer change)
- To use Whisper for validation:
 - Use the whisper_mcnp script to make 1 run with MCNP6 for a particular application, to generate the sensitivity vector for the application, S_A
 - **②** Run Whisper, using the whisper_usl script

To try it, on Moonlight HPC front end:

- Make a directory, copy MCNP6 input files to it
 - No blanks in pathname, directory name, input file names
 - Put mcnp6 input files in the directory

bash:mkdirWTESTbash:cpsome-dir/myjob.iWTEST

• Set up batch job file, job.txt

```
#!/bin/bash
#PBS -V
#PBS -l nodes=1:ppn=16,walltime=01:00:00
export WHISPER_PATH="/usr/projects/mcnp/ncs/WHISPER"
export PATH="$WHISPER_PATH/bin:$PATH"
cd WTEST
```

whisper_mcnp.pl -local myjob.i
whisper_usl.pl

• Submit batch job file

msub job.txt

To try it, on Moonlight HPC:

- Set & export WHISPER_PATH environment variable
 - bash:

```
export WHISPER_PATH="/usr/projects/mcnp/ncs/WHISPER"
export PATH="$WHISPER_PATH/bin:$PATH"
```

- csh, tcsh:

setenv WHISPER_PATH "/usr/projects/mcnp/ncs/WHISPER"
setenv PATH "\$WHISPER_PATH/bin:\$PATH"

- Make a directory, copy MCNP6 input files to it
 - No blanks in pathname, directory name, input file names
 - Put mcnp6 input files in the directory

bash:	mkdir	WTEST	
bash:	ср	some-dir/myjob.i	WTEST
bash:	ls	WTEST	
mjob.i			
bash:			

• From the front-end on an HPC system:

whisper_mcnp.pl myjob.i

- myjob.i is an MCNP6 input file
 - Must NOT include any of these cards: kopts, ksen, prdmp
 - May list more than 1 input file on whisper_mcnp command line
 - Lots of options, see next 2 slides

- Creates files & dirs:

- Submits jobs to HPC compute nodes

- Single-node jobs, 16 threads each
- Default time limit of 1 hr

• For each MCNP6 input file listed on the whisper_mcnp command line:

- KCODE line is deleted & these lines are inserted:

```
kcode
                          100
         100000
                  1.0
                                 600
kopts blocksize = 5
ksen1 xs
     rxn = +2 + 4 - 6 + 16 102 103 104 105 106 107 - 7 - 1018
     erg = 1.0000e-11 \ 3.0000e-09 \ 7.5000e-09 \ 1.0000e-08 \ 2.5300e-08 \ 3.0000e-08
           4.0000e-08 5.0000e-08 7.0000e-08 1.0000e-07 1.5000e-07 2.0000e-07
           2.2500e-07 2.5000e-07 2.7500e-07 3.2500e-07 3.5000e-07 3.7500e-07
           4.0000e-07 6.2500e-07 1.0000e-06 1.7700e-06 3.0000e-06 4.7500e-06
           6.0000e-06 8.1000e-06 1.0000e-05 3.0000e-05 1.0000e-04 5.5000e-04
           3.0000e-03 1.7000e-02 2.5000e-02 1.0000e-01 4.0000e-01 9.0000e-01
           1.4000e+00 1.8500e+00 2.3540e+00 2.4790e+00 3.0000e+00 4.8000e+00
           6.4340e+00 8.1873e+00 2.0000e+01
prdmp j 9999999
```

- Note that there are large numbers of neutrons/cycle & cycles for the KCODE input. While it
 may be tempting to reduce these to get shorter runs, that is discouraged since it is
 important to achieve reasonable statistical uncertainties on the sensitivity profiles for a
 large number of reactions, isotopes, & energies.
- After using whisper_mcnp, after the MCNP6 jobs complete:
 - The Calcs/ directory will contain these files

myjob.i	modified MCNP6 input file, with kcode, ksen, kopts, prdmp
myjob.i <mark>o</mark>	output file from MCNP6 jobs
myjob.i <mark>r</mark>	runtpe file
myjob.i <mark>s</mark>	srctp file

whisper_mcnp.pl [Options] Filelist

Options:

_	-help	print this information			
	-local	run MCNP jobs locally, on this computer			
	-submit	submit batch MCNP jo	bs, using msub [default]		
	-walltime x	walltime limit for s	ubmitted batch jobs (eg, 01:00:00)		
	-mcnp x	pathname for MCNP6 e	xecutable		
	-xsdir x	pathname for MCNP6 x	sdir file		
	-data x	pathname for MCNP6 d	ata, DATAPATH		
	-threads x	number of threads for MCNP6			
	-neutrons x	number of neutrons/cycle for MCNP6			
	-discard x	number of inactive cycles for MCNP6			
	-cycles x	total number of cycles for MCNP6			
Filelist	:				
	Names of MCNP6 inp	ut files. The names sh	ould not contain blanks.		
	The files must inc	lude a KCODE card (tha	t will be replaced), &		
	must not contain K	SENn, KOPTS, or PRDMP	cards (they will be supplied)		
Defaults	1	**for local**	**for submit**		
	-submit				
	-mcnp	hardwired in script	/usr/projects/mcnp/mcnpexe -6		
	-xsdir	hardwired in script	/usr/projects/mcnp/MCNP_DATA/xsdir_mcnp6.1		
	-data	hardwired in script	/usr/projects/mcnp/MCNP_DATA		
	-walltime	_	01:00:00		
	-threads	12	16		
	-neutrons	10000	100000		
	-discard	100	100		
	-cycles	600	600		
			/usr/projects/ncs/MCNP/bin/mcnp6		
			/usr/projects/ncs/Data/xsdir mcnp6.1		
			/usr/projects/ncs/Data LA-UR-16-23533 - 55		

• Use whisper_mcnp.pl to run mcnp6 & get sensitivity profiles

```
bash: cd WTEST
bash: whisper_mcnp.pl myjob.i
```

```
Screen output:
```

```
= MCNPInputList.toc
Input File TOC
Calculation directory = Calcs
Sensitivity directory = KeffSenLib
Neutrons/cycle
                     = 100000
Cycles to discard
                     = 100
Total Cycles to run
                       = 600
                       = /usr/projects/mcnp/mcnpexe -6
MCNP6 executable
XSDIR file
                       = /usr/projects/mcnp/MCNP DATA/xsdir mcnp6.1
DATAPATH
                       = /usr/projects/mcnp/MCNP DATA
Threads
                       = 16
Wall-clock time for job = 01:00:00
All jobs will be submitted using moab
... process mcnp input file: myjob.i
...modified mcnp input file: Calcs/myjob.i
... submit mcnp job to cluster using moab: myjob.i
```


After running whisper_mcnp in directory WTEST:
 whisper mcnp.pl myjob.i

Use moab commands to check job status: showq –u username When the submitted job is complete:

Files created by whisper_mcnp & mcnp6:

```
WTEST/

myjob.i ← original

MCNPInputlist.toc

Calcs/

myjob.i myjob.io myjob.ir myjob.is

KeffSenLib/
```

• From the front-end or compute node on an HPC system, run Whisper using the whisper_usl script:

cd WTEST whisper_usl.pl

- Can optionally include ExcludeFile.dat, list of benchmark files to exclude from Whisper calculations
- Runs Whisper for application(s) myjob.i (etc)
- For each input file listed in MCNPInputList.toc:
 - Extract sensitivity profiles from Calcs/myjob.io, place into directory KeffSenLib/
 - Create (or add to) file KeffSenList.toc
 - Run Whisper using the sensitivity profiles for the application (myjob.i) and the collection of Whisper benchmark sensitivity profiles
 - Output to screen & file Whisper.out

• After running whisper_mcnp & whisper_usl:

```
whisper_mcnp.pl myjob.i
.... [wait for submitted mcnp6 job to complete]
whisper_usl.pl
```

```
Files created by whisper_mcnp, mcnp6, & whisper_usl:
```



```
******
*
                 4
  whisper usl
*
                 *
                       set up & run Whisper validation calculations
*
                 *
******
   ====> setup files for whisper
       ---> setup for problem myjob.i
                ... extract sensitivity profile data from: Calcs/myjob.io
                          sensitivity profile data to:
                                                          KeffSenLib/myjob.ik
                ...copy
                                              data from: Calcs/myjob.io
                ...extract calc Keff & Kstd
                ... KeffCalc= 0.96740 +- 0.00057, ANECF= 1.4904E+00 MeV, EALF= 1.2150E-01 MeV
   ====> run whisper
/Users/fbrown/CODES/WHISPER/WHISPER.git/bin/whisper -a KeffSenList.toc -ap KeffSenLib
whisper-1.1.0
                                2016-02-02
                                              (Copyright 2016 LANL)
                              = /Users/fbrown/CODES/WHISPER
WHISPER PATH
                               = /Users/fbrown/CODES/WHISPER/Benchmarks/TOC/BenchmarkTOC.dat
Benchmark TOC File
Benchmark Sensitivity Path
                               = /Users/fbrown/CODES/WHISPER/Benchmarks/Sensitivities
 Benchmark Correlation File
                               =
 Benchmark Exclusion File
                               =
 Benchmark Rejection File
                               =
                               = /Users/fbrown/CODES/WHISPER/CovarianceData/SCALE6.1
Covariance Data Path
Covariance Adjusted Data Path =
Application TOC File
                               = KeffSenList.toc
Application Sensitivity Path = KeffSenLib/
User Options File
                               =
Output File
                               = Whisper.out
```

menp

```
. . . . . . .
Reading benchmark data ...
Reading application data ...
Reading covariance data ...
Reading adjusted covariance data ...
Calculating application nuclear data uncertainties ...
Calculating upper subcritical limits ...
               1 Ck = 0.41263
....case
               4 Ck = 0.36554
                                  ← all Ck's printed in Whisper.out,
....case
               3 Ck= 0.63497
                                      only a few printed to the screen
....case
        . . . . . . . .
....case
            246 Ck= 0.18901
                                       calc
                                                    data unc
                                                                baseline
                                                                            k(calc)
   application
                                       margin
                                                    (1-sigma)
                                                                USL
                                                                            > USL
   myjob.i
                                       0.01329
                                                    0.00120
                                                                0.97860
                                                                           -0.00972
```

menp

Whisper.out (1)

whisper-1.1.0	2016-02-02 (Copyright 2016 LANL)					
WHISPER_PATH	<pre>= /Users/fbrown/CODES/WHISPER</pre>					
Benchmark TOC File	<pre>= /Users/fbrown/CODES/WHISPER/Benchmarks/TOC/BenchmarkTOC.dat</pre>					
Benchmark Sensitivity Path	<pre>= /Users/fbrown/CODES/WHISPER/Benchmarks/SensitivitieS</pre>					
Benchmark Correlation File	=					
Benchmark Exclusion File	=					
Benchmark Rejection File	=					
Covariance Data Path	= /Users/fb	rown/CODES/WHI	ISPER/Covari	anceData/	SCALE6.1	
Covariance Adjusted Data Path	. =					
Application TOC File	= KeffSenLi	.st.toc				
Application Sensitivity Path	= KeffSenLi	.b/				
User Options File	=					
Output File	= Whisper.c	out				
-	-					
Reading benchmark data						
benchm	ark k(bend	ch) unc	k(calc)	unc	bias	unc
myjo	b.i 1.0000	0.01100	1.01174	0.00007	-0.01174	0.01100
••••••						
246 benchmarks read, 0	benchmarks	excluded.				
Pooding appliantion data						
Reading application data	applicatio	on k(calc)	unc			
		· · ·				
	myjob.	i 0.96802	0.00052			
Reading covariance data						
-						
Reading covariance data for 1001						
Reading adjusted covariance d						
Reading covariance data for 1001						

Whisper.out (2)

Calculating application nuclear data unce application myjob.i	rtainties adjusted 0.00209	prior 0.01221		
Calculating upper subcritical limits				
	calc	data unc	baseline	k(calc)
application	margin	(1-sigma)	USL	> USL
myjob.i	0.01334	0.00209	0.97623	-0.00686
Benchmark population = 48				
Population weight = 28.56732		For this ann	lication	
Maximum similarity = 0.96434		For this application, 48 of the 1101 benchmarks		
-				
Bias = 0.00850				onically similar
Bias uncertainty = 0.00484		& sufficient	for valid st	atistical analysis
Nuc Data uncert margin = 0.00209				
Software/method margin = 0.00500		Benchmark	rankings s	hown below
Non-coverage penalty = 0.00000		7	•	
	V			
benchmark	ck	weight		
pu-met-fast-011-001.i	0.9643	1.0000		
pu-met-fast-044-002.i	0.9641	0.9958		
pu-met-fast-021-002.i	0.9618	0.9545		
pu-met-fast-003-103.i	0.9602	0.9252		
pu-met-fast-026-001.i	0.9594	0.9099		
pu-met-fast-025-001.i	0.9584	0.8912		
pu-met-fast-032-001.i	0.9572	0.8699		
pu-met-fast-016-001.i	0.9546	0.8221		
pu-met-fast-027-001.i	0.9546	0.8217		
•••••				
pu-met-fast-012-001.i	0.9167	0.1283		
pu-met-fast-040-001.i	0.9166	0.1269		
pu-met-fast-045-003.i	0.9163	0.1209		
pu-met-fast-045-004.i	0.9147	0.0909		
pu-met-fast-002-001.i	0.9145	0.0874		

The sensitivity-uncertainty-based tools provided by MCNP/Whisper & SCALE/ Tsunami are relatively new. They should be used with caution, and results should be critically reviewed.

One particular strength of the S/U-based tools is the selection of the most appropriate benchmarks to use for an application. The S/U-based tools provide quantitative, physics-based results for identifying which benchmarks are most similar to an application.

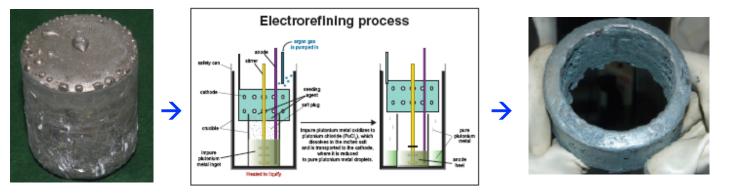
Another unique strength of the S/U-based tools is the use of GLLS methods to provide a quantitative, physics-based estimate of the MOS_{data} due to nuclear data uncertainties. For applications where the traditional 2-5% MOS is too limiting, the S/U-based tools may provide quantitative evidence for a reduced MOS. Caution and judgment are required.

In the near-term, S/U-based methods provide powerful tools for supporting, complementing, and extending traditional validation methods. It is expected that the use of S/U-based tools will expand as more experience & knowledge is acquired.

Nuclear Criticality Safety

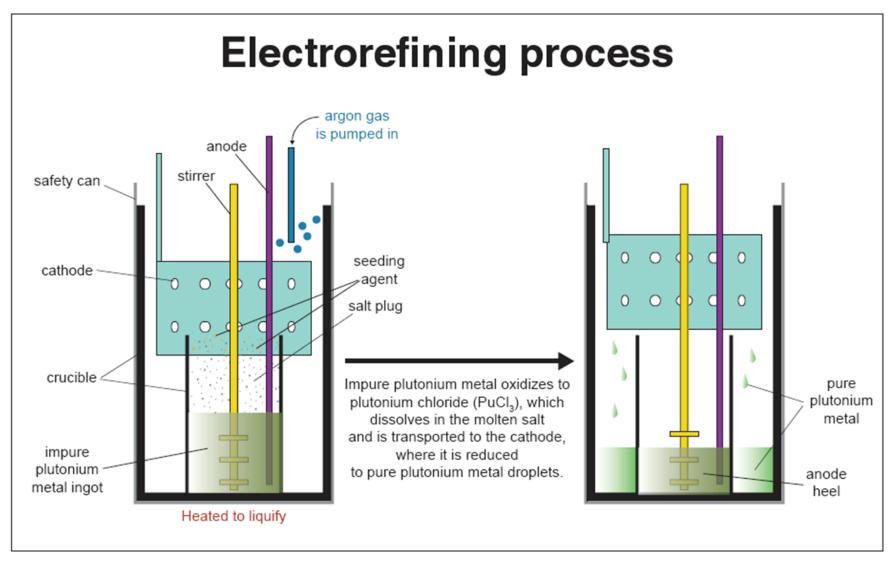
Validation - III

Using Whisper Examples for NCS Analysts


- Pyrochemical Processing
 - Example 1: Typical computational model: ingot
 - Example 2: Geometry: Annular
 - Example 3: Material: Pu-NaCl
 - Example 4: Reflection: Ta
 - Example 5: Moderation: Oil

General Studies

- Example 6: "Revisiting a Practical Application of the Single-Parameter-Subcritical-Mass Limit for Plutonium Metal with Whisper"
- Example 7: Critical-mass curves and USL-mass curves comparison


- Electrorefining is a batch plutonium metal purification process
 - Feed: impure plutonium metal ingot, up to 4,500 g Pu
 - Product: ER ring
 - Waste: salt, anode heel, crucible

Ref. Actinide Research Quarterly 3rd Quarter 2008

- Purification media is an equimolar NaCl/KCl molten salt at 740°C
 - A small amount of plutonium chloride seed to charge the electrolyte with Pu(III).
- Liquid plutonium oxidizes at the anode (ingot) into the electrolyte
- Pu(III) ion in transported through the electrolyte to the cathode
- Reduced to metal dripping into the outer cup

Pyrochemical Processing

Ref. Actinide Research Quarterly 3rd Quarter 2008 menp

Example 1

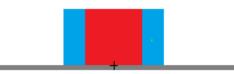
4.5 kg Pu Ingot, varying H/D

LA-UR-16-23533 - 69

LA-UR-16-23533 - 70

Example 1 - wval1: 4.5 kg Pu Ingot, varying H/D (1)

- 4.5 kg Pu-239 right-circular cylinder
- Pu density = 19.86 g/cm³
- Reflected radially with 1 inch of water
- Reflected on the bottom with ¼ inch steel
- Vary the height-to-diameter (H/D) over the range 0.5 3.0
 - Start with wval1.txt, input for H/D = 1
 mcnp6 i=wval1.txt
 - Copy wval1.txt to wval1p.txt, then insert directives for mcnp_pstudy
 - Define list for HD:


c @@@ HD = 0.5 1.0 1.5 2.0 2.5 3.0

 For a given H/D, compute Pu radius, then other dimensions

```
V = (Pu mass)/(Pu density)V = H\pi R^{2} = (H/D) \cdot 2\pi R^{3}R = \left[ V/2\pi (H/D) \right]^{1/3}
```

Use parameters for dimensions & location of KSRC point

menp

Example 1 - wval1p: 4.5 kg Pu Ingot, varying H/D (2)

menp

wval1: 4500 g Pu metal, H/D = 1c reflected 1 inch water radially, c 0.25 in steel bottom С 1 1 -19.860000 -1 imp:n=1 11 3 -1.0 +1 - 11imp:n=1 14 6 -7.92 -30 imp:n=1 15 0 +11 + 30 - 20imp:n=1 20 0 +20 imp:n=00 0 6.607662 3.303831 1 rcc 0 0 011 rcc 0 0 00 0 6.607662 5.843831 20 rcc 0 0 - 2.540 0 91.44 91.44 30 rcc 0 0 -0.635 0 0 0.635 76.20 kcode 10000 1.0 50 250 ksrc 0 0 3.303831 m1 94239.80c 1 m3 1001.80c 0.66667 8016.80c 0.33333 mt3 lwtr.20t m6 24050.80c 0.000757334 24052.80c 0.014604423 24053.80c 0.001656024 24054.80c 0.000412220 26054.80c 0.003469592 26056.80c 0.054465174 26057.80c 0.001257838 26058.80c 0.000167395 25055.80c 0.00174 28058.80c 0.005255537 28060.80c 0.002024423 28061.80c 0.000088000 28062.80c 0.000280583 28064.80c 0.000071456 prdmp 9e9 9e9 1 9e9

```
wval1p: 4500 g Pu metal, various H/D
c reflected 1 inch water radially,
c 0.25 in steel bottom
С
С
    V = H pi R^{**2} = (H/D) 2pi R^{**3}
    R = (V/(2pi H/D) * * 1/3)
С
С
c 000
       PI
               = 3.141592654
c 000
       VOL PU = (4500. / 19.86)
c 000
       HD ____
               = 0.5 1.0 1.5 2.0 2.5 3.0
c 000
       R PU
               = ((VOL PU/(2*PI*HD))**(1/3))
               = ( 2*R \overline{P}U*HD )
c 666
       H PU
c 000
       R H2O = (R PU + 2.54)
c 000
       KSRC Z = (HPU * 0.5)
С
С
 Pu cylinder:
                   = 4500 q
С
       mass
                   = 19.86 \text{ q/cc}
С
       density
С
       volume
                   = VOL PU
С
       radius Pu
                   = \mathbf{R} \mathbf{P} \mathbf{U}
С
       height Pu
                   = H PU
С
       H/D
                   = HD
С
c H2O
       outer radius = R H2O
С
  1
      1 - 19.860000
                                     imp:n=1
                       -1
      3 -1.0
                       +1 -11
                                     imp:n=1
 11
 14
      6 -7.92
                       -30
                                     imp:n=1
 15
      0
                       +11 +30 -20
                                     imp:n=1
 20
                       +20
                                     imp:n=0
      0
  1
     rcc 0 0 0
                           0 0 H PU
                                       R PU
 11
     rcc 0 0 0
                           0 0 H PU
                                       R H2O
 20
     rcc
          0 0 -2.540000
                           0 0 91.44
                                       91.44
 30
    rcc 0 0 - 0.635000
                           0 0 0.635
                                       76.20
 kcode 10000 1.0 50 250
 ksrc
        0. 0. KSRC Z
С
..... etc.
```

LA-UR-16-23533 - 71

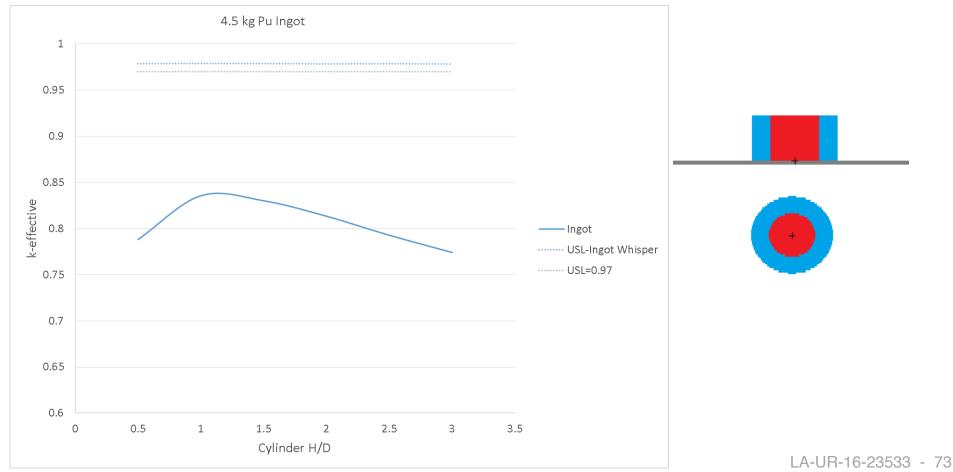
• Parameter study using mcnp_pstudy, whisper_mcnp, & whisper_usl:

mcnp_pstudy -i wvallp.txt -whisper

use mcnp_pstudy to create inp files
 inp_case001, inp_case002, ... inp_case_006

whisper_mcnp.pl -neutrons 10000 -discard 50 \ -cycles 250 -threads 4 \ inp_case*

use whisper_mcnp to run mcnp6 for each case &
 produce k_{eff} & sensitivity profile tallies
 items in green are for class demo, so that cases run quickly,
 & should not be used for serious work


whisper_usl.pl

use whisper_usl to run Whisper & determine USL for each case

LA-UR-16-23533 - 72

Example 1 - wval1: 4.5 kg Pu Ingot, varying H/D (4)

wval1, H/D = 1	wval1p, varying H/D							
mcnp6_i=wval1.txt	mcnp_pstudy -i wval1p.txt -setup -run							
k = 0.83491 (41)	HD=0.5 case001 KEFF	7.87229E-01	KSIG	4.09191E-04				
	HD=1.0 case002 KEFF	8.34430E-01	KSIG	4.20175E-04				
	HD=1.5 case003 KEFF	8.29652E-01	KSIG	4.19130E-04				
	HD=2.0 case004 KEFF	8.11958E-01	KSIG	4.18723E-04				
	HD=2.5 case005 KEFF	7.93676E-01	KSIG	4.63720E-04				
	HD=3.0 case006 KEFF	7.73434E-01	KSIG	4.19664E-04				

MCNP6-Whisper Results

	calc	data unc	baseline	k(calc)	pu-met-fast-044-003.i	0.9896	0.7926
application	margin	(1-sigma)	USL	> USL	pu-met-fast-044-004.i	0.9894	0.7867
ingot.txt_1_in	0.01441	0.00076	0.97862	-0.14366	pu-met-fast-044-002.i	0.9887	0.7646
					pu-met-fast-029-001.i	0.9867	0.7006
Benchmark popula	ation =	44			pu-met-fast-021-002.i	0.9865	0.6966
Population weigh		25.38028			pu-met-fast-011-001.i	0.9848	0.6430
Maximum similari		0.99621			pu-met-fast-030-001.i	0.9845	0.6328
	-				pu-met-fast-031-001.i	0.9844	0.6284
Bias	=	0.00858			pu-met-fast-042-004.i	0.9823	0.5620
Bias uncertainty	, =	0.00583			pu-met-fast-042-006.i	0.9820	0.5543
Nuc Data uncert		0.00076			pu-met-fast-021-001.i	0.9815	0.5387
Software/method	5	0.00500			pu-met-fast-042-003.i	0.9813	0.5304
Non-coverage per	-	0.00000			pu-met-fast-042-007.i	0.9812	0.5301
Non-coverage per	luicy	0.00000			pu-met-fast-042-005.i	0.9809	0.5189
					pu-met-fast-042-009.i	0.9808	0.5153
benchmark		ck	weigh	+	pu-met-fast-042-008.i	0.9807	0.5119
pu-met-fast-036-	-001 i	0.9962	1.000		pu-met-fast-042-010.i	0.9802	0.4971
pu-met-fast-022-		0.9957	0.985	-	pu-met-fast-042-012.i	0.9802	0.4959
pu-met-fast-022-		0.9956	0.981		pu-met-fast-042-011.i	0.9800	0.4908
pu-met-fast-001-		0.9940	0.931	-	pu-met-fast-042-002.i	0.9799	0.4873
pu-met-fast-023-		0.9937	0.920	-	pu-met-fast-042-015.i	0.9795	0.4759
pu-met-fast-039-		0.9932	0.906		pu-met-fast-042-013.i	0.9794	0.4707
mix-met-fast-009		0.9923	0.877	-	pu-met-fast-042-014.i	0.9793	0.4690
pu-met-fast-044-		0.9923	0.859	-	pu-met-fast-027-001.i	0.9752	0.3389
pu-met-fast-035-		0.9913	0.844	-	pu-met-fast-042-001.i	0.9748	0.3267
pu-met-fast-025-		0.9913	0.811		pu-met-fast-044-001.i	0.9743	0.3134
pu-met-fast-025-				-	pu-met-fast-018-001.i	0.9741	0.3057
pu-met-1ast-009-		0.9090	0.797	U	mix-met-fast-007-022.i	0.9733	0.2819
					pu-met-fast-003-103.i	0.9714	0.2215
					-		

Traditional Validation Results:

 $USL = 0.99 \cdot MOS \cdot AoA = 0.97 \cdot AoA$

0.2041

0.0979

0.0777

0.0015

0.9709

0.9675

0.9668

0.9644

mix-met-fast-007-023.i

mix-met-fast-001-001.i

pu-met-fast-045-005.i
pu-met-fast-032-001.i

Example 2

4.5 kg Pu Annulus, varying H & R_{in}

Example 2: 4.5 kg Pu Annulus, varying H & R_{in} (1)

- Establishing Subcriticality mass subcritical limits given in Table 3 apply to a single piece having no concave surfaces. Why? Can you use SPSL for a ring with concave surfaces?
 - If computational modeling, is a ring a validated geometry?

From a typical traditional validation report

Parameter	Area of Applicability
Fissile Material	²³⁹ Pu
Fissile Material Form	Pu Metal, PuO ₂ , and Pu(NO ₃) ₄
H/ ²³⁹ Pu	$0 \le H^{/239}$ Pu ≤ 2807
Average Neutron Energy Causing Fission (MeV)	$0.003 \le ANECF \le 1.935$
²⁴⁰ Pu	0 to 42.9 wt% ²⁴⁰ Pu
Moderating Materials	none, water, graphite, polystyrene
Reflecting Materials	none, water, steel, oil, Plexiglas, polyethylene, graphite, W, Cu, U, Th, Al, Ni, Fe, Pb, Cd, Mo, Be, BeO
Other Materials	concrete, PVC, Ga, B, Gd, Ta
Geometry	cylinder array, cylinder, slab, sphere, hemisphere, stacked discs, cuboid, annular

 How can this be established, what benchmarks include this geometry? Are these the benchmarks that are relevant (similar) to the ring?

240Pu wt%	Form	Geometry	Moderator / Reflector	H / ²³⁹ Pu	Other Materials
10.0	Pu(NO3)4	Annular	Water/Water	449.5	Steel
10.0	Pu(NO3)4	Annular	Water/Water	488.2	Steel
10.0	Pu(NO3)4	Annular	Water/Water	555.3	Steel
10.0	Pu(NO3)4	Annular	Water/Water	622.5	Steel
10.0	Pu(NO3)4	Annular	Water/Water	700.7	Steel
10.0	Pu(NO3)4	Annular	Water/Water	800.5	Steel
10.0	Pu(NO3)4	Annular	Water/Water	850.5	Steel
10.0	Pu(NO3)4	Annular	Water/Water	949.6	Steel
10.0	Pu(NO3)4	Annular	Water/Water	1021.5	Steel
	wt% 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.	wt% Form 10.0 Pu(NO3)4 10.0 Pu(NO3)4	wt% Form Geometry 10.0 Pu(NO3)4 Annular 10.0 Pu(NO3)4 Annular	wt% Form Geometry Moderator / Kellector 10.0 Pu(NO3)4 Annular Water/Water 10.0 Pu(NO3)4 Annular Water/Water	wt% Form Geometry Moderator / Kellector HJ ^{**} Pu 10.0 Pu(NO3)4 Annular Water/Water 449.5 10.0 Pu(NO3)4 Annular Water/Water 488.2 10.0 Pu(NO3)4 Annular Water/Water 555.3 10.0 Pu(NO3)4 Annular Water/Water 622.5 10.0 Pu(NO3)4 Annular Water/Water 620.5 10.0 Pu(NO3)4 Annular Water/Water 800.5 10.0 Pu(NO3)4 Annular Water/Water 850.5 10.0 Pu(NO3)4 Annular Water/Water 850.5 10.0 Pu(NO3)4 Annular Water/Water 850.5 10.0 Pu(NO3)4 Annular Water/Water 949.6 10.0 Pu(NO3)4 Annular Water/Water 1021.5

5.3 Metallic units

The enrichment subcritical limit for uranium and the mass subcritical limits given in Table 3 apply to a single piece having no concave surfaces.

Table 3 – Single-parameter subcritical limits for metal units

Parameter	Subc	Subcritical limits for				
	²³³ U [15]	²³⁵ U [16]	²³⁹ Pu [17]			
Mass of fissile nuclide (kg)	6.0	20.1	5.0			
Cylinder diameter (cm)	4.5	7.3	4.4			
Slab thickness (cm)	0.38	1.3	0.65			
Uranium enrichment (wt% ²³⁵ U)	-	5.0	Ι			
Maximum density for which mass and dimension limits are valid (g/cm ³)	18.65	18.81	19.82			

Example 2 - wval2p: 4.5 kg Pu Annulus, varying H & R_{in} (2) MCnp

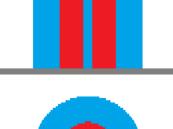
- 4.5 kg Pu-239 right-circular cylinder, hollow
- Pu density = 19.86 g/cm³
- Reflected radially with 1 inch of water
- Reflected on the bottom with ¼ inch steel
- Set the height to be same as solid cylinder with height-to-diameter (H/D) = 1.0, 2.0, 3.0
- For given height, vary inner radius over 0+ 2 cm
 - Start with wval2.txt input
 - mcnp6 i=wval2.txt

Copy wval2.txt to wval2p.txt, then insert directives for mcnp_pstudy

• Define list for solid HD:

c @@@ HD = 1.0 2.0 3.0

- For a given H/D, compute Pu height
- Define list for inner radius RIN_PU


c @@@ RIN_PU = 0.001 0.5 1.0 2.0

• Then other dimensions & source

Solid cylinder V = (Pu mass)/(Pu density) $V = H\pi R^2 = (H/D) \cdot 2\pi R^3$ $H = \left[4V(H/D)^2/\pi \right]^{1/3}$ Hollow cylinder $V = H\pi (R_{out}^2 - R_{in}^2)$ $R_{out} = \left[R_{in}^2 + V/\pi H \right]^{1/2}$

LA-UR-16-23533 - 77

r mcnp_pstudy

Example 2 - wval2p: 4.5 kg Pu Annulus, varying H & R_{in} (3) **MC**

```
wval2p: 4500 g Pu metal ring, various H & Rin
wval2: 4500 g Pu metal ring, fixed Rin
  1
      3 -1.0
                      -1
                                     imp:n=1
                                               С
  2
      1 - 19.860000
                      +1 -2
                                     imp:n=1
                                               c 000
                                                      PI
                                                              = 3.141592654
      3 -1.0
                                               c 666
                                                      VOL PU = (4500. / 19.86)
 11
                      +2 - 11
                                     imp:n=1
                                                      Pu mass
                                                                  = 4500 q
      6 -7.92
                      -30
                                     imp:n=1
                                               С
 14
                                                      Pu density = 19.86 \text{ g/cc}
                                               С
 15
      0
                      +11 + 30 - 20
                                     imp:n=1
                                                      Pu volume = VOL PU
 20
                      +20
                                     imp:n=0
                                               С
      0
                                               С
                                               c set height to match ingot with various H/D
                      0 0 6.608
                                   0.100000
  1 \operatorname{rcc} 0 0 0
                                               c 000
                                                             = 1.0 2.0 3.0
  2 rcc 0 0 0
                      0 0 6.608
                                                      HD
                                   3.305259
                                               c 000
 11 \text{ rcc} 0 0 0
                      0 0 6.608
                                   5.845259
                                                      HEIGHT = ((4*VOL PU*(HD**2)/PI)**(1/3))
 20 \text{ rcc} 0 0 - 2.540
                      0 0 91.44
                                   91.44
                                               С
                                               c for hollow cylinder:
 30 \text{ rcc} 0 0 - 0.635
                      0 0 0.635
                                  76.20
                                                   use same height as for solid ingot
                                               С
                                                   set various inner radii
kcode 10000 1.0 50 250
                                               С
                                                   set Rout for given height, mass, Rin
sdef pos=0 0 0 rad=d1 axs=0 0 1 ext=d2
                                               С
 sil 0.100 3.305259
                                               c 000
                                                      RIN PU = .001 0.5 1.0 2.0
                                               c @@@
                                                      ROUT PU=(sqrt(RIN PU**2+VOL PU/(PI*HEIGHT)))
 sp1 -21 1
                                               c 000
                                                      ROUT H2O = (OUTER PU + 2.54)
 si2 0.0 6.60800
                                               С
 sp2 0
          1
                                                     3 -1.0
     94239.80c 1
                                                 1
                                                                     -1
                                                                                    imp:n=1
m1
                                                 2
                                                     1 -19.860000
     1001.80c 0.66667
                          8016.80c 0.33333
                                                                     +1 -2
                                                                                    imp:n=1
m3
                                                11
                                                     3 -1.0
                                                                     +2 - 11
                                                                                    imp:n=1
     lwtr.20t
mt3
                                                14
                                                     6 -7.92
                                                                     -30
                                                                                    imp:n=1
mб
     24050.80c 0.000757334
                                                15
                                                     0
                                                                     +11 +30 -20
                                                                                    imp:n=1
     24052.80c 0.014604423
                                                     0
                                                20
                                                                     +20
                                                                                    imp:n=0
     24053.80c 0.001656024
     24054.80c 0.000412220
     26054.80c 0.003469592
                                                 1
                                                    rcc
                                                           0 0 0
                                                                        0 0 HEIGHT
                                                                                     RIN PU
                                                 2
                                                           0 0 0
                                                                        0 0 HEIGHT
     26056.80c 0.054465174
                                                    rcc
                                                                                     ROUT PU
                                                11
                                                    rcc
                                                           0 0 0
                                                                        0 0 HEIGHT
                                                                                      ROUT H2O
     26057.80c 0.001257838
                                                20
                                                    rcc
                                                           0 0 -2.540
                                                                        0 0 91.44
                                                                                      91.4\overline{4}
     26058.80c 0.000167395
                                                30
                                                    rcc
                                                           0 0 - 0.635
                                                                        0 0 0.635
                                                                                      76.20
     25055.80c 0.00174
     28058.80c 0.005255537
                                               kcode 10000 1.0 50 250
     28060.80c 0.002024423
                                               sdef pos= 0. 0. 0.
                                                                      rad=d1 axs=0 0 1 ext=d2
     28061.80c 0.000088000
                                                sil RIN PU ROUT PU
     28062.80c 0.000280583
                                                sp1 -21<sup>1</sup>
     28064.80c 0.000071456
                                                si2 0 HEIGHT
prdmp 9e9 9e9 1 9e9
                                                sp2 0 1
                                               ..... etc.
```

Example 2 - wval2p: 4.5 kg Pu Annulus, varying H & R_{in} (4) **MCnp**

• Parameter study using mcnp_pstudy, whisper_mcnp, & whisper_usl:

mcnp_pstudy -i wval2p.txt -whisper

use mcnp_pstudy to create inp files inp_case001, inp_case002, ..., inp_case_012

whisper_mcnp.pl -neutrons 10000 -discard 50 \ -cycles 250 -threads 4 \ inp_case*

use whisper_mcnp to run mcnp6 for each case &
 produce k_{eff} & sensitivity profile tallies
 items in green are for class demo, so that cases run quickly,
 & should not be used for serious work
 (For Windows, use ^ instead of \ for continuation)

whisper usl.pl

use whisper_usl to run Whisper & determine USL for each case

Example 2 - wval2p: 4.5 kg Pu Annulus, varying H & R_{in} (5) **MC**

_	wval2 mcnp6 i=wval2.txt k = 0.83413 (42)					wval2p, varying H & R _{in} mcnp_pstudy -i wval2p.txt -setup -run					
k =					HD=2 HD=3 HD=1 HD=2 HD=3 HD=1 HD=2 HD=3	Rin=.001 Rin=.001 Rin=0.5 Rin=0.5 Rin=0.5 Rin=1.0 Rin=1.0 Rin=1.0 Rin=2.0	case002	KEFF KEFF KEFF KEFF KEFF KEFF KEFF	8.34752E-01 8.12612E-01 7.72725E-01 8.20432E-01 7.95375E-01 7.54174E-01 7.88497E-01 7.62394E-01 7.20810E-01 7.21523E-01	4.35668E-04 4.09516E-04 3.82627E-04 4.01135E-04 4.60388E-04 3.96580E-04 3.95026E-04 3.90299E-04 4.27354E-04 4.02775E-04	
		Comparis	on of 4.5 kg Pu Ir	igot and Rings		Rin=2.0	case011		6.97954E-01	4.88269E-04	
			Ingot H/D	0 0		Rin=2.0	case012		6.64037E-01	4.88326E-04	
0.95 0.9 0.85 0.85 0.7 0.75 0.7 0.65					· · · · · · · · · · · · · · · · · · ·	Ring H/D=1 Ring H/D=2 Ring H/D=3 USL-Ring H/D=1 Ingot USL-Ingot USL-Ring H/D=2 USL-Ring H/D=3					
0.6	0.5	1	1.5	2 2.5	3						

Ring Inner Diameter (cm)

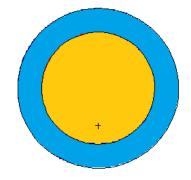
Example 2 - wval2p: 4.5 kg Pu Annulus, varying H & R_{in} (6) mcnp

MCNP6-Whisper Results

application ringhd2.txt_0.4_in	calc margi 0.014	n (1-	ta unc -sigma))0075	baseline USL 0.97840	k(calc) > USL -0.17760
Benchmark population Population weight Maximum similarity	n = = =	41 25.47164 0.99532	-		
Bias Bias uncertainty Nuc Data uncert mar Software/method mar Non-coverage penalty	gin =	0.00836 0.00628 0.00075 0.00500 0.00500	3 5)		
benchmark pu-met-fast-036-001 pu-met-fast-024-001 pu-met-fast-044-005 pu-met-fast-011-001 pu-met-fast-044-004 pu-met-fast-044-003 pu-met-fast-023-001 pu-met-fast-022-001 pu-met-fast-039-001	.i .i .i .i .i .i	ck 0.9953 0.9941 0.9933 0.9925 0.9925 0.9896 0.9896 0.9886 0.9886	3 1. 4 0. 5 0. 5 0. 6 0. 6 0. 6 0. 6 0.	ight 0000 9608 9360 9196 9117 8275 8020 7898 7823	

Traditional Validation Results:
$USL = 0.99 \cdot MOS \cdot AOA = 0.97 \cdot AOA$

benchmark	ck	weight
pu-met-fast-044-002.i	0.9876	0.7587
pu-met-fast-031-001.i	0.9875	0.7561
pu-met-fast-021-002.i	0.9867	0.7284
pu-met-fast-042-002.i	0.9863	0.7158
pu-met-fast-042-004.i	0.9862	0.7124
pu-met-fast-042-003.i	0.9861	0.7104
pu-met-fast-001-001.i	0.9859	0.7051
mix-met-fast-009-001.i	0.9854	0.6873
pu-met-fast-035-001.i	0.9851	0.6798
pu-met-fast-009-001.i	0.9846	0.6633
pu-met-fast-042-006.i	0.9843	0.6536
pu-met-fast-042-005.i	0.9840	0.6446
pu-met-fast-042-007.i	0.9833	0.6237
pu-met-fast-042-001.i	0.9833	0.6230
pu-met-fast-025-001.i	0.9829	0.6103
pu-met-fast-042-008.i	0.9825	0.5980
pu-met-fast-027-001.i	0.9825	0.5975
pu-met-fast-042-009.i	0.9821	0.5843
pu-met-fast-042-010.i	0.9815	0.5667
pu-met-fast-042-011.i	0.9811	0.5543
pu-met-fast-042-012.i	0.9808	0.5435
pu-met-fast-042-013.i	0.9800	0.5202
pu-met-fast-042-014.i	0.9799	0.5175
pu-met-fast-042-015.i	0.9799	0.5159
pu-met-fast-030-001.i	0.9782	0.4626
pu-met-fast-021-001.i	0.9780	0.4560
pu-met-fast-029-001.i	0.9777	0.4468
pu-met-fast-044-001.i	0.9743	0.3409
pu-met-fast-018-001.i	0.9720	0.2678
mix-met-fast-007-022.i	0.9690	0.1754
mix-met-fast-007-023.i	0.9655	0.0635
pu-met-fast-045-005.i	0.9653	0.0586



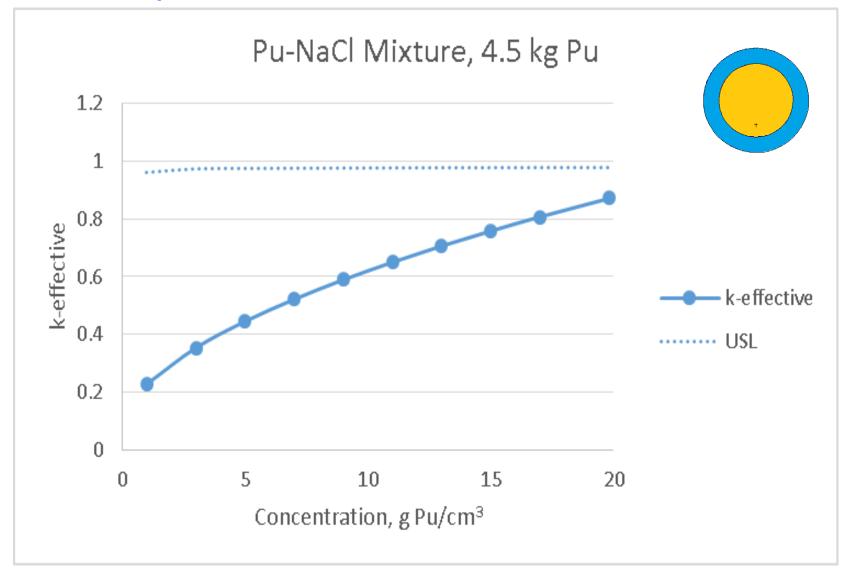
Example 3

4.5 kg Pu-NaCl Mixture

Example 3 – wval3: 4.5 kg Pu-NaCl Mixture (1) mcnp

- 4.5 kg Pu (0) sphere mixed with variable amounts (0-2 kg) of NaCl
- Reflected with 1 inch of water
- Density of Pu = 19.86 g/cm³
- Density of NaCl = 1.556 g/cm³

Run commands:


Example 3 – wval3: 4.5 kg Pu-NaCl Mixture (2)

```
wval3: Study of Pu mixed with NaCl
С
 1
     4 -6.163863
                   -1
                          imp:n=1
                   +1 -2 imp:n=1
 2
     1 - 1.0
20
     0
                   +2
                          imp:n=0
 1 sph 0 0 0
                5.98941813698262
 2 sph 0 0 0
                8.52941813698262
kcode 10000 1.0 150 500
sdef pos=0 0 0
                 rad=d1
 si1 0 5.989
 sp1 -21 2
С
m1
      1001.80c 2
                     8016.80c 1
mt1
      lwtr.20t
m4
      94239.80c -0.81117881
      11023.80c - 0.07427730
      17035.80c -0.08561650
      17037.80c -0.02893221
```

```
wval3p: Pu mixed with NaCl
c 000
             PI = 3.141592654
c @@@ PU MASS
                = 4500
c @@@ PU VOL
                = ( PU_MASS / 19.86 )
c @@@ NACL MASS = 1.e-6 500 1000 1500 2000
c @@@ NACL_VOL = ( NACL_MASS / 1.556 )
С
        mass = PU MASS q
С
    Pu
  NaCl mass = NA\overline{C}L MASS g
С
  Pu density (pure) = 19.86 g/cc
С
    NaCl density (pure) = 1.556 \text{ g/cc}
С
С
c @@@ VOLUME
                  = ( PU VOL + NACL VOL
c @@@ MASS
                  = ( PU MASS + NACL MASS )
                  = ( -MASS/VOLUME )
c @@@ DENSITY
c @@@ DENSITY PU = ( PU MASS/VOLUME )
      Pu density = DENSITY PU g/cc
С
                  = ((0.75 \times VOLUME/PI) \times (1/3))
c @@@ RADIUS
c @@@ OUTER H2O
                = ( RADIUS + 2.54 )
С
c @@@ A11023 = 22.98976928
c @@@ A17035 = ( 34.96885268 * 0.7576 )
c @@@ A17037 = ( 36.96590259 * 0.2424 )
c @@@ A NACL = (A11023 + A17035 + A17037)
С
c @@@ MF94239 = ( -PU MASS/MASS )
c @@@ MF11023 = ( -NACL MASS*(A11023/A NACL)/MASS )
c @@@ MF17035 = ( -NACL MASS*(A17035/A NACL)/MASS )
c @@@ MF17037 = ( -NACL_MASS*(A17037/A_NACL)/MASS )
С
 1
     4 DENSITY
                   -1
                         imp:n=1
                   +1 -2 imp:n=1
 2
     1 -1.0
20
     0
                         imp:n=0
                   +2
         RADIUS
 1
    so
 2
         OUTER H2O
    so
kcode 10000 1.0 50 250
sdef pos=0 0 0 rad=d1
     0 RADIUS
 si1
      -21 2
 sp1
      1001.80c 2
                     8016.80c 1
m1
mt1
      lwtr.20t
      94239.80c MF94239
m4
      11023.80c MF11023
      17035.80c MF17035
      17037.80c MF17037
prdmp 9e9 9e9 1 9e9
```

menp

MCNP6-Whisper Results

LA-UR-16-23533 - 85

menp

MCNP6-Whisper Results

*bold indicates same benchmark selected for Pu ingot

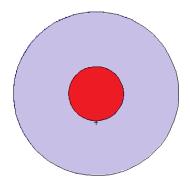
			USL baseli	ne = .979	pu-met-fast-044-002.i	0.9734	0.6832
Benchmark population	=	46			pu-met-fast-042-007.i	0.9734	0.6832
Benchmark weight	=	25.7574	5		pu-met-fast-042-008.i	0.9722	0.6645
Benchmark similarity	=	0.99245			pu-met-fast-042-009.i	0.9709	0.6426
1					pu-met-fast-042-010.i	0.9705	0.6356
Bias	=	0.00796			pu-met-fast-042-011.i	0.9699	0.6257
Bias uncertainty	=	0.00682			pu-met-fast-023-001.i	0.9691	0.6133
Nuc Data	=	0.0012			pu-met-fast-042-012.i	0.9687	0.6054
Software/method marg	in =	0.005			pu-met-fast-039-001.i	0.9683	0.5993
Non-coverage penalty	=	0			pu-met-fast-042-014.i	0.9681	0.5961
		-			pu-met-fast-042-013.i	0.9681	0.5959
benchmar	k ck		weight		pu-met-fast-042-015.i	0.9676	0.587
pu-met-f		1-001.i	0.9924	1	pu-met-fast-022-001.i	0.9644	0.534
pu-met-f			0.9842	0.8636	pu-met-fast-009-001.i	0.964	0.5284
pu-met-f			0.9831	0.8448	pu-met-fast-035-001.i	0.9629	0.5093
pu-met-f			0.9828	0.8396	mix-met-fast-009-001.i	0.9618	0.4919
pu-met-f			0.9827	0.8377	pu-met-fast-044-001.i	0.9612	0.482
- pu-met-f			0.981	0.8107	pu-met-fast-001-001.i	0.9602	0.4653
pu-met-f			0.9805	0.8018	pu-met-fast-025-001.i	0.9593	0.4499
pu-met-f			0.9802	0.7965	pu-met-fast-021-001.i	0.9588	0.4424
pu-met-f			0.9792	0.7798	pu-met-fast-030-001.i	0.9559	0.3941
pu-met-f			0.9787	0.7727	pu-met-fast-018-001.i	0.9555	0.3863
- pu-met-f			0.978	0.7604	pu-met-fast-029-001.i	0.951	0.3115
pu-met-f			0.9768	0.7401	pu-met-fast-045-005.i	0.9509	0.3097
pu-met-f			0.9757	0.7213	mix-met-fast-007-022.i	0.9496	0.2897
pu-met-f			0.9746	0.7039	mix-met-fast-007-023.i	0.9448	0.2093
pu-met-f			0.9737	0.6893	pu-met-fast-019-001.i	0.9421	0.1637
_			_		pu-met-fast-038-001.i	0.9384	0.1032
Traditional	Vali	datior	า Resu	lts:	mix-met-fast-001-001.i	0.9374	0.0871
		•	0.07		pu-met-fast-040-001.i	0.9355	0.055
USL = 0.99	9-IVIO	5-A0A	= 0.97 -	- АОА	pu-met-fast-003-103.i	0.9352 LA-UR-	0.0505 16-23533 - 86

Example 4

4.5 kg Pu Sphere, Ta Reflector, various thicknesses

- Is Ta validated as a reflector in the AoA?
- What can be done to answer this question and, if needed, possibly extend AoA?

Parameter	Area of Applicability
Fissile Material	²³⁹ Pu
Fissile Material Form	Pu Metal, PuO ₂ , and Pu(NO ₃) ₄
H/ ²³⁹ Pu	$0 \le H^{/239}$ Pu ≤ 2807
Average Neutron Energy Causing Fission (MeV)	$0.003 \le \text{ANECF} \le 1.935$
²⁴⁰ Pu	0 to 42.9 wt% ²⁴⁰ Pu
Moderating Materials	none, water, graphite, polystyrene
Reflecting Materials	none, water, steel, oil, Plexiglas, polyethylene, graphite, W, Cu, U, Th, Al, Ni, Fe, Pb, Cd, Mo, Be, BeO
Other Materials	concrete, PVC, Ga, B, Gd, Ta
Geometry	cylinder array, cylinder, slab, sphere, hemisphere, stacked discs, cuboid, annular


CSSG Response on Validation with Limited Benchmark Data:

"For those situations where a nuclide is determined to be important and limited data exist, validation may still be possible. However, an additional margin should be used to compensate for the limited data. This margin is separate from, and in addition to, any margin needed for extending the benchmark applicability to the validation. Sensitivity and uncertainty tools may be used as part of the technical basis for determining the magnitude of the margin."

From a typical traditional validation report menp

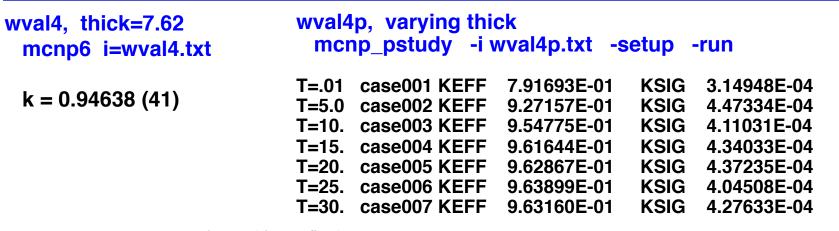
Example wval4: 4.5 kg Pu Sphere, Ta-reflected (1)

- 4.5 kg Pu-239 sphere
- Pu density = 19.8 g/cm³
- Reflected radially with Ta
- Vary the Ta-reflector thickness over the range 0.⁺ – 30. cm

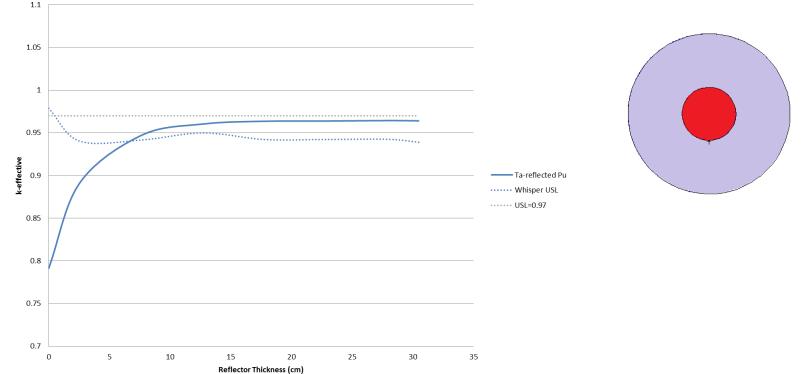
- Start with wval4.txt, input for thickness=7.62
 mcnp6 i=wval4.txt
- Copy wval4.txt to wval4p.txt, then insert directives for mcnp_pstudy
 - Define list for thickness:
 - c @@@ THICK = 0.01 5. 10. 15. 20. 25. 30.
 - For a given THICK, compute reflector Rin & Rout
 - Use parameters for dimensions & location of KSRC point
 - Run:

```
mcnp_pstudy.pl -i wval4p.txt -whisper
whisper_mcnp.pl inp_case*
whisper_usl.pl
```

Example wval4: 4.5 kg Pu Sphere, Ta-reflected (2)


```
menp
```

```
wval4: Study of Pu reflected with Ta
С
c Pu mass
              = 4500 \, \alpha
  Pu density = 19.8 \, q/cc
С
   Pu volume = 227.272727
С
С
   reflector definition:
С
     reflector thickness
                            = 7.62
С
     reflector inner radius = 3.7857584
С
    reflector outer radius = 11.405758
С
C
  1 4 -19.80 -1
                           imp:n=1
      1 - 16.69 + 1 - 2
  2
                           imp:n=1
 20
      0
                +2
                           imp:n=0
  1 so 3.7857584
  2 so 11.405758
 kcode 10000 1.0 50 250
 sdef pos=0 0 0 rad=d1
  si1 0 3.78
  sp1 -21 2
С
                         73181.80c 0.99988
 m1 73180.80c 0.00012
 m4 94239.80c 1
 prdmp 9e9 9e9 1 9e9
```


```
wval4p: Study of Pu reflected with Ta
С
С
  Pu mass
              = 4500 \, \alpha
  Pu density = 19.8 \text{ g/cc}
С
  Pu volume = 227.272727
С
С
  vary reflector thickness from 0+ to 30 cm
С
С
  000
        THICK = .01 5. 10. 15. 20. 25. 30.
С
  000
        R INNER = 3.7857584
С
   @@@ R OUTER = (R INNER + THICK)
С
С
С
  reflector definition:
     reflector thickness
С
                            = THICK Cm
С
     reflector inner radius = R INNER cm
С
     reflector outer radius = R OUTER cm
С
     4 - 19.80 - 1
  1
                           imp:n=1
  2
      1 - 16.69 + 1 - 2
                           imp:n=1
                           imp:n=0
 20
      0
                +2
  1 so
          R INNER
  2 so
          R OUTER
 kcode 10000 1.0 50 250
 sdef pos=0 0 0 rad=d1
  sil O R INNER
  sp1 -21 2
С
 m1 73180.80c 0.00012
                         73181.80c 0.99988
 m4 94239.80c 1
 prdmp 9e9 9e9 1 9e9
```

Example wval4: 4.5 kg Pu Sphere, Ta-reflected (3)

menp

4.5 kg Pu with Ta Reflection

menp

MCNP6 and Whisper Results

application tarefl.txt_7.62_in	calc margin 0.01707	data unc (1-sigm 0.01502		k(calc) > USL 0.00750	benchmark	ck	weight
					mix-met-fast-009-001.i	0.4193	0.5919
Benchmark population	= 119				pu-met-fast-009-001.i	0.4190	0.5914
Population weight	= 60.9246	54			pu-met-fast-035-001.i	0.4189	0.5913
Maximum similarity	= 0.6407	5 🕿	Trouble !		pu-met-fast-022-001.i	0.4185	0.5904
		``	Benchma	rke aro	pu-met-fast-025-001.i	0.4183	0.5900
Bias	= 0.0091	2			pu-met-fast-036-001.i	0.4180	0.5896
Bias uncertainty	= 0.0079		not very		- pu-met-fast-001-001.i	0.4180	0.5895
			to applica	ation	pu-met-fast-021-002.i	0.4176	0.5887
Nuc Data uncert margin					pu-met-fast-030-001.i	0.4171	0.5879
Software/method margin	= 0.0050	0			pu-met-fast-024-001.i	0.4171	0.5878
Non-coverage penalty	= 0.0000	00			pu-met-fast-021-001.i	0.4165	0.5867
					pu-met-fast-044-003.i	0.4164	0.5866
benchmark		ck 🖌	weight		pu-met-fast-044-005.i	0.4162	0.5863
pu-met-fast-045-006	5 i	0.6408	1.0000		pu-met-fast-044-002.i	0.4160	0.5858
-					pu-met-fast-029-001.i	0.4155	0.5850
pu-met-fast-045-004		0.6400	0.9986		pu-met-fast-044-004.i	0.4146	0.5832
pu-met-fast-045-003		0.6368	0.9926		pu-met-fast-003-103.i	0.4141	0.5823
pu-met-fast-045-002	2.i	0.6297	0.9796		pu-met-fast-042-015.i	0.4134	0.5811
pu-met-fast-045-007	7.i	0.6259	0.9725		pu-met-fast-042-012.i	0.4134	0.5811
pu-met-fast-045-001	l.i	0.6213	0.9641		mix-met-fast-007-022.i	0.4134	0.5811
pu-met-fast-045-005		0.5469	0.8270		pu-met-fast-042-011.i	0.4134	0.5810
-					pu-met-fast-042-009.i	0.4134	0.5810
pu-met-fast-023-001		0.4203	0.5937		pu-met-fast-042-013.i	0.4133	0.5808
pu-met-fast-039-001	l.i	0.4201	0.5935		pu-met-fast-042-014.i	0.4133	0.5808
					pu-met-fast-042-010.i	0.4133	0.5808
					pu-met-fast-042-007.i	0.4132	0.5807
					pu-met-fast-018-001.i	0.4132	0.5806

Traditional Validation Results: USL = 0.99-MOS-AoA = 0.97 – AoA

LA-UR-16-23533 - 92

0.5806

0.5805

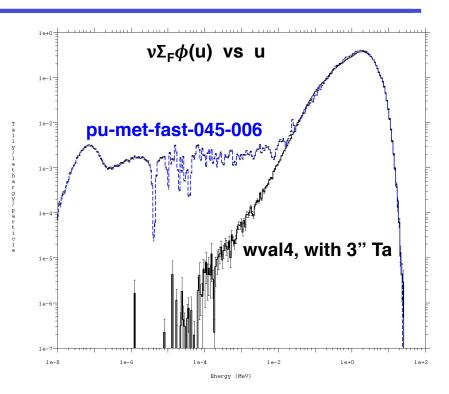
0.4131

0.4131

pu-met-fast-042-006.i

pu-met-fast-042-008.i

.......



- None of the benchmarks appear to have the same neutronics as the application
 - Largest C_k in the Whisper example output is 0.64 very low
 - Guidance from ORNL Scale/Tsunami developers:

0.95 < C _k	\rightarrow	great
$0.90 < C_k < 0.95$	\rightarrow	good
C _k < 0.90	\rightarrow	not so good

For C_k 's in range 0.9 - 1.0, at least 5-10 benchmarks needed For C_k 's in range 0.8 - 0.9, at least 10-20 benchmarks needed

- If all C_k's are low, there is a need to expand the benchmark suite, add similar benchmarks
- If no similar benchmarks, need extra analysis, analyst judgment, & margin

- The current benchmark suite for Whisper was focused on main needs for LANL validation, few benchmarks with Ta
- Need to find more benchmarks with Ta reflector & add to Whisper suite, if Ta-reflected applications are expected

Example 5

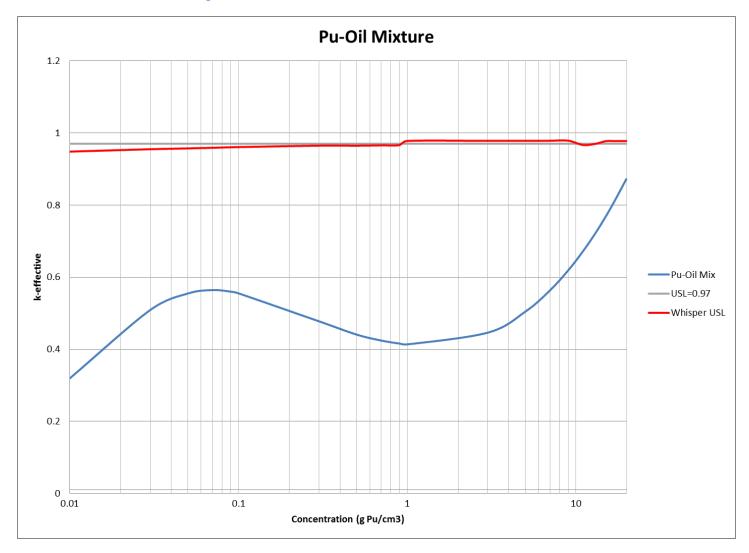
4.5 kg Pu Sphere, Oil moderated

- Is Pu moderated with oil included in validation AoA?
 - If not, what can be done?

Parameter	Area of Applicability		
Fissile Material	²³⁹ Pu		
Fissile Material Form	Pu Metal, PuO ₂ , and Pu(NO ₃) ₄		
H/ ²³⁹ Pu	$0 \le H^{/239}$ Pu ≤ 2807		
Average Neutron Energy Causing Fission (MeV)	$0.003 \leq \text{ANECF} \leq 1.935$		
²⁴⁰ Pu	0 to 42.9 wt% ²⁴⁰ Pu		
Moderating Materials	none, water, graphite, polystyrene		
Reflecting Materials	none, water, steel, oil, Plexiglas, polyethylene, graphite, W, Cu, U, Th, Al, Ni, Fe, Pb, Cd, Mo, Be, BeO		
Other Materials	concrete, PVC, Ga, B, Gd, Ta		
Geometry	cylinder array, cylinder, slab, sphere, hemisphere, stacked discs, cuboid, annular		

Additionally the primary CSA shall determine that the calculation model(s) fits within the area of applicability of the benchmark critical experiments used for the code validation. The area of applicability determination quantifies parameters potentially important to the computational calculation of keff. This comparison of calculation models and the benchmark critical experiments insures that the selected USL is valid for the calculations being performed. For systems which are outside the validation area of applicability, an area of applicability margin (AoA) may also be warranted, depending on the specific problem being analyzed. The analyst must document and justify any extrapolation beyond the validation area of applicability, including any chosen margin. The resulting USL with an AoA margin is defined as

USL = 1.0 + (bias) – (bias uncertainty) – (margin of subcriticality) – (AoA margin)



- MCNP6 Input
- 4.5 kg Pu (0) sphere mixed with variable amounts of Hydraulic oil
- Pu concentration range: -19.8 g Pu/cm³
- Hydraulic oil composition: C₄₀H₃₃O₄Cl₆P
- Hydraulic oil density:
 0.871 g/cm³
- Reflected with 1 inch of water

```
Pu mixed with hydraulic oil
С
1
    4 -1.827099
                  -1
                         imp:n=1
                         imp:n=1
2
    1 -1.0
                  +1 -2
20 0
                  +2
                         imp:n=0
1
         10.2417609488294
   SO
2
         12.7817609488294
   so
kcode 10000 1.0 150 500
ksrc 000
С
     1001.80c 2
m1
     8016.80c 1
     lwtr.20t
mt1
     94239.80c -0.54731523
m4
      1001.80c -0.01821054722413
      6000.80c -0.264852020155431
      8016.80c -0.0352799376428247
     15031.80c -0.0170753227802324
     17035.80c -0.0876520545992508
     17037.80c -0.0296143373586584
```


MCNP6 and Whisper Results

MCNP6 and Whisper Results

.	calc		data unc	baseline	
application	margi		· - /	USL	> USL
puoilmix.txt_7_in	0.014	77	0.00109	0.97739	-0.41445
Benchmark popula		=	65		
Population weigh	nt	=	28.56693		
Maximum similar:	ity	=	0.96433		
Bias		=	0.00720		
Bias uncertainty	7	=	0.00757		
Nuc Data uncert	margin	=	0.00109		
Software/method	margin	=	0.00500		
Non-coverage per	nalty	=	0.00000		
benchmark			ck	weight	
pu-met-fast-042.	-001.i		0.9643	1.0000	
pu-met-fast-011.	-001.i		0.9641	0.9973	
pu-met-fast-027.	-001.i		0.9580	0.9377	
pu-met-fast-042	-002.i		0.9561	0.9199	
pu-met-fast-042	-003.i		0.9483	0.8436	
pu-met-fast-044	-004.i		0.9474	0.8343	
pu-met-fast-042	-004.i		0.9444	0.8048	
pu-met-fast-031	-001.i		0.9425	0.7861	
pu-met-fast-044	-005.i		0.9404	0.7658	

pu-comp-mixed-002-001.i	0.9388	0.7502
pu-met-fast-042-005.i	0.9373	0.7353
pu-comp-mixed-002-002.i	0.9344	0.7077
pu-met-fast-042-006.i	0.9344	0.7069
pu-met-fast-042-007.i	0.9320	0.6840
pu-met-fast-036-001.i	0.9310	0.6736
pu-met-fast-044-003.i	0.9307	0.6714
pu-met-fast-042-008.i	0.9303	0.6673
pu-met-fast-024-001.i	0.9277	0.6417
pu-met-fast-042-009.i	0.9271	0.6360
pu-met-fast-042-010.i	0.9268	0.6327
pu-comp-mixed-002-003.i	0.9267	0.6315
pu-met-fast-042-011.i	0.9255	0.6198
pu-met-fast-042-012.i	0.9228	0.5943
pu-met-fast-044-002.i	0.9224	0.5899
pu-met-fast-042-014.i	0.9224	0.5896
pu-met-fast-042-013.i	0.9222	0.5881
pu-met-fast-042-015.i	0.9209	0.5752
pu-comp-mixed-002-004.i	0.9191	0.5574
pu-met-fast-021-002.i	0.9184	0.5506
pu-met-fast-044-001.i	0.9145	0.5128
pu-met-fast-023-001.i	0.9046	0.4156
pu-met-fast-039-001.i	0.9031	0.4015
pu-comp-mixed-002-005.i	0.9030	0.3999
pu-met-fast-018-001.i	0.9008	0.3782
pu-met-fast-021-001.i	0.8989	0.3598
pu-met-fast-009-001.i	0.8985	0.3564
pu-met-fast-016-001.i	0.8965	0.3364
pu-met-fast-045-005.i	0.8954	0.3259

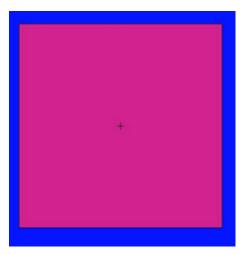
Traditional Validation Results:

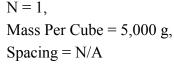
 $\mathsf{USL} = 0.99 \cdot \mathsf{MOS} \cdot \mathsf{AoA} = 0.97 \cdot \mathsf{AoA}$

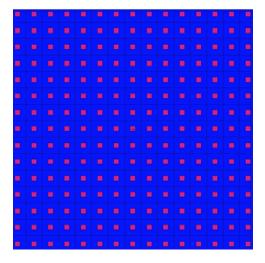
LA-UR-16-23533 - 98

•••••

Example 6


Revisiting a Practical Application of the SPSL for Pu Metal


LANL's Nuclear Criticality Safety Group undertook an effort to define a threshold between unmoderated and moderated plutonium metal systems. This effort culminated in the issuing of LA-UR-07-0160, *Practical Application of the Single-Parameter Subcritical Mass Limit for Plutonium* [Ref. 1]. The stated goal of this document was to answer the question of when do plutonium metal and water mixtures cease to appear as "metal" systems and begin to appear more like "solution" systems. Even though the study involving plutonium (²³⁹Pu) metal cubes in water was performed using MCNP [Ref. 2], the subject of code validation was intentionally ignored. This study is being revisited, and Upper Subcritical Limits (USLs) are being presented, using Whisper [Ref. 3].

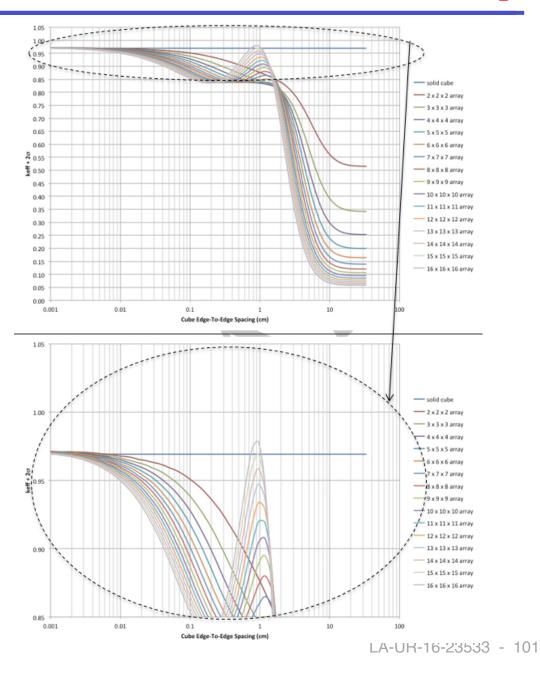

1.LA-UR-07-0160, Practical Application of the Single-Parameter Subcritical Mass Limit for Plutonium Metal, 2007.

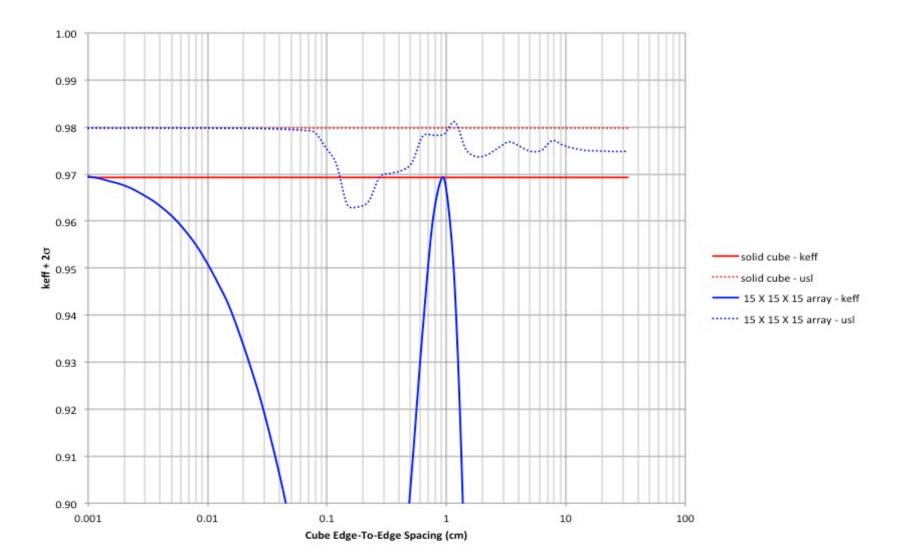
2.LA-12625-M, MCNP - A General Monte Carlo N-Particle Transport Code, 1997.

3.LA-UR-14-26558, Whisper: Sensitivity/Uncertainty-Based Computational Methods and Software for Determining Baseline Upper Subcritical Limits, 2014.

N = 15, Mass Per Cube = \sim 1.48 g, Spacing = 1 cm

Example 6: Revisiting a Practical Application of the SPSL for Pu Metal

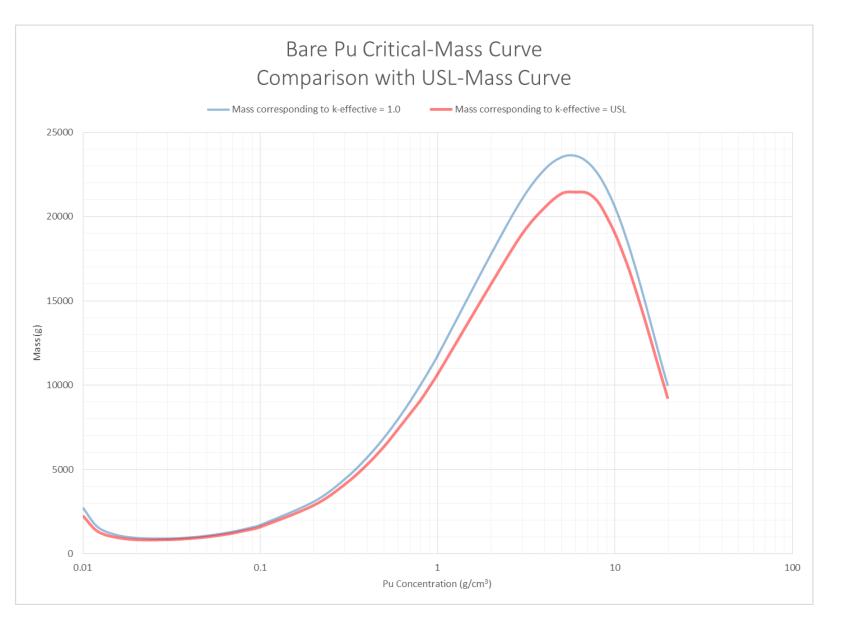

menp


5.3 Metallic units

The enrichment subcritical limit for uranium and the mass subcritical limits given in Table 3 apply to a single piece having no concave surfaces.

Table 3 – Single-parameter subcritical limits for metal units

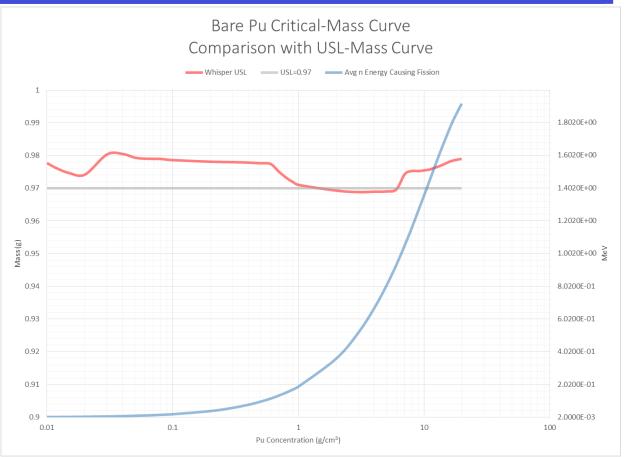
Parameter	Subcritical limits for		
	²³³ U [15]	²³⁵ U [16]	²³⁹ Pu [17]
Mass of fissile nuclide (kg)	6.0	20.1	5.0
Cylinder diameter (cm)	4.5	7.3	4.4
Slab thickness (cm)	0.38	1.3	0.65
Uranium enrichment (wt% ²³⁵ U)	-	5.0	-
Maximum density for which mass and dimension limits are valid (g/cm ³)	18.65	18.81	19.82


menp

Example 7

Critical Mass & USL Curves

Example 7: Critical-Mass and USL-Mass Curves


LA-UR-16-23533 - 104

menp

Example 7: Critical-Mass and USL-Mass Curves

[ANSI/ANS-8.24 7.2]

The validation applicability should not be so large that a subset of data with a high degree of similarity to the system or process would produce an upper subcritical limit that is lower than that determined for the entire set. This criterion is recommended to ensure that a subset of data that is closely related to the system or process is not nonconservatively masked by benchmarks that do not match the system as well.

THERMAL

- Average neutron energy causing fission: 0.00854 MeV
- % of fissions caused by neutrons: 96%; 3.5%; 0.5%
- Bias+bias uncertainty: 0.01306
- Nuclear data uncertainty: 0.00057
- USL = 0.98046

INTERMEDIATE

- Average neutron energy causing fission: 0.519 MeV
- % of fissions caused by neutrons: 18%; 55%; 27%
- Bias+bias uncertainty: 0.02197
- Nuclear data uncertainty: 0.00162
- USL = 0.96881

FAST

- Average neutron energy causing fission: 1.92 MeV
- % of fissions caused by neutrons: 0%; 2%; 98%
- Bias+bias uncertainty: 0.01419
- Nuclear data uncertainty: 0.00073
- USL = 0.97891

menp

Monte Carlo Parameter Studies & Uncertainty Analyses With MCNP6

- Introduction
- mcnp_pstudy
- Examples
- Usage
 - Parameter definition
 - Parameter expansion
 - Constraints
 - Case setup & execution
 - Collecting & combining results
- Statistics
- Practical Examples from Criticality Safety
- Advanced Topics

How are calculated results affected by:

- Nominal dimensions
 - With minimum & maximum values ?
 - With as-built tolerances ?
 - With uncertainties ?
- Material densities
 - With uncertainties ?
- Data issues
 - Different cross-section sets ?
- Stochastic materials
 - Distribution of materials ?

Monte Carlo perturbation theory can handle the case of independent variations in material density, but does not apply to other cases.

Brute force approach:

Run many independent Monte Carlo calculations, varying the input parameters.

menp

- To simplify & streamline the setup, running, & analysis of Monte Carlo parameter studies & total uncertainty analyses, a new tool has been developed: mcnp_pstudy
- Control directives are inserted into a standard MCNP input file
 - Define lists of parameters to be substituted into the input file
 - Define parameters to be sampled from distributions & then substituted
 - Define arbitrary relations between parameters
 - Specify constraints on parameters, even in terms of other parameters
 - Specify repetitions of calculations
 - Combine parameters as outer-product for parameter studies
 - Combine parameters as inner-product for total uncertainty analysis
- Sets up separate calculations
- Submits or runs all jobs
- Collects results

- Completely automates the setup/running/collection for parameter studies & total uncertainty analyses
 - Painless for users
 - 1 input file & run command can spawn 100s or 1000s of jobs
 - Fast & easy way to become the #1 user on a system (Added bonus: make lots of new friends in computer ops & program management.)
- Ideal for Linux clusters & parallel ASC computers:
 - Can run many independent concurrent jobs, serial or parallel
 - Faster turnaround: Easier to get many single-cpu jobs through the queues, rather than wait for scheduling a big parallel job
 - Clusters always have some idle nodes

- mcnp_pstudy is written in *perl*
 - 640 lines of *perl* (plus 210 lines of comments)
 - Would have taken many thousands of lines of Fortran or C
- Portable to any computer system
 - Tested on Unix, Linux, Mac OS X, Windows
 - For Windows PCs, need to have *perl* installed
 - (ActivePerl is free at activestate.com/activeperl, easy to install)
- Can be modified easily if needed
 - To add extra features
 - To accommodate local computer configuration
 - Node naming conventions for parallel cluster
 - Batch queueing system for cluster
 - Names & configuration of disk file systems (ie, local or shared)
 - Location of MCNP6 and MCNP6.mpi

MCNP input for simple Godiva calculation

MCNP input using *mcnp_pstudy*, Run 3 different cases -Each with a different radius

gdv	gdv-A
c	C @@@ RADIUS = 8.500 8.741 8.750
1 100 -18.74 -1 imp:n=1	1 100 -18.74 -1 imp:n=1
2 0 1 imp:n=0	2 0 1 imp:n=0
1 so 8.741	1 so RADIUS
kcode 10000 1.0 15 115	kcode 10000 1.0 15 115
ksrc 0 0 0	ksrc 000
m100 92235 -94.73 92238 -5.27	m100 92235 -94.73 92238 -5.27
prdmp 0 0 1 1 0	prdmp 00110

- Within an MCNP input file, all directives to mcnp_pstudy must begin with C @@@
- To continue a line, use "\" as the last character

c @@@ XXX = 1 2 3 4 5 6 \ c @@@ 7 8 9 10

Parameter definitions have the form

c @@@ P = value or list

- c @@@ P = (arithmetic-expression)
- Constraints have the form

c @@@ CONSTRAINT = (*expression*)

Control directives have the form

c @@@ OPTIONS = list-of-options

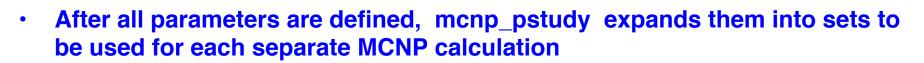
Parameter Definition

Parameters

- Like C or Fortran variables
- Start with a letter, contain only letters, integers, underscore
- Case sensitive
- Parameters are assigned values, either number(s) or string(s)
- Examples: R1, r1, U_density, U_den
- Single value
 - C @@@ P1 = value
- List of values
 - C @@@ P2 = value1 value2 ... valueN
- List of N random samples from Probability Densities:
 - Uniform 000 C P3 = uniform N min max - Normal **C** 000 P4 = normal Ndev ave Lognormal **C** @@@ P5 = lognormalN dev ave – Beta С 000 P6 = beta N a b [a, b are integers] LA-UR-16-23533 - 117

Arithmetic expression

- C @@@ P5 = (arithmetic-statement)
- Can use numbers & previously defined parameters
- Can use arithmetic operators +, -, *, /, % (mod), ** (exponentiation)
- Can use parentheses ()
- Can use functions: sin(), cos(), log(), exp(), int(), abs(), sqrt()
- Can generate random number in (0,N): rand(N)
- Can use rn_seed() to get odd seed for mcnp RN generator in [1,2⁴⁸-1]
- Must evaluate to a single value
- Examples:


c @@@ SEED = (rn_seed())
c @@@ FACT = normal 1 1.0 .05
c @@@ UDEN = (18.74 * FACT)
c @@@ URAD = (8.741 * (18.74/UDEN)**.333333)

• Repetition (list of integers, 1..N)

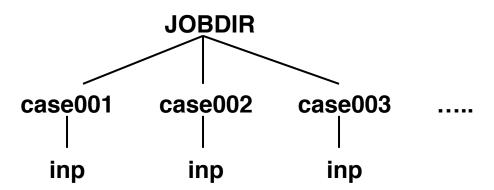
C @@@ P6 = repeat N

Examples • С rod height in inches, for search C @@@ HROD = 5 10 15 20 25 30 35 40 45 50 nominal dimension, with uncertainty С C 000 X1 = normal 251.234 .002 С dimension, with min & max @@@ X2 = uniform 25 1.232 1.236C try different cross-sections С $@@@ U235 = 92235.42c 92235.49c 92235.52c \$ C 000 C 92235.60c 92235.66c different random number seeds (odd) С 000 С SEED = (rn seed())

– Outer product expansion:	All possible combinations.
	Parameters specified first vary fastest.
– Inner product expansion:	Corresponding parameters in sequence. If not enough entries, last is repeated.

Example:	c 000 A	=	12		
	C @@@ B	=	3 4		
	c 000 C	=	5		
Outer:	Case 1:		A=1,	в=3,	C=5
	Case 2:		A=2,	в=3,	C=5
	Case 3:		A=1,	B=4,	C=5
	Case 4:		A=2,	B=4,	C=5
Inner:	Case 1:		A=1,	в=3,	C=5
	Case 2:		A=2,	B=4,	C=5

menp


- After all parameters are defined & expanded, constraint conditions are evaluated
- Constraints involve comparison operators (>, <, >=, <=, ==, !=) or logical operators (&& (and), II (or), ! (not)), and may involve arithmetic or functions
- Constraints must evaluate to True or False
- If a any constraint is not met, the parameters for that case are discarded & re-evaluated until all of the constraints are satisfied

Example

```
C pick dimensions between min & max
C
C @@@ X1 = uniform 1 3.9 4.1
C @@@ X2 = uniform 1 5.9 6.1
C
C keep x1 & x2 if x1+x2 <= 10.0, otherwise reject & try again
C
C @@@ CONSTRAINT = ( X1 + X2 <= 10.0 )</pre>
```


• Directory structure for MCNP5 jobs

- Unix filesystem conventions followed
 JOBDIR/case001/inp, JOBDIR/case002/inp, etc.
- Values of parameters are substitued into the original MCNP5 input file to create the input files for each case
 - Parameters substituted only when exact matches are found
 - Example: UDEN matches UDEN, and not UDEN1, UDENS, uden

- Specifying options for running jobs
 - Can be specified on the mcnp_pstudy command-line

```
mcnp_pstudy -inner -setup -i inp01
```

– Within the INP file

c @@@ OPTIONS = -inner

Common options

-i str The INP filename is str, default = inp	
-jobdir str Use str as the name of the job directory	
-case str Use str as the name for case directories	
-mcnp_opts str Append str to the MCNP5 run command,	
may be a string such as 'o=outx tasks 4'	
-bsub_opts str str is appended to the LSF bsub command	
-inner Inner product approach to case parameter substi	tution
-outer Outer product approach to case parameter subst	itution
-setup Create the cases & INP files for each	
-run Run the MCNP5 jobs on this computer	
-submit Submit the MCNP5 jobs using LSF bsub comman	nd
-collect Collect results from the MCNP5 jobs	

- Jobs can be run on the current system, or can be submitted to a batch queueing system (e.g., LSF)
- Tally results & K-effective can be collected when jobs finish

Examples:

- bash: mcnp_pstudy -inner -i inp01 -setup bash: mcnp_pstudy -inner -i inp01 -run bash: mcnp_pstudy -inner -i inp01 -collect
- bash: mcnp_pstudy -inner -i inp01 -setup -run -collect
- bash: mcnp_pstudy -inner -i inp01 -setup -submit
 ... wait till all jobs complete...
- bash: mcnp_pstudy -inner -i inp01 -collect

- To bypass the creation of job directories, and running/submitting problems:
 - A special command line option is available: -inponly
 - Invoking this option performs the parsing & setup of the input files for each case, but the resulting mcnp input files are placed in the current directory with default names of the form

inp_case001, inp_case002, etc.

Using -case study01a -inponly would result in files with names

inp_study01a001, inp_study01a002, etc.

- Other options -run, -submit cannot be used if -inponly is present
- The option -whisper can be used, and is equivalent to -inponly

• Tally results & K-effective from separate cases can be combined using batch statistics:

$$\overline{\mathbf{X}} = \frac{1}{M} \cdot \sum_{k=1}^{M} \mathbf{X}_{k} \qquad \sigma_{\overline{\mathbf{X}}} = \sqrt{\frac{1}{M-1} \cdot \left[\frac{1}{M} \sum_{k=1}^{M} \mathbf{X}_{k}^{2} - \overline{\mathbf{X}}^{2} \right]}$$

where M is the number of cases & X_k is some tally or Keff for case k

• Variance due to randomness in histories decreases as 1/M, but variance due to randomness in input parameters is constant

$$\sigma \frac{2}{X} \approx \sigma \frac{2}{X}$$
, Monte
Carlo + $\sigma \frac{2}{X}$, Initial
Conditions
Varies as 1/M ~ Constant

menp **Examples** Vary the fuel density randomly & adjust Vary fuel density & mass radius for constant mass, for 50 cases independently, for 50 cases gdv-F adv-E c vary fuel density - normal, 5%sd, c vary fuel radius - normal, 5%sd c adjust the radius to keep constant mass c vary fuel density- normal, 5%sd С С c @@@ FACT= normal 50 c @@@ OPTIONS = -inner 1.0.05 c @@@ UDEN= (18.74*FACT) С c @@@ URAD= (8.741*(18.74/UDEN)**.333333) c @@@ DFACT = normal 501.0.05 c @@@ UDEN = (DFACT * 18.74)С 1 imp:n=1100 -UDEN -1 С 2 0 imp:n=0c @@@ UFACT = normal 501 1.0.05 c @@@ URAD = (UFACT * 8.741)1 URAD so С 1 100 imp:n=1-UDEN -1 kcode 10000 1.0 2 0 imp:n=015 115 1 ksrc 0. 0. 0. 92235 -94.73 92238 -5.27 m1001 SO URAD prdmp 0 0 1 1 0 kcode 10000 1.0 15 115 ksrc 0. 0. 0. 92235 -94.73 92238 -5.27 m100prdmp 0 0 1 1 0

Table 1. Results from varying parameters in the Godiva problem

Problem	Description	K-effective	σ_{K-eff}
base	Base case , discard 15 initial cycles, retain 100 cycles with 10K histories/cycle, 1M total histories	0.9970	0.0005
А	Repeat the base problem 50 times, 50M total histories	0.9972	0.0001
В	Vary the fuel density only: sample from a normal distribution with 5% std.dev, 50M total histories	0.9961	0.0061
С	Vary the fuel radius only: sample from a normal distribution with 5% std.dev, 50M total histories	1.0057	0.0051
D	Vary the enrichment only , sample from a normal distribution with 5% std.dev, 50M total histories	0.9890	0.0027
E	Sample the fuel density from a normal distribution with 5% std.dev, and adjust the fuel radius to keep constant fuel mass, 50M total histories	0.9966	0.0042
F	Sample the fuel density from a normal distribution with 5% std.dev, and independently sample the radius from a normal distribution with 5% std.dev, 50M total histories	1.0073	0.0076

• Parameter studies

- Run a series of cases with different control rod positions
- Run a series of cases with different soluble boron concentrations
- Run a series of cases sampling certain dimensions from a Uniform or Normal probability density
- Run a series of cases substituting different versions of a crosssection
- Total uncertainty analysis
 - Run a series of cases varying all input parameters according to their uncertainties
- Parallel processing using a "parallel jobs" approach
 - Running N separate jobs with 1 cpu each will be more efficient than running 1 job with N cpus
 - Eliminates queue waiting times while cpus are reserved
 - Take advantage of cheap Linux clusters
- Simulation of stochastic geometry
 - Run a series of cases with portions of geometry sampled randomly, with a different realization in each case

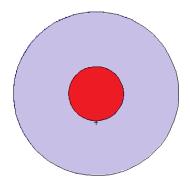
Conclusions

- mcnp_pstudy works
 - In use regularly at LANL for a variety of real applications
 - Developed on Mac & PC, runs anywhere
 - Easy to customize, if you have special needs
- To get it:
 - Included with MCNP6 distribution

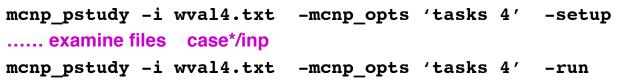
FB Brown, JE Sweezy, RB Hayes, "Monte Carlo Parameter Studies and Uncertainty Analyses with MCNP5", PHYSOR-2004, Chicago, IL (April, 2004)

Examples

- wval4: 4.5 kg Pu Sphere, Ta-reflected with varying reflector thickness
- wval1: 4.5 kg Pu Ingot, solid cylinder with varying H/D
- wval2: 4.5 kg Pu Ring, hollow cylinder with varying H & R_{in}



Example

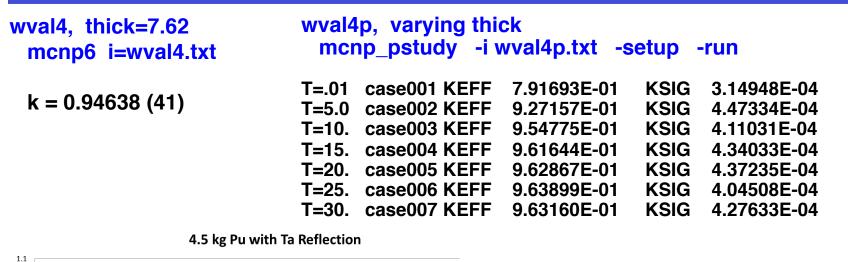

wval4, 4.5 kg Pu Sphere, Ta-reflected

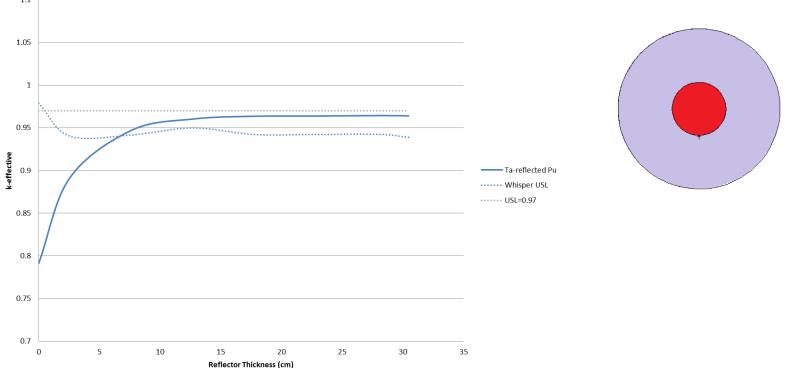
Example wval4: 4.5 kg Pu Sphere, Ta-reflected (1)

- 4.5 kg Pu-239 sphere
- Pu density = 19.8 g/cm³
- Reflected radially with Ta
- Vary the Ta-reflector thickness over the range 0.⁺ – 30. cm

- Start with wval4.txt, input for thickness=7.62
 mcnp6 i=wval4.txt
- Copy wval4.txt to wval4p.txt, then insert directives for mcnp_pstudy
 - Define list for thickness:
 - c @@@ THICK = 0.01 5. 10. 15. 20. 25. 30.
 - For a given THICK, compute reflector Rin & Rout
 - Use parameters for dimensions & location of KSRC point
 - Run:

Example wval4: 4.5 kg Pu Sphere, Ta-reflected (2)


```
menp
```


```
wval4: Study of Pu reflected with Ta
С
c Pu mass
              = 4500 \, \alpha
  Pu density = 19.8 \, q/cc
С
   Pu volume = 227.272727
С
С
   reflector definition:
С
     reflector thickness
                            = 7.62
С
     reflector inner radius = 3.7857584
С
    reflector outer radius = 11.405758
С
C
  1 4 -19.80 -1
                           imp:n=1
      1 - 16.69 + 1 - 2
  2
                           imp:n=1
 20
      0
                +2
                           imp:n=0
  1 so 3.7857584
  2 so 11.405758
 kcode 10000 1.0 50 250
 sdef pos=0 0 0 rad=d1
  si1 0 3.78
  sp1 -21 2
С
                         73181.80c 0.99988
 m1 73180.80c 0.00012
 m4 94239.80c 1
 prdmp 9e9 9e9 1 9e9
```

```
wval4p: Study of Pu reflected with Ta
С
С
  Pu mass
              = 4500 \, \alpha
  Pu density = 19.8 \text{ g/cc}
С
  Pu volume = 227.272727
С
С
  vary reflector thickness from 0+ to 30 cm
С
С
  000
        THICK = .01 5. 10. 15. 20. 25. 30.
С
  000
        R INNER = 3.7857584
С
   @@@ R OUTER = (R INNER + THICK)
С
С
С
  reflector definition:
     reflector thickness
С
                            = THICK cm
С
     reflector inner radius = R INNER cm
С
     reflector outer radius = R OUTER cm
С
     4 - 19.80 - 1
  1
                           imp:n=1
  2
      1 - 16.69 + 1 - 2
                           imp:n=1
                           imp:n=0
 20
      0
                +2
  1 so
          R INNER
  2 so
          R OUTER
 kcode 10000 1.0 50 250
 sdef pos=0 0 0 rad=d1
  sil O R INNER
  sp1 -21 2
С
 m1 73180.80c 0.00012
                         73181.80c 0.99988
 m4 94239.80c 1
 prdmp 9e9 9e9 1 9e9
```

Example wval4: 4.5 kg Pu Sphere, Ta-reflected (3)

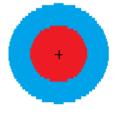
menp

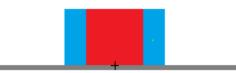
Example

wval1, 4.5 kg Pu Ingot, varying H/D

LA-UR-16-23533 - 137

Example wval1: 4.5 kg Pu Ingot, varying H/D (1)

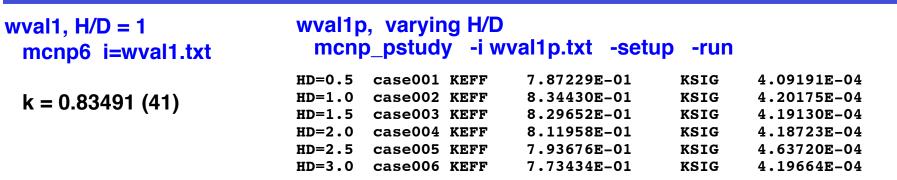

- 4.5 kg Pu-239 right-circular cylinder
- Pu density = 19.86 g/cm³
- Reflected radially with 1 inch of water
- Reflected on the bottom with ¼ inch steel
- Vary the height-to-diameter (H/D) over the range 0.5 3.0
 - Start with wval1.txt, input for H/D = 1
 mcnp6 i=wval1.txt
 - Copy wval1.txt to wval1p.txt, then insert directives for mcnp_pstudy
 - Define list for HD:


c @@@ HD = 0.5 1.0 1.5 2.0 2.5 3.0

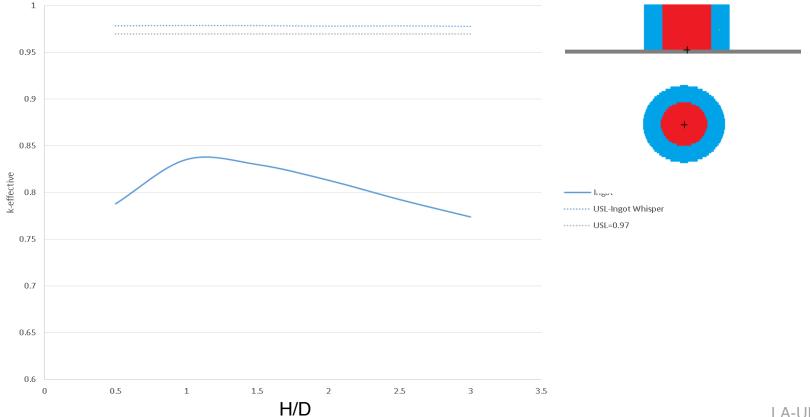
 For a given H/D, compute Pu radius, then other dimensions

V = (Pu mass)/(Pu density) $V = H\pi R^2 = (H/D) \cdot 2\pi R^3$ $R = \left[V/2\pi (H/D) \right]^{1/3}$

Use parameters for dimensions & location of KSRC point


Example wval1: 4.5 kg Pu Ingot, varying H/D (2)

menp


wval1: 4500 g Pu metal, H/D = 1c reflected 1 inch water radially, c 0.25 in steel bottom С 1 1 -19.860000 -1 imp:n=1 11 3 -1.0 +1 -11 imp:n=1 14 6 -7.92 -30 imp:n=1 15 0 +11 +30 -20 imp:n=1 20 0 +20 imp:n=00 0 6.607662 3.303831 1 rcc 0 0 011 rcc 0 0 00 0 6.607662 5.843831 20 rcc 0 0 - 2.540 0 91.44 91.44 30 rcc 0 0 -0.635 0 0 0.635 76.20 kcode 10000 1.0 50 250 ksrc 0 0 3.303831 m1 94239.80c 1 m3 1001.80c 0.66667 8016.80c 0.33333 mt3 lwtr.20t m6 24050.80c 0.000757334 24052.80c 0.014604423 24053.80c 0.001656024 24054.80c 0.000412220 26054.80c 0.003469592 26056.80c 0.054465174 26057.80c 0.001257838 26058.80c 0.000167395 25055.80c 0.00174 28058.80c 0.005255537 28060.80c 0.002024423 28061.80c 0.000088000 28062.80c 0.000280583 28064.80c 0.000071456 prdmp 9e9 9e9 1 9e9

```
wval1p: 4500 g Pu metal, various H/D
c reflected 1 inch water radially,
c 0.25 in steel bottom
С
С
    V = H pi R^{**2} = (H/D) 2pi R^{**3}
С
    R = (V/(2pi H/D) * * 1/3)
С
c 000
       PI
               = 3.141592654
c 000
       VOL PU = (4500. / 19.86)
c 000
       HD ____
               = 0.5 1.0 1.5 2.0 2.5 3.0
c 000
       R PU
               = ((VOL PU/(2*PI*HD))**(1/3))
               = ( 2*R \overline{P}U*HD )
c 666
       H PU
c 000
       R H2O = (R PU + 2.54)
c 000
       KSRC Z = (HPU * 0.5)
С
С
 Pu cylinder:
                   = 4500 q
С
       mass
                   = 19.86 \text{ q/cc}
С
       density
С
       volume
                   = VOL PU
С
       radius Pu
                   = \mathbf{R} \mathbf{P} \mathbf{U}
С
       height Pu
                   = H PU
С
       H/D
                   = HD
С
c H2O
       outer radius = R H2O
С
  1
      1 - 19.860000
                                     imp:n=1
                       -1
      3 -1.0
                                     imp:n=1
 11
                       +1 - 11
 14
      6 -7.92
                       -30
                                     imp:n=1
 15
      0
                       +11 +30 -20
                                     imp:n=1
 20
                       +20
                                     imp:n=0
      0
  1
     rcc 0 0 0
                           0 0 H PU
                                       R PU
 11
     rcc 0 0 0
                           0 0 H PU
                                       R H2O
 20
     rcc
          0 0 -2.540000
                           0 0 91.44
                                       91.44
 30
    rcc 0 0 - 0.635000
                           0 0 0.635
                                       76.20
 kcode 10000 1.0 50 250
 ksrc
        0. 0. KSRC Z
С
..... etc.
```

Example wval1: 4.5 kg Pu Ingot, varying H/D (3)

LA-UR-16-23533 - 139

menp

Example

wval2, 4.5 kg Pu Annulus, varying H & R_{in}

Example wval2: 4.5 kg Pu Annulus, varying H & R_{in} (1)

- 4.5 kg Pu-239 right-circular cylinder, hollow
- Pu density = 19.86 g/cm³
- Reflected radially with 1 inch of water
- Reflected on the bottom with ¼ inch steel
- Set the height to be same as solid cylinder with height-to-diameter (H/D) = 1.0, 2.0, 3.0
- For given height, vary inner radius over 0+ 2 cm
 - Start with wval2.txt input
 - mcnp6 i=wval2.txt
 - Copy wval2.txt to wval2p.txt, then insert directives for mcnp_pstudy
 - Define list for solid HD:

c @@@ HD = 1.0 2.0 3.0

- For a given H/D, compute Pu height
- Define list for inner radius RIN_PU

c @@@ RIN_PU = 0.001 0.5 1.0 2.0

• Then other dimensions & source

Solid cylinder V = (Pu mass)/(Pu density) $V = H\pi R^2 = (H/D) \cdot 2\pi R^3$ $H = \left[4V(H/D)^2 / \pi \right]^{1/3}$ Hollow cylinder $V = H\pi (R_{out}^2 - R_{in}^2)$ $R_{out} = \left[R_{in}^2 + V / \pi H \right]^{1/2}$

LA-UR-16-23533 - 141

239 right-circular cylinder, bollow

Example wval2: 4.5 kg Pu Annulus, varying H & R_{in} (2)

wval2: 4500 g Pu metal ring, fixed Rin wval2p: 4500 g Pu metal ring, various H & Rin 1 3 -1.0 -1 imp:n=1 С 2 1 -19.860000 +1 -2 imp:n=1 **c** @@@ PI = 3.1415926543 -1.0 **c** 666 VOL PU = (4500. / 19.86)11 +2 - 11imp:n=1 6 -7.92 Pu mass -30 С $= 4500 \, \mathrm{cm}$ 14 imp:n=1 Pu density = 19.86 g/ccС 15 0 +11 + 30 - 20imp:n=1 Pu volume = VOL PU 20 +20 imp:n=0С 0 С c set height to match ingot with various H/D 0 0 6.608 0.100000 $1 \operatorname{rcc} 0 0 0$ **c** 000 = 1.0 2.0 3.0 2 rcc 0 0 00 0 6.608 3.305259 HD **c** 000 11 rcc 0 0 00 0 6.608 5.845259 HEIGHT = ((4*VOL PU*(HD**2)/PI)**(1/3))20 rcc 0 0 -2.540 0 0 91.44 91.44 С 0 0 0.635 c for hollow cylinder: 30 rcc 0 0 - 0.63576.20 use same height as for solid ingot С set various inner radii kcode 10000 1.0 50 250 С set Rout for given height, mass, Rin sdef pos=0 0 0 rad=d1 axs=0 0 1 ext=d2 С si1 0.100 3.305259 **c** 000 RIN PU = .001 0.5 1.0 2.0**c** @@@ ROUT PU=(sqrt(RIN PU**2+VOL PU/(PI*HEIGHT))) sp1 -21 1 **c** 000 ROUT H2O = (OUTER PU + 2.54)si2 0.0 6.60800 С sp2 0 1 3 -1.0 94239.80c 1 1 -1 imp:n=1 m1 2 1 - 19.8600001001.80c 0.66667 8016.80c 0.33333 +1 -2imp:n=1 m3 11 3 -1.0 +2 -11 imp:n=1 mt3 lwtr.20t 14 6 -7.92 -30 imp:n=1 mб 24050.80c 0.000757334 15 0 +11 +30 -20 imp:n=124052.80c 0.014604423 0 imp:n=0 20 +20 24053.80c 0.001656024 24054.80c 0.000412220 26054.80c 0.003469592 1 rcc 0 0 0 0 0 HEIGHT RIN PU 2 0 0 0 26056.80c 0.054465174 rcc 0 0 HEIGHT ROUT PU 11 rcc 0 0 0 0 0 HEIGHT ROUT H2O 26057.80c 0.001257838 20 rcc 0 0 -2.540 0 0 91.44 $91.4\overline{4}$ 26058.80c 0.000167395 30 0 0 - 0.6350 0 0.635 76.20 25055.80c 0.00174 rcc 28058.80c 0.005255537 kcode 10000 1.0 50 250 28060.80c 0.002024423 sdef pos= 0. 0. 0. rad=d1 axs=0 0 1 ext=d2 28061.80c 0.000088000 sil RIN PU ROUT PU 28062.80c 0.000280583 sp1 -21¹ 28064.80c 0.000071456 si2 0 HEIGHT prdmp 9e9 9e9 1 9e9 sp2 0 1 etc.

LA-UR-16-23533 - 142

menp

Example wval2: 4.5 kg Pu Annulus, varying H & R_{in} (3) mcnp

wval2 mcnp6 i=wval2.txt		wval2p, varying H & R _{in} mcnp_pstudy -i wval2p.txt -setup -run					
k = 0.83413 (42) Comparison of 4.5 kg Pu Ingot and Rings	HD=2 HD=3 HD=1 HD=2 HD=3 HD=1 HD=3 HD=1	Rin=.001 Rin=.001 Rin=0.5 Rin=0.5 Rin=0.5 Rin=1.0 Rin=1.0 Rin=1.0 Rin=2.0 Rin=2.0	case002	KEFF KEFF KEFF KEFF KEFF KEFF KEFF	8.34752E-01 8.12612E-01 7.72725E-01 8.20432E-01 7.95375E-01 7.54174E-01 7.88497E-01 7.62394E-01 7.20810E-01 7.21523E-01 5.97954E-01	4.35668E-0 4.09516E-0 3.82627E-0 4.01135E-0 4.60388E-0 3.96580E-0 3.95026E-0 3.95026E-0 3.90299E-0 4.27354E-0 4.02775E-0 4.88269E-0	
Ingot H/D 0 0.5 1 1.5 2 2.5		Rin=2.0	case012		5.64037E-01	4.88326E-0	
		Ring H/D=1 Ring H/D=2 Ring H/D=3 USL-Ring H/D=1 Ingot USL-Ring H/D=2 USL-Ring H/D=3					
.6 0 0.5 1 1.5 2 2.5 Ring Inner Diameter (cm)	3						

Advanced Topics

Tied parameters

Concurrent jobs

Standard inner & outer schemes for determining job parameters

```
Example:
                     c @@@ A =
                                    1
                                        2
                      c @@@ B = 3 4
                      c @@@ C = 5 6
                      c @@@ D = 7 8
                      c @@@ E = 9
             all combinations, 16 cases
  Outer:
             \{1,3,5,7,9\}, \{2,3,5,7,9\}, \{1,4,5,7,9\}, \{2,4,5,7,9\},
             \{1,3,6,7,9\}, \{2,3,6,7,9\}, \{1,4,6,7,9\}, \{2,4,6,7,9\},
             \{1,3,5,8,9\}, \{2,3,5,8,9\}, \{1,4,5,8,9\}, \{2,4,5,8,9\},
             \{1,3,6,8,9\}, \{2,3,6,8,9\}, \{1,4,6,8,9\}, \{2,4,6,8,9\},
  Inner:
             2 cases
             \{1,3,5,7,9\},\{2,4,6,8,9\}
```

- The inner & outer schemes for determining job parameters can be modified
 - Often desirable to deal with groups of parameters that are varied
 - 2 or more parameters can be "tied" together, to vary in an inner manner
 - Tied parameter lists must have the same lengths

Parameter Expansion (2)

These examples assume that the -outer option is in effect for all parameter combinations

Example:

С	000	ti	ed =	- A	B
С	000	Α	=	1	2
С	000	В	=	3	4
С	000	С	=	5	6
С	666	D	=	7	8
С	000	E	=	9	

Cases, {A,B,C,D,E}:

{1,3,	5,	7,	9},	{1,3,	6,	7,	9},
{1,3,	5,	8,	9},	{1,3,	6,	8,	9},
{2,4,	5,	7,	9},	{2,4,	6,	7,	9},
{2,4,	5,	8,	9},	{2,4,	6,	8,	9}

Example:

С	000	ti	ed	= A B	С		
С	666	Α	=	1	2		
С	000	В	=	3	4		
С	000	С	=	5	6		
С	000	D	=	7	8		
С	000	Е	=	9			
Cases, {A,B,C,D,E}:							

$\{1,3,5,7,9\},\{1,3,5,8,9\},$ $\{2,4,6,7,9\},\{2,4,6,8,9\}$

Example:

С	@@@	ti	ed	= A	B	
С	666	Α	=	1	2	
С	666	В	=	3	4	
С	666	ti	e d :	= C	D	
С	666	С	=	5	6	
С	@@@	D	=	7	8	
С	666	Е	=	9		

Cases, {A,B,C,D,E}: {1,3, 5,7, 9}, {1,3, 6,8, 9}, {2,4, 5,7, 9}, {2,4, 6,8, 9}

Example: c @@@ tied = A B C D

С	ଜଜଜ	Α	=	T	2
С	000	В	=	3	4
С	000	С	=	5	6
С	000	D	=	7	8
С	@@@	Ε	=	9	

Cases, {A,B,C,D,E}: {1,3,5,7, 9}, {2,4,6,8, 9}

LA-UR-16-23533 - 146

The -inner & -outer options can be varied for different parameters, and mixed with tied parameters

Example:

С	000	ор	tio	ns =	-inn	er
С	666	Α	=	1	2	
С	000	В	=	3	4	
С	000	С	=	5	6	
С	000	D	=	7	8	
С	666	Е	=	9		

Cases:

 $\{1,3,5,7,9\}, \{2,4,6,8,9\},\$

Example:

c @@@ options = -inner **c** @@@ A = 1 2 C 000 в = 3 4 **c** @@@ options = -outer 5 6 c @@@ C = c @@@ D = 7 8C (0) = 2Cases: $\{1,3, 5, 7, 9\}, \{1,3, 6, 7, 9\},\$ $\{1,3, 5, 8, 9\}, \{1,3, 6, 8, 9\}, \{2,4, 5, 7, 9\}, \{2,4, 6, 7, 9\}, \{2,4, 6, 8, 9\}, \{2,4, 5, 8, 9\}, \{2,4, 6, 8, 9\}$

Example:

С	000	opti	lons	=	-0	outer
С	666	tie	ed =	A	В	
С	666	А	=	1		2
С	666	В	=	3		4
С	000	tie	ed =	С	D	
С	666	С	=	5		6
С	666	D	=	7		8
С	666	Е	=	9		

Cases: {1,3, 5,7, 9}, {1,3, 6,8, 9}, {2,4, 5,7, 9}, {2,4, 6,8, 9}

Example:

С	000	ti	ed	=	Α	В	С	D
С	000	Α	=		1		2	
С	666	В	=		3		4	
С	666	С	=		5		6	
С	000	D	=		7		8	
С	666	Ε	=		9			

Cases:

 $\{1,3,5,7,9\},\{2,4,6,8,9\}$

LA-UR-16-23533 - 147

- By default, jobs for the different cases are run sequentially
 - For -run: jobs for each case are run on the current computer, sequentially (one-at-a-time)
 - For -submit: separate batch jobs are submitted for each case,
 - For either -run or -submit, multiple threads can be used for the mcnp6 runs in each case, by using the option -mcnp opts 'tasks 8'
- For Linux & Mac systems, not Windows:
 - Multiple concurrent cases can be run, even when threads are used
 - The <u>-ppn n</u> option specifies the number of processes per node (ie, cases to be run concurrently)

• Examples:

- On a system with 24 hyperthreads, could run 6 cases at a time with 4 threads each:
 mcnp_pstudy -i inp.txt -mcnp_opts 'tasks 4' -ppn 6 -setup -run
- For a cluster with 16 cores/node, can submit jobs with 16 cases each:
 mcnp_pstudy -i inp.txt -ppn 16 -setup -submit

References

LA-UR-16-23533 - 149

All references are available at URL: mcnp.lanl.gov \rightarrow Recent Publications \rightarrow Whisper – NCS Validation

Abstract

• Whisper - abstract from LANL TeamForge Tracker system, Artifact artf36407 (2015)

Theory

- B.C. Kiedrowski, F.B. Brown, et al., "Whisper: Sensitivity/Uncertainty-Based Computational Methods and Software for Determining Baseline Upper Subcritical Limits", Nuc. Sci. Eng. Sept. 2015, LA-UR-14-26558 (2014)
- B.C. Kiedrowski, "Methodology for Sensitivity and Uncertainty-Based Criticality Safety Validation", LA-UR-14-23202 (2014)
- F.B. Brown, M.E. Rising, J.L. Alwin, "Lecture Notes on Criticality Safety Validation Using MCNP & Whisper", LA-UR-16-21659 (2016)

User Manual

- B.C. Kiedrowski, "User Manual for Whisper (v1.0.0), Software for Sensitivity- and Uncertainty-Based Nuclear Criticality Safety Validation", LA-UR-14-26436 (2014)
- B.C. Kiedrowski, "MCNP6.1 k-Eigenvalue Sensitivity Capability: A Users Guide", LA- UR-13-22251 (2013)

Application

 B.C. Kiedrowski, et al., "Validation of MCNP6.1 for Criticality Safety of Pu-Metal, - Solution, and -Oxide Systems", LA-UR-14-23352 (2014)

Software Quality Assurance

- R.F. Sartor, F.B. Brown, "Whisper Program Suite Validation and Verification Report", LA-UR-15-23972 (2015-05-28)
- R.F. Sartor, F.B. Brown, "Whisper Source Code Inspection Report", LA-UR-15-23986 (2015-05-28)
- R.F. Sartor, B.A. Greenfield, F.B. Brown, "MCNP6 Criticality Calculations Verification and Validation Report", LA-UR-15-23266 (2015-04-30)
- Monte Carlo Codes Group (XCP-3), "Whisper Software for Sensitivity-Uncertainty-based Nuclear Criticality Safety Validation", LANL TeamForge Tracker system, Artifact artf36407 (2015)
- Monte Carlo Codes Group (XCP-3), WHISPER module in LANL TeamForge GIT repository (2015)
- Monte Carlo Codes Group (XCP-3), MCNP6 module in LANL TeamForge GIT repository
- Monte Carlo Codes Group (XCP-3), "MCNP Process Documents", LANL Teamforge wiki for MCNP
- Monte Carlo Codes Group (XCP-3), "Software Quality Assurance", LANL Teamforge wiki for MCNP, P1040-rev9 requirements

Recent MCNP6 & ENDF/B-VII.1 Verification/Validation

- F.B. Brown, "MCNP6 Optimization and Testing for Criticality Safety Calculations", Trans. ANS 111, LA-UR-15-20422 (2015)
- Monte Carlo Codes XCP-3, LANL F.B. Brown, B.C. Kiedrowski, J.S. Bull, "Verification of MCNP6.1 and MCNP6.1.1 for Criticality Safety Applications", LA-UR-14-22480 (2014).
- F.B. Brown, B.C. Kiedrowski, J.S. Bull, "Verification of MCNP5-1.60 and MCNP6.1 for Criticality Safety Applications", LA-UR-13-22196 (2013).
- L.J. Cox, S.D. Matthews, "MCNP6 Release 1.0: Creating and Testing the Code Distribution", LA-UR-13-24008 (2013)

Recent MCNP6 & ENDF/B-VII.1 Verification/Validation (cont'd)

- R.D. Mosteller, F.B. Brown, B.C. Kiedrowski, "An Expanded Criticality Validation Suite for MCNP", LA-UR-11-00240 (2011).
- R.D. Mosteller, "An Expanded Criticality Validation Suite for MCNP", LA-UR-10-06230 (2010).
- R.C. Little, "V&V of MCNP and Data Libraries at Los Alamos", LA-UR-12-26307 (2012) A. Sood, R.A. Forster, D.K. Parsons, "Analytic Benchmark Test Set for Criticality Code
- Verification", LA-13511 and LA-UR-01-3082 (2001) XCP Data Team, "LANL Data Testing Support for ENDF/B-VII.1", LA-UR-12-20002 LA-UR-12-20002 (2012)

General References on Adjoints, Perturbation, and Sensitivity Analysis

- B.C. Kiedrowski, F.B. Brown, et al., "MCNP Sensitivity/Uncertainty Accomplishments for the Nuclear Criticality Safety Program", Trans. Am. Nuc. Soc 111, Nov 2014, LA-UR-14- 24458 (2014)
- B.C. Kiedrowski, "Adjoint Weighting Methods Applied to Monte Carlo Simulations of Applications and Experiments in Nuclear Criticality" seminar at University of Michigan, March 2014, LA-UR-14-21608 (2014)
- B.C. Kiedrowski, "MCNP Continuous-Energy Sensitivity and Uncertainty Progress and Application", Presentation at DOE-NNSA Nuclear Criticality Safety Program Technical Review, 26-27 March 2014, LA-UR-14-21919 (2014)
- B.C. Kiedrowski, "Application of Covariance Data in Nuclear Criticality", Nuclear Data Covariance Workshop, April 28 May 1, Santa Fe, NM, LA-UR-14-22972 (2014)

General References on Adjoints, Perturbation, and Sensitivity Analysis (cont'd)

- B.C. Kiedrowski & F.B. Brown, "Applications of Adjoint-Based Techniques in Continuous-Energy Monte Carlo Criticality Calculations", Supercomputing in Nuclear Applications and Monte Carlo 2013, Paris, Oct 27-31, LA-UR-13-27002 (2013)
- B.C. Kiedrowski, "Importance of Scattering Distributions on Criticality", ANS NCSD- 2013, Wilmington, NC, Sept 29 Oct 1, LA-UR-13-24254 (2013).
- B.C. Kiedrowski, A.C. Kahler, M.E. Rising, "Status of MCNP Sensitivity/Uncertainty Capabilities for Criticality", ANS NCSD-2013, Wilmington, NC, Sept 29 Oct 1, LA-UR- 13-24090 (2013)
- B.C. Kiedrowski, "K-Eigenvalue Sensitivity Coefficients to Legendre Scattering Moments", ANS 2013 Winter Meeting, LANL report LA-UR-13-22431 (2013)
- B.C. Kiedrowski, F.B. Brown, "Applications of Adjoint-Based Techniques in Continuous- Energy Monte Carlo Criticality Calculations", submitted to SNA+MC-2013, Paris, France [also LA-UR-12-26436] (2012)
- B.C. Kiedrowski, F.B. Brown, "K-Eigenvalue Sensitivities of Secondary Distributions of Continuous-Energy Data," M&C 2013, Sun Valley, ID, May 2013, report LA-UR-12- 25966, talk LA-UR-13-23208 (2013)
- B.C. Kiedrowski, F.B. Brown, "Methodology, Verification, and Performance of the Continuous-Energy Nuclear Data Sensitivity Capability in MCNP6," M&C 2013, Sun Valley, ID, May 2013, report LA-UR-12-25947, talk LA-UR-13-23199 (2012)
- B.C. Kiedrowski, F.B. Brown, "MCNP6 Nuclear Data Sensitivity Capability: Current Status and Future Prospects", presentation at MCNP/ENDF/NJOY Workshop, 2012-10- 30, LANL, LA-UR-12-25560 (2012)
- B.C. Kiedrowski, F.B. Brown, "Nuclear Data Sensitivities in Fast Critical Assemblies", presentation at NECDC-2012, LA-UR-12-25144 (2012)

General References on Adjoints, Perturbation, and Sensitivity Analysis (cont'd)

- B.C. Kiedrowski, F.B. Brown, "Adjoint-Based k-Eigenvalue Sensitivity Coefficients to Nuclear Data Using Continuous-Energy Monte Carlo", submitted to Nuclear Science & Engineering [also LA-UR-12-22089] (2012)
- B.C. Kiedrowski, "MCNP6 Results for the Phase III Sensitivity Benchmark of the OCED/NEA Expert Group on Uncertainty Analysis for Criticality Safety Assessment", LA-UR-12-21048 (2012)
- B.C. Kiedrowski & F.B. Brown, "Continuous-Energy Sensitivity Coefficient Capability in MCNP6", Trans. Am. Nuc. Soc. 107, LA-UR-12-21010, presentation at 2012 ANS Winter Meeting, San Diego, CA, LA-UR-12-25949 (2012)
- B.C. Kiedrowski & F.B. Brown, "Comparison Of The Monte Carlo Adjoint-Weighted And Differential Operator Perturbation Methods", SNA+MC-2010, Tokyo, Oct 17-20, LA-UR- 10-05215 (2010)
- B.C. Kiedrowski, J.A. Favorite, & F.B. Brown, "Verification of K-eigenvalue Sensitivity Coefficient Calculations Using Adjoint-Weighted Perturbation Theory in MCNP", Trans. Am. Nuc. Soc, 103, Nov 2010, LA-UR-10-04285 (2010)
- B.C. Kiedrowski, F.B. Brown, & P. Wilson, "Adjoint-Weighted Tallies for k-Eigenvalue Calculations with Continuous-Energy Monte Carlo", Nucl. Sci. Eng. 168, 38-50, 2011, LA-UR-10-01824, (2010).
- B.C. Kiedrowski & F.B. Brown, "Adjoint-Weighting for Critical Systems with Continuous Energy Monte Carlo", ANS NCSD-2009, Richland, WA, Sept 13-17, paper LA-UR-09- 2594, presentation LA-UR-09-5624 (2009)

LA-UR-16-23533 Approved for public release; distribution is unlimited.

Title:Lecture Notes on Sensitivity-Uncertainty BasedNuclear Criticality Safety Validation

Author(s): Alwin, Jennifer Brown, Forrest Rising, Michael

Issued: 2016-05-02

Disclaimer:

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

