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GPU ACCELERATION OF MEAN FREE PATH BASED KERNEL
DENSITY ESTIMATORS FOR MONTE CARLO NEUTRONICS

SIMULATIONS

Timothy P. Burke, Brian C. Kiedrowski, William R. Martin, Forrest B. Brown

1 INTRODUCTION

Kernel Density Estimators (KDEs) are a non-parametric density estimation technique that has
recently been applied to Monte Carlo radiation transport simulations [1,2]. Kernel density estimators
are an alternative to histogram tallies for obtaining global solutions in Monte Carlo tallies. With
KDEs, a single event, either a collision or particle track, can contribute to the score at multiple
tally points with the uncertainty at those points being independent of the desired resolution of the
solution. Thus, KDEs show potential for obtaining estimates of a global solution with reduced
variance when compared to a histogram. Previously, KDEs have been applied to neutronics for
one-group reactor physics problems [1] and fixed source shielding applications [2]. However, little
work was done to obtain reaction rates using KDEs.

Previously, the Mean Free Path (MFP) based KDE was introduced that is capable of obtaining
accurate estimates of reaction rates for reactor physics problems in 1-D slab geometries in continuous
energy and 2-D one-group problems with linear material interfaces. However, the MFP KDE was
not extended to 2-D geometries with non-planar surfaces [3]. This paper introduces a new form of
the MFP KDE that is capable of handling general geometries. Furthermore, extending the MFP KDE
to 2-D problems in continuous energy introduces inaccuracies to the solution. An ad-hoc solution to
these inaccuracies is introduced that produces errors smaller than 4% at material interfaces.

Additionally, While KDEs produce smoother results compared to histograms, it comes at a cost of
increased computation time. For every particle event, a kernel function must be evaluated for every
tally point within the support range of the event. Furthermore, tallying to points in materials outside
of where the particle event occurred requires the look up of additional cross section information.
Both of these facts can make the KDE tally routine the most expensive portion of the Monte Carlo
simulation. Since the KDE requires the calculation of multiple quantities for every particle event,
it is well suited for computation on a Graphics Processing Unit (GPU). In an attempt to reduce
run times, the KDE tally is exported to the GPU during the transport process. The KDE is applied
to tallies in two 2-D pincell problems as well as two quarter-assembly problems. Speedups are
problem dependent, and range between 1.6 and 13.8 for the problems studied in this paper.
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2 BACKGROUND & THEORY

2.1 Distance-Based KDE

Previously, the multivariate distance-based collision KDE for scalar flux was developed [1]
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where N is the number of histories, ci is the number of collisions in history n, xl − Xl,n is the
distance between the tally point at location x and the location of sample n in dimension l, Σr is the
cross section of the reaction rate of interest, Σt is the total cross section, k is the univariate kernel
function, and hl is the bandwidth in dimension l. This estimator was extended to compute reaction
rates [4], resulting in the collision KDE for reaction rates:
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where Σr(x, E) is macroscopic cross section of reaction rate r at the tally point at energy E.
The kernel function k is generally a symmetric Probability Density Function (PDF) and has the
properties ∫

k(u)du = 1,

∫
uk(u)du = 0, and

∫
u2k(u)du = k2 6= 0. (3)

The performance of the KDE is heavily dependent upon the bandwidth. An optimal bandwidth for
general KDEs is discussed in depth by Silverman and is defined as the bandwidth that minimizes
the Mean Integrated Square Error (MISE), the sum of the integrated square bias and the integrated
variance [5]. The KDE obtains a biased estimate of the underlying PDF f(x) by estimating
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The bias introduced by the kernel approximation in Eq. (4) is

bias[f̂(x)] = f(x)− f̂(x) (5)

= f(x)− f(x)

∫ ∞
−∞

k(u)du− hf ′(x)

∫ ∞
−∞

uk(u)du+ h2f ′′(x)

∫ ∞
−∞

u2k(u)du+ . . .

(6)

Using the kernel properties in Eq. 3, the bias reduces to

bias[f̂(x)] = h2f ′′(x)k2 +O(h3). (7)

Furthermore, the variance can be approximated as [5]

var [f(x)] =
1
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Finding a bandwidth h that minimizes the MISE results in an optimal bandwidth

hMISE = k
−2/5
2

(∫
K(u)2du

)1/5(∫
f ′′(x)2dx

)−1/5

n−1/5. (9)

Additionally, if more information about the underlying distribution is known or can be calculated
beyond integral quantities then the Mean Square Error (MSE), the sum of the square bias and
variance at a point in the PDF, can be minimized to obtain a MSE-optimal bandwidth

hMSE = k
−2/5
2

(∫
K(u)2du

)1/5

f(x)1/5f ′′(x)−2/5n−1/5. (10)

Since the optimal bandwidth is dependent upon the distribution being used, either an estimate
of f ′′(x) must be used or an assumption must be made about the distribution of f(x) in order to
approximate f ′′(x). The most common assumption is to approximate f(x) as the normal distribution
and use the moments of the estimated distribution as parameters in the optimal bandwidth [5].
Applying the assumption that f(x) is normal, MISE-optimal bandwidths can be computed using

hMISE,l =
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σl, (11)

where d is the number of dimensions used in the KDE tally, N is the number of samples, and σl is
the standard deviation of the distribution of data in dimension l. For flux distributions, σl can be
estimated using a collision estimator via
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2.2 MFP KDE

The distance-based KDE has difficulty estimating reaction rates at material interfaces when the
materials exhibit different total macroscopic cross sections. This is especially the case in reactor
physics problems when estimating the absorption reaction rate near control rods or when attempting
to capture the rim effect in fuel pins. Because of this, the MFP KDE was developed in 1-D and for a
2-D tally in 1-D geometries [3]. The collision MFP KDE in 1-D is
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The optimal bandwidth for the MFP KDE is calculated using Eq. (11), but with σl calculated by

σMFP,l = σlΣt (14)
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with

Σt =
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where
∫
R

dV describes an 3-D integral over the KDE region R. The concept of a KDE region will
be described in more detail in a later section.

The 2-D MFP KDE was derived for slab geometry in 1-D using a multivariate KDE that is a product
of univariate kernels and is defined as
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where ∆R is the distance between the tally point and the collision site and ∆X and ∆Y are the
distances between the tally point and the collision site in the x and y directions, respectively. This
form of the MFP KDE does not account for geometries with non-planar surfaces exactly. Thus,
another form of the MFP KDE using a multivariate kernel that is radially symmetric was derived to
account for these geometries. The distance-based multivariate Epanechnikov kernel [5] is defined as
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xTx), xTx < 5

0, otherwise
(17)

where x = (x1, . . . , xd)
T and Cd is the volume of the d-dimensional sphere: C1 = 2, C2 = π,

C3 = 4π/3, etc. The multivariate Epanechnikov kernel cited in literature does not normally contain
extra factors of 1/5, but they are included here so the multivariate Epanechnikov kernel is equivalent
to the univariate version in 1-D. The multivariate KDE [6] applied to Monte Carlo collision tallies
results in the multivariate collision KDE
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where |H| is the determinant of the d × d symmetric positive definite bandwidth matrix. For
uncorrelated data, H is a diagonal matrix comprised of the elements h1, . . . , hd. The multivariate
kernel must still satisfy the basic kernel properties:∫

K(u)du = 1 and

∫
uK(u)du = 0. (19)

In order to have the kernel argument be a function of the number of MFPs between the collision
site and tally point the normalization coefficient C(x) needs to be determined such that the kernel
satisfies the properties in Eq. (19),∫

C(x)K

(
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[
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∫ x
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Σt(x
′)dS

])
dx = 1, (20)

where Xn represents the location of the tally point, x represents the collision location, and Ω is a
unit vector depicting the angle between the collision site and tally point projected onto the Cartesian
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axes. The quantity in brackets, Ω
∫ x

Xn
Σt(x

′)dS, is a vector describing the number of MFPs between
the tally point and the collision site in x, y, and z. Finding a coefficient C(x) such that Eq. (20) is
satisfied begins with examining the first kernel property in units of space:∫

1
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Changing this integral to spherical coordinates, shifting the system so it is centered about rn, and
applying a change of variables v = r yields∫ 1
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Another substitution is performed to change the kernel argument to be the number of MFPs between
the collision site and tally location: let
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Equation (24) provides insight into producing normalization coefficients for the multivariate MFP
KDE. The normalization coefficient C(x) is found by equating the integrands of Eqs. (24) and (20)
in spherical coordinates, thus yielding
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The quantity
(∫ r

0
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)
/r is the average cross section between the tally point and collision

site, and does not cause instabilities when it is evaluated near r = 0. Switching back to Cartesian
coordinates, we get the d-dimensional normalization coefficient
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Using this normalization coefficient, the multivariate MFP KDE is defined as
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The normalization coefficient defined for the multivariate MFP KDE in Eq. (27) is identical to that
obtained using the MFP KDE defined using a product of univariate kernels in Eq. (16). The only
difference between the two equations is the shape of the kernel function. In 2-D, the kernel function
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in Eq. (27) has a support region defined by an ellipse while the support region of the kernel function
in Eq. (16) is defined by a rectangle. As such, the two estimators should produce similar results, as
is demonstrated in the results section.

While the MFP KDE accurately accounts for material heterogeneities and severe cross section
differences, it adds another factor of complexity when computing a particle event’s contribution to
the score at a tally point by requiring knowledge of the number of MFPs between the particle event
and a tally point. Not only does this preclude the use of the track-length MFP KDE, but it increases
the computational burden of the KDE. To reduce this computational burden, an approximation to
the MFP KDE was developed that does not require the calculation of the exact number of mean
free paths between the particle event and tally point. This approximate MFP KDE (aMFP KDE)
estimates the number of MFPs between a particle event and a tally point by only using the cross
section at the tally point to compute the number of MFPs between the tally point and particle event.
The aMFP KDE for a reaction rate r is defined as
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This aMFP KDE can be thought of as the distance-based KDE in Eq. (2) with the bandwidth being
modified by the inverse of the total macroscopic cross section of the material that the tally point
resides in.

While the aMFP KDE and MFP KDE perform well in 1-D problems, spikes occur in 2-D problems.
These spikes occur when a neutron undergoes a collision at resonance energies. With the bandwidth
being modified by the inverse of the total macroscopic cross section, a collision at resonance
energies will reduce the support region of the kernel to a localized area. Since the kernel function
must integrate to 1, a large score is contributed to a small area. This results in spikes occurring in
2-D problems, where the result at one tally point may be twice that of the neighboring tally point
less than a millimeter away. These spikes will be demonstrated in the 2-D portion of the results
section.

Currently there exists no appealing way to handle these spikes. One method is to specify a minimum
bandwidth such that if the ratio of h/Σt is below some user-specified hmin then the MFP kernel
reverts to a distance-based kernel with h = hmin. This works well for areas away from material
interfaces, but it causes a bias at material interfaces whose magnitude is dependent on the value of
hmin [7]. Another method is to use another form of the aMFP KDE, termed the fractional aMFP
KDE, defined as
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The motivation for the fractional aMFP KDE comes from the MFP KDE working well in 1-D tallies
where the normalization coefficient is one factor of the macroscopic total cross section. Modifying
the method for adjusting the spatial bandwidths in multiple dimensions such that the normalization
coefficient is just one factor of the macroscopic total cross section effectively handles the spikes
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seen in 2-D tallies. However, this fractional aMFP KDE also produces a bias at material interfaces.
For problems demonstrated in this paper, this bias is less than 1% for fission reaction rates and less
than 8% for absorption reaction rates. While fractional powers of the cross section do not often
appear in the transport equation, it is important to note that this alternate form of adjusting the
bandwidth does not affect the physics of the simulation; it is just an alternative form of defining an
adaptive bandwidth.

3 GPU ACCELERATION

3.1 Motivation for GPUs

Graphics processing units are commonly found on high performance computing (HPC) machines as
a means of increasing performance without adding additional compute nodes. While it is difficult
for existing Monte Carlo neutron transport codes to take advantage of GPUs without re-writing large
portions of the code, it is possible to leverage GPUs through heterogeneous computing. Rather than
use GPUs for the bulk of the transport routine, it is possible to export the compute-intensive portions
of the Monte Carlo algorithm onto GPUs. For KDEs, it is not unlikely for the bulk of the run time
to be spent on the tally process. Significantly more floating-point operations are required for KDEs
for each collision or particle track than a histogram tally since a single event can contribute to the
scores of multiple tally points. As such, exporting the KDE onto the currently unused GPUs can
have significant improvements in run times.

3.2 GPU Algorithm

The GPU KDE algorithm is implemented using CUDA C and uses C Bindings to link the CUDA
C code to the main Fortran program in OpenMC. The algorithm is designed to hide the cost of
copying memory from the host (CPU) to the device (GPU) and have the device compute KDE
scores while the host continues transporting particles to collect tally information. Rather than tally
scores directly, the host collects information in one of two sets of sample arrays during the transport
process. The host calculates all the necessary cross section information and stores it as well as all
necessary collision information in the first set of sample arrays. Once the host has stored a pre-set
number of samples (50,000 collisions for this paper), the host copies the data asynchronously to the
device. The host then puts the KDE GPU kernel into the same CUDA stream as the memory copy
so the kernel will launch as soon as the memory has finished copying from the host to the device.
The host then immediately returns and begins transporting particles and populating a second set of
sample arrays.

Once the GPU has received the first array, it re-arranges data for better memory coalescence and the
KDE GPU kernel is launched. The kernel uses 64 threads per block, with one block per tally point.
Each block loops over the collisions in the sample array and computes each collision’s contribution
to the score at that tally point with each thread in a block handling a different collision. Once the
host has finished filling the second array, it asynchronously sends the data to the device and waits
until the first set of sample arrays has been received by the device before re-filling the first set of
arrays. This process repeats until the end of the batch, when the partial set of sample arrays is sent
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to the device for computation of scores. Once this has finished, the device sends back the tally data
to the host and the host uses the normal MPI processes for combining tally data across multiple
processors.

To increase the speed of this algorithm, a nearest neighbor list (NNL) was created on the GPU
similar to that on the CPU. Rather than loop over all collisions, the finite support of the KDE kernel
necessitates only looping over collisions that fall within one KDE kernel support region of the tally
point. The NNL uses a mesh to divide the simulation domain into bins equal to the maximum
kernel support length in each dimension. Each collision is assigned a key based on on its position in
the neighborhood mesh. The index of each particle (the particle’s initial location in the collision
array) is sorted based on its key value using the CUDA UnBound (CUB) library’s radix sort routine.
Collisions and their cross section information are then rearranged based on their key and index
values so that collisions occurring within the same neighborhood bin are located next to one another
in memory.

To improve performance of the NNL, a maximum support region was defined for the aMFP KDE.
The bandwidth for the aMFP KDE in Eq. (28) is effectively the bandwidth of the distance-based
KDE multiplied by the average cross section in that region divided by the cross section at the tally
point. Thus, if the cross section at a tally point is smaller than the average cross section in that
region then the bandwidth becomes larger. This has a large impact on the performance of the aMFP
KDE since the neighborhood list must now be searched beyond 1 bin in each direction. However, it
is possible to manipulate the bandwidth such that no more than 1 kernel support length is searched
in each direction. This is done by limiting the value of the cross section in the argument of the
kernel function and the normalization coefficient, denoted as Σt,k(x) in the following equation, such
that

Σt,k(x) =

{
Σt(x) Σt(x) > Σt

Σt otherwise
(30)

Using Eq. (30) ensures that if the cross section is below the average cross section for a region, the
aMFP kernel reverts to the distance-based kernel. This approximation does not adversely affect the
accuracy of the simulation, since it only limits the size of the bandwidth. Using a smaller bandwidth
rather than a larger bandwidth will reduce the bias in the simulation while increasing the variance
in the results. Thus, using Eq. (30) will increase the figure of merit for the aMFP KDE since
the decrease in run times is accompanied by only a slight increase in the variance of the solution.
Speedups obtained using the maximum support region are problem dependent, but a speedup of
2.1 and a figure of merit increase by a factor of 1.5 and 2.1 for the flux and fission distributions,
respectively, are obtained for the 2-D boxcell problem with 60×60 tally points. With the use of
the NNL with the maximum support region, each block of threads loop over the collisions in the
neighborhood bins within one support region of the tally point rather than over all collisions in
the sample array. The speedup obtained by using the NNL is again problem dependent, but for
120×120 tally points in the 2-D boxcell problem a speedup of 29 is obtained.
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3.3 GPU Optimization

Several improvements were made throughout the design of the GPU KDE compute kernel to reduce
compute times. Kernel compute times for the various optimization iterations for the 2-D boxcell
problem with 120×120 tally points are shown in Table I. The focal points for optimization were
driven by the GPU’s Single Instruction Multiple Thread (SIMT) architecture. The threads on a
GPU are broken up into groups of 32 threads called a warp with all threads in a warp executing the
same instruction. When a thread requires data from global memory, the warp reads either 32, 64, or
128 bytes of memory at once, depending on what the threads in the warp require. For example, if
each thread in a warp needs to operate on a single precision floating-point (4 byte) number, then the
warp needs to load in 128 bytes of memory. If the data the warp requires is sequentially located
in memory, then this data load is coalesced into one read from global memory. However, if the
data is randomly located in memory, then it could take up to 32 separate reads from global memory.
Since each read from global memory costs 400 to 800 cycles on GPUs with compute capability
2.x, minimizing the number of loads from global memory is crucial to achieving high performance.
While it is impossible to eliminate all reads from global memory, the GPU is capable of hiding some
of this latency through warp scheduling. When one warp requires memory from global memory
the streaming multiprocessor can switch to a different warp and execute arithmetic instructions on
those threads while the initial warp is loading data from global memory. This effectively hides the
latency, but only if there are a sufficient number of arithmetic operations on other warps. If there are
too many global memory reads for the amount of arithmetic required in each warp then the GPU
kernel is limited by the time it takes to read data from global memory. Thus, reducing the number
of global memory loads can have a significant impact on the performance of the algorithm.

One design decision that is impacted by the coalesced data reading pattern of GPUs is using an
array of structures (AoS) versus a Structure of Arrays (SoA). When using an AoS, the data of the
structure is placed sequentially in memory. If a thread only requires one piece of data from that
structure, then efficiency is lost based on the size of the structure. If the structure contains enough
data, then it is possible for each thread in the warp to require a separate read from global memory
when each thread is accessing a variable from sequentially located structures. The usual particle
data required to for tallies in a Monte Carlo code includes position, previous position, angle, energy,
cell, material, and weight. For example, if a KDE tally only requires the x position of a collision for
a given computation, then an extra 10 floating-point values and 2 integers exist in memory between
one collision’s x position and the x position of the collision accessed by the next thread. This
extra data between the x positions of particles causes extra reads from global memory, hampering
the code’s performance. This is eliminated by using a SoA. Rather than have an array of particle
structures, a single structure, called a particle list, is created that contains separate arrays for a
collision’s data. For example, the collision’s x, y, and z positions are all located in separate arrays.
Therefore, a calculation of the distance between a collision site and a tally point in the x direction
will only require two reads from global memory if the x positions are stored as double precision
floating-point values. Converting the collision data and cross section information into a SoA results
in a speedup of 40%.

Additionally, the shared memory on the GPU was leveraged to further reduce GPU kernel compute
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times. From the NVIDIA Programming Guide [8], “shared memory is expected to be a low-latency
memory near each processor core (much like an L1 cache).” Commonly used variables are copied
to shared memory and results for a tally point are collected by each thread in shared memory before
being reduced and added to the results array stored in global memory. Using shared memory results
in a 20% reduction of kernel compute times.

Another optimization is to change tally variables from double precision to single precision floating-
point values. Changing to single precision has two effects. First, it reduces the size of memory
required by each thread. Using the previous example where all threads in a block require the x
position of different collisions, using single precision data for the collision position allows all of the
x positions for the 32 threads in a block to be loaded in one read from global memory rather than the
two reads necessary with double precision data. Furthermore, the GPU has a faster clock speed for
single precision floating-point operations. For the NVIDIA Tesla M2090, the clock speed for single
precision floating-point operations is double that of double precision operations. This discrepancy
is even greater in newer graphics cards, with the NVIDIA Tesla K80 having 8.74 Tflops for single
precision floating point values versus 2.91 Tflops for double precision floating point values at peak
performance [9]. For the KDE GPU algorithm, switching from double precision to single precision
floating-point values further reduces the kernel compute time by approximately 30%. This reduction
in precision does not come at a cost in accuracy for the problems studied here as the single precision
results agree with those obtained using double precision to six significant digits.

Table I. KDE GPU kernel compute times for 2-D boxcell problem with 120×120 tally points
Design Iteration Kernel Compute Time (ms)

Array of Structures 56.3
Structure of Arrays 35.6

Shared Memory Improvements 27.8
Single Precision 19.6

Single Precision - Fractional MFP 20.2
Shared Memory Improvements without NNL 815

Future design implementations could improve the speed of both the CPU and GPU tally process. The
current GPU algorithm scales linearly with the number of tally points in the problem. This will limit
the algorithm’s application to larger, more complex problems. The algorithm could be improved
so that it also scales with tally point density rather than the number of tally points, similar to the
algorithm on the CPU. Another area for potential speedup is to reduce the number of cross sections
computed per collision. Since collisions in one material region can contribute to the score in another
material region, the cross sections of all materials are calculated after every collision. This could be
improved upon by using another neighbor list such that only cross sections of materials within one
support region of the collision are calculated. This would reduce the overhead for both the CPU and
GPU versions of the KDE tally. Additionally, it may be possible to export the track-length KDE
(TL KDE) to the GPU as well. While the TL KDE tally requires more computation per particle
track, it would be more difficult to sort the particle tracks for memory coalescence. As such, the TL
KDE is less well-suited for computation on the GPU.
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Another area for improvement is to use GPUs with CUDA compute capability 3.5 or higher. These
newer GPUs have a Multi Process Service (MPS) which allows commands sent to the device from
several MPI processes to be handled simultaneously. In earlier GPUs, including the M2090, each
MPI processes would have a separate CUDA context. Kernels from one CUDA context cannot run
on the GPU at the same time as kernels from another context. Thus, with the current algorithm
design, there is no way to have compute kernels overlap with one another. This inherently reduces
efficiency since a kernel is not using all of the GPU’s resources towards the end of the GPU kernel
calculation. The MPS fixes this problem by having all MPI processes under one context, handled
by the MPS. Thus, multiple kernels could be run at the same time, improving the efficiency of the
algorithm.

4 RESULTS

4.1 Analytic Solutions in 1-D Slab Geometry

The exponential distribution is commonly encountered in Monte Carlo neutron transport. To
test the capability of KDEs to capture distributions in neutron transport problems a simple 1-D,
homogeneous purely absorbing slab with a mono-directional mono-energetic beam of neutrons
incident on the left face of the slab was modeled. Since the underlying distribution is known, both
the MISE-optimal and MSE-optimal bandwidths from Eqs. (9-10) can be computed exactly from
the reference solution. Even though the flux distribution is being estimated, optimal bandwidths are
calculated using the collision reaction rate distribution. This is because bandwidths that are optimal
for estimating the scalar flux distribution are not equivalent to those used to estimate the collision
density. Since collision estimators contribute score to the scalar flux with samples obtained from
the collision density, it is reasonable to apply bandwidths that are optimized for the collision density
and apply weights to the resulting density to obtain estimates of the scalar flux. For a collision
density of f(x) = Σt(x)e−

∫ x
0 Σt(x′)dx′ , the MISE-optimal and MSE-optimal bandwidths are

h =

(∫ ∞
0

Σt(x)6e−2
∫ x
0 Σt(x′)dx′dx

)−1/5

N−1/5k
−2/5
2 , and

h(x) = Σt(x)−1e
1
5

∫ x
0 Σt(x′)dx′n−1/5k

−2/5
2 ,

(31)

respectively.

The flux distribution was estimated from 10,000 samples using a collision histogram tally, MISE
KDE tally, and MSE KDE tally. The total macroscopic cross section was set at 0.5 cm−1, with 100
histogram bins and tally points placed on a structured grid from 0-10 cm. The boundary kernel
method [10] is used at tally points with support regions that overlap the boundaries at x = 0 cm and
x = 10 cm. The tally results are shown in Fig. 1.

As seen in Fig. 1, the KDEs are better at capturing the underlying distribution, with the MISE KDE
and MSE KDE having similar performance. The L2 norms for the histogram, MISE KDE, and
MSE KDE are 0.1095, 0.0367, and 0.0368 respectively. Thus, KDEs are able to accurately capture
a basic distribution essential to neutron transport problems.
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Figure 1. Comparison between histograms, KDEs, and reference solution for exponential
distribution.

However, the smoothing capabilities of KDEs can be detrimental when the distribution being
estimated has a discontinuous first derivative, another common feature in nuclear engineering
problems. Extending the previous 1-D purely absorbing slab problem to include two materials with
different macroscopic cross sections showcases this issue. The 2-material slab problem consists of a
slab of material with Σt = 1 cm−1 ranging from 0 cm to 1 cm and a slab of material with Σt = 5
cm−1 ranging from 1 cm to 10 cm. The reference solution and results from the MISE KDE, MSE
KDE, and histogram are shown in Fig. 2. The results show that the MSE KDE and MISE KDE
accurately estimate the score away from the material interface, however they under-predict the score
near the material interface. The MISE KDE spreads the score too far into the optically-thick slab,
thus under-predicting the score at the interface and over-predicting the score in the optically-thick
slab. The MSE KDE under-predicts the score in the optically-thin slab more so than the MISE KDE,
however it is better able to capture the flux at the interface as well as the steeper gradient in the
optically-thick slab.

To better account for the material heterogeneity, a change of variables can be done so that the
distribution is smooth in the new phase space. Once a smooth distribution is obtained, it can be
transformed back to the original phase space to obtain the kink in the distribution at the material
interface. Let

u =

∫ x

0

Σt(x
′)dx′ and du = Σt(x)dx, (32)

Thus the underlying distribution becomes f(u)du = e−udu. The MISE-optimal and MSE-optimal
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bandwidths are now

h =
1

2
N−1/5k

−2/5
2

h(u) = eu/5k
−2/5
2 N−1/5,

(33)

respectively. The collision MFP KDEs for flux are defined as

φ̂(x) =
1

N

N∑
i=1

1

h
k

(∫ xi
x

Σt(x
′)dx′

h

)
. (34)

Figure 2 shows the reference solution and the estimates from the histogram, MISE KDE, MSE
KDE, MISE MFP KDE, and MSE MFP KDE. Figure 2 shows that the MISE MFP KDE and the

0.0 0.5 1.0 1.5 2.0
x (cm)

0.0

0.2

0.4

0.6

0.8

1.0

φ
(x

)

Ref.
Hist.
MISE KDE
MSE KDE
MISE MFP KDE
MSE MFP KDE

(a) Whole problem.
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(b) Close-up of material interface.

Figure 2. Comparison between histogram, MSE KDE, MISE KDE, MSE MFP KDE, MISE
MFP KDE, and reference solution for the heterogeneous 1-D slab test problem.

MSE MFP KDE both accurately capture the flux at the material interface. The MFP KDEs are
capable of capturing the discontinuous first derivative in the density due to their change of variable
in the kernel argument. Furthermore, the MFP KDEs are as accurate as the distance-based MISE
and MFP KDEs away from the material interface.

To further test these KDEs, a 1-D heterogeneous problem with a thin slab of strongly absorbing
material is modeled. The 3-material slab problem consists of a slab of material with Σt = 1 cm−1

ranging from 0 cm to 0.5 cm, a slab of material with Σt = 100 cm−1 ranging from 0.5 cm to 0.52
cm, and a slab of material with Σt = 0.5 cm−1 from 0.52 cm to 10 cm. This problem was run with
10,000 particles with 80 histogram bins and KDE tally points placed from 0 cm to 2 cm. The results
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(a) Whole problem.
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(b) Close-up of thin, strong absorber.

Figure 3. Comparison of KDE methods and histogram to analytical solution for a 1-D, 3-
material problem with a thin, strong absorber.

for this problem as well as a close-up of the results at the material interface with the number of bins
and tally points increased to 400 are shown in Fig. 3.

Figure 3 shows that the histogram estimate has significant variance throughout the majority of the
problem and the distance-based KDEs show substantial bias at the material interface with under-
prediction as large as 30% prior to the strong absorber and over-predictions over 400% after the
strong absorber. The distance-based KDEs spread the flux past the strong absorber, causing an under-
prediction in the flux prior to the strong absorber and an over-prediction after the strong absorber.
Conversely, the MFP KDEs show excellent agreement with the reference solution throughout the
problem with reduced variance compared to the histogram. Looking closer at the material interface
in Fig. 3b shows that the MFP KDEs accurately capture steep flux gradients through thin, strong
absorbers. Additionally, the MSE KDE accurately captures the steep gradient in the strong absorber
even though it produces poor estimates in neighboring materials near the interface and produces a
discontinuous distribution.

To showcase the potential utility of KDEs, the 3-material slab problem was run with 1000 particles
and 100 particles, the results of which are depicted in Fig. 4. Figure 4 shows that the MFP KDE
is able to capture the flux profile with significantly less variance than the histogram, even when
significantly fewer particles are run. Thus, KDEs show potential in obtaining global solutions in
problems that are under-sampled regardless of the desired resolution of the result.
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(a) 1000 Particles
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(b) 100 Particles

Figure 4. 1-D 3-material problem with 1000 and 100 particles.

4.2 1-D Slab With Thin, Strong Absorber

The transportation of scores across a strong absorber can also be seen in continuous energy k-
eigenvalue problems for the aMFP KDE. If the problem has a strong, thin absorber then the
collisions can “transport” scores across the strong absorber when the aMFP KDE is used, artificially
increasing the result on the other side of the strong absorber while decreasing the score locally
as was seen in the simple 1-group problems in Figs. 2-4. The problem is depicted in Fig. 5 and
is composed of two slabs of fuel with water between them with a 0.1 cm thick strong absorber
separated from the fuel with 10 cm of water in between. The fuel is UO2 and the absorber is
comprised of B4C with a fictitious density of 120 g/cm3. The density of the absorber was artificially
increased in order to create a problem that presents the previously described issues for the aMFP
KDE. The problem was run in a local version of OpenMC [11] with 100,000 particles per batch,
1000 batches with 60 inactive batches. Results were collected at 10,000 histogram bins placed
uniformly from 13 cm to 14 cm with KDE tally points placed at the center of the bins. Results for
the track-length MFP KDE and aMFP KDE and the histogram reference solution are shown in Fig.
6. The results for the collision KDE agree with the track-length KDE and are omitted for clarity.
Close-ups of the left edge of the strong absorber and the right edge of the strong absorber are shown
in Fig. 7.

Figures 6 and 7 show that the same issue occurs in the continuous energy problem, however it is
more localized to the region near the material interface. The inaccuracies caused by using the aMFP
KDE are more localized to the region around the strong absorber compared to the 1-D 1-group
results in Fig. 3 due to there being more samples used in this problem, causing a reduction in the size
of the bandwidth. While the flux is underpredicted before the strong absorber by as much as 25%
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Figure 5. Graphic depicting problem with a thin, strong absorber. Regions labeled 1, 2, and 3
contain water, fuel, and strong absorber, respectively. The slab widths are shown underneath
the geometry.
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Figure 6. Flux comparison between aMFP KDE, MFP KDE, and reference histogram near
the strong absorber of the thin, strong absorber problem.

and overpredicted after the strong absorber by approximately 6%, the aMFP KDE correctly predicts
the flux inside the strong absorber. The MFP KDE, on the other hand, is capable of capturing the
steep gradients without any loss in accuracy.

It is possible to adjust the aMFP KDE such that it is better at capturing the distribution in regions
near strong absorbers. A reduction in the bandwidth is necessary to prevent the score from spreading
across the strong absorber. This can be done by using the maximum cross section in the problem to
calculate the number of MFPs between the collision site and tally point in the water surrounding the
strong absorber. This results in a kernel defined as

k(u)du =
max(Σt(x))

h
k

(
max(Σt(x))(X − x)

h

)
dx. (35)

Figure 8 shows the results from the problem with the thin, strong absorber, but the kernel in the
KDE is defined using Eq. (35).

Figure 8 shows that using the maximum cross section in the problem to compute the number of
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(a) Left side of strong absorber
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Figure 7. Comparison between TL MFP KDE, TL aMFP KDE, and histogram reference
solution for the thin, strong absorber problem near the material interface.
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(b) Close-up of left side of strong absorber.

Figure 8. Flux comparison between aMFP collision and track-length KDE using the kernel
described in Eq. (35) and the reference histogram for the thin, strong absorber problem.

MFPs between the particle track or collision site and the tally point produces results with reduced
bias near the strong absorber. The maximum bias is approximately 1.5% at the left edge of the
strong absorber, pictured in Fig. 8b. However, this reduction in bias comes at a cost of increased
variance. Since the kernel described in Eq. (35) is used at every tally point in the problem, the
relative uncertainty in the KDE solution in the water increases by a factor of 6 to 9. While it is
possible to restrict the use of the alternate kernel to regions near the strong absorber, those regions
will still have increased variance. It is important to note that while the aMFP KDE fails to capture
the flux at material interfaces in these 1-D heterogeneous problems with strong, thin absorbers,
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Table II. Cross sections for one-group problems.
Σt Σa Σs Σf ν

Moderator 3.264 00× 10−1 9.792 00× 10−2 2.284 80× 10−1 0 0
Fuel 6.528 00× 10−1 1.566 72× 10−1 4.961 28× 10−1 1.305 60× 10−1 2.7
Absorber 9.792 00× 10−1 9.652 80× 10−1 1.392 00× 10−2 0 0

most problems in neutron transport do not contain materials that produce flux gradients as severe as
this. The problem with a strong, thin absorber is shown as a potential limitation of the aMFP KDE,
and the user should be aware that it exists.

4.3 2-D One-Group

The multivariate MFP KDE is tested in a 2-D 1-group pincell problem and is compared against a
reference histogram and the 2-D MFP KDE derived for 1-D slab geometry. The pincell is comprised
of a cylinder of UO2 with radius 0.603 cm surrounded by water with a lattice pitch of 1.875 cm
and reflecting boundary conditions. The boundary kernel method is used at tally points whose
kernels overlap with the external boundaries, and is used for all other problems detailed in this
paper. One-group cross sections used in this problem are shown in Table II. Separate KDE regions
are defined for the fuel and water. Flux results were collected on a structured grid with 40 histogram
bins in each dimension with KDE tally points placed at the center of the histogram bins. The
simulations were run with 660 batches, 60 inactive batches with 60,000 particles per batch. The
fuel and water are defined as separate KDE regions. The multivariate MFP KDE reverts to using a
product of univariate kernels in order to use the boundary kernel method for tally points within one
support region of the problem boundary. This does not affect the accuracy of the multivariate MFP
KDE results as there are no material interfaces in that region. The results obtained using the 2-D
multivariate MFP KDE in Eq. (27) are compared to those obtained using the MFP KDE formulated
as a product of univariate kernels via Eq. 16 in Fig. 9. The difference between the results in units of
mean free paths is pictured on the left while the C/E values, where C represents the multivariate
MFP KDE values, are shown on the right.

The first thing to note in Fig. 9 is that the two estimators agree exactly at tally points within one
kernel support region of the external boundary since they both use the boundary kernel method
with the multivariate kernel expressed as a product of univariate kernels in each dimension for tally
points in that region. Additionally, Fig. 9 shows that there is little difference between the two
versions of the 2-D MFP KDE, with the maximum difference being less than 0.1%. This is expected,
since the normalization coefficient for the kernel used in Eq. (16) is the same as that of the kernel
function used in Eq. (27). Even so, there is a pattern of error between the two results, with the
two estimators disagreeing by 1σ around the material interface. The kernel functions have slightly
different support regions, with the multivariate MFP KDE in Eq. (27) being radially symmetric
while the MFP KDE in Eq. (16) is symmetric over the coordinate axes. As such, the MFP KDE in
Eq. (16) does not integrate to 1 in geometries with non-planar surfaces, causing this pattern of error.

The C/E comparison and the difference between the multivariate MFP KDE and the reference
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Figure 9. Comparison of flux results obtained using the multivariate MFP KDE in Eq. 27 and
the MFP KDE defined as a product of univariate kernels in Eq. 16 for a one-group pincell
problem.

track-length histogram tally in units of the number of standard deviations are shown in Fig. 10.
Figure 10 shows that the multivariate MFP KDE contains a slight bias throughout most of the
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Figure 10. Comparison of flux results obtained using the multivariate MFP KDE and the
reference track-length histogram for a one-group pincell problem.

problem, with results disagreeing by as much as 18σ. While the multivariate MFP KDE is biased
compared to the histogram, the maximum difference between the results is less than 1.5% at any
point. This bias comes from two sources. First, the comparison is between point-wise quantities and
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volume-averaged quantities. In regions where the gradient changes, like in the water surrounding a
fuel pin, comparing the value at the center of a bin to the average quantity in the bin becomes a
poor approximation. Additionally, the KDE results naturally contain a bias by smoothing the results
and spreading scores from regions of high concentration to those of low concentration. This is seen
through the over prediction of the score in the water surrounding the fuel in Fig. 10. This bias is
less apparent in continuous energy problems since the flux distributions have shallower gradients in
continuous energy pincell problems. However, it is still unclear as to why the KDE overpredicts the
score at every point in this problem compared to the collision histogram tally. Even so, with results
that disagree by less than 1.5% at any point, the multivariate MFP KDE still obtains a suitably
accurate representation of the underlying distribution.

4.4 2-D Continuous Energy

To test the accuracy of the aMFP KDE in continuous energy, the aMFP KDE is used to estimate
flux and reaction rates in a 2-D boxcell problem. The problem consists of a square of 3% enriched
UO2 with a side length of 1.25 cm surrounded by water with a lattice pitch of 1.875 cm with
reflecting boundary conditions. Separate KDE regions are defined for the fuel and each slab of
water surrounding the fuel, making a total of 5 KDE regions for the 2-D boxcell problem. Figure
11 shows the fission and absorption reaction rate distributions obtained from the aMFP KDE on
a structured mesh of 60×60 tally points placed over the problem domain with the simulation run
using 200,000 particles per batch, 200 batches and 100 inactive batches. As seen in Fig. 11, the
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Figure 11. Fission and absorption reaction rates estimated using aMFP KDE for the 2-D
boxcell problem.

absorption reaction rate contains spikes where the result at one tally point is over twice that at a
neighboring tally point less than a millimeter away. However, the fission reaction rate does not
suffer from these spikes. This difference is due to the behavior of the absorption cross section in
U-238 and the fission cross section in U-235. While the fission reaction rate in U-235 does exhibit
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resonances, the maximum resonance is approximately 685 barns at 8.78 eV. Furthermore, the fission
cross section at 0.4 eV is approximately 115 barns and follows a 1/v behavior. As such, the fission
distribution has appreciable scores from both fission resonances and fission in the thermal energy
range. On the other hand, The absorption reaction rate in U-238 exhibits several large resonances,
the largest being approximately 7,000 barns at 6.67 eV. Since the largest absorption resonance
is an order of magnitude above that of the fission resonance, collisions at absorption resonances
contribute scores that are 100 times larger over an area that is 100 times smaller than collisions at
fission resonances. This, coupled with the low thermal absorption cross section of less than 4 barns
over the thermal energy range, means that the contributions to the absorption reaction rate density is
dominated from collisions at resonances.

For example, for the 2-D boxcell problem with 200,000 collisions per batch with the bandwidth
estimated using data from the previous batch, the bandwidths and support lengths in the fuel are
approximately 0.33 mm and 0.74 mm, respectively, in each direction with an average cross section
of 0.44 cm−1. When an absorption resonance is encountered where the total cross section is 7,000
barns, the macroscopic cross section for UO2 is approximately 161 cm−1, thus reducing the spatial
bandwidth and support length to 9 × 10−4 mm and 2×10−3 mm, respectively, in each direction
with a KDE normalization coefficient of approximately 1.2×108 cm−2. If the total cross section
is equal to the absorption cross section in the resonance, then this scenario would allow for one
collision to contribute a score of over 107 cm−2 to the 2-D reaction rate density at a single tally
point with no score being contributed to any neighboring tally point. For 2×107 active neutrons in a
tally, a single collision at a resonance within the support range of a tally point can increase the final
2-D absorption reaction rate density of a tally point by over 0.5 cm−2. This is seen directly in Fig.
11, where the reaction rate density at several tally points is over twice that of their neighboring tally
points.

To mitigate this problem, the fractional aMFP KDE was created in Eq. (29). In the scenario
previously described, using the fractional aMFP KDE increases the support length to 0.17 mm
in each dimension and reduces the normalization coefficient to 17,500 cm−2. This effectively
eliminates the spikes seen in the absorption distribution, however it introduces additional the bias
at the material interface. To estimate this bias, the fractional aMFP KDE is compared to a TL
histogram tally on a 480×480 mesh using 200,000 particles per batch with 2,000 batches and 100
inactive batches. The flux, fission, and absorption reaction rates and the C/E (KDE/histogram)
results are shown Figs. 12-14, respectively.

Figures 12-14 show that the fractional aMFP KDE is capable of capturing distributions without
spikes. However, some bias exists in the fission and absorption reaction rates. While the maximum
difference between the flux distributions is less than 0.4%, the maximum difference in the fission
distribution is 1% and the maximum difference in the absorption distribution is 8%. While some
of this bias is due to comparing a point-wise quantity to a volume-average quantity, a portion of it
is also due to the use of the fractional aMFP KDE. Increasing the resolution of the histogram at
the material interface would decrease this error, however it would not eliminate it. Further study is
required to determine a more accurate estimate of the bias introduced from the fractional aMFP
KDE.
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Figure 12. Flux estimated from fractional aMFP KDE and the C/E comparison with a track-
length histogram tally.
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Figure 13. Fission distribution estimated from fractional aMFP KDE and the C/E compari-
son with a track-length histogram tally.

4.5 GPU Acceleration of 2-D Problems in Continuous Energy

2-D Boxcell

Since the performance of the GPU and CPU algorithms are problem-dependent, several problems
were tested and their speedup analyzed. The first problem analyzed is the 2-D boxcell problem
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Figure 14. Absorption distribution estimated from fractional aMFP KDE and the C/E com-
parison with a track-length histogram tally.

detailed in Section 4.4. Results are obtained using the fractional aMFP KDE, collision histogram,
and track-length histogram on a structured grid of 60×60 tally points and bins with 200,000
particles per batch, 200 batches and 100 inactive batches. The fractional aMFP KDE results are
computed using two Tesla M2090 GPUs with 16 MPI processes on two eight-core Intel Xeon
E5-2670 processors while the histogram results use 16 MPI processes on the CPU. The fission
distributions obtained using the fractional aMFP KDE and the collision histogram are shown in
Figure 15. Figures Of Merit (FOM) are calculated using

FOM =
1

1
N

∑N
i

(
σi
φi

)2

T
, (36)

where N is the number of histogram bins or tally points, σi/φi is the relative uncertainty at tally
point or bin i, and T is the time spent in the active batches. The ratio of the FOM for the fractional
aMFP KDE to the histogram estimators for the flux, fission, and absorption reaction rates in the 2-D
boxcell problem are given in Table III.

Table III. Ratios of the FOM for the fractional aMFP collision KDE to the collision and
track-length histogram for the 2-D boxcell problem.

FOM Ratio Flux Fission Absorption

KDE/Col Mesh 5.7 10.1 1.2
KDE/TL Mesh 0.28 0.80 0.36

Table III shows that the fractional aMFP KDE shows a favorable FOM compared to the collision
histogram for all distributions, while the track-length histogram still has a superior FOM compared
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Figure 15. Fission reaction rates obtained using the fractional aMFP KDE and the collision
histogram.

to the fractional aMFP collision KDE. The fission distributions in Fig. 15 show that the fractional
aMFP KDE produces a smoother distribution compared to the collision histogram tally. This
smoother distribution has lower variances, thus causing the improved FOM. Also noted in Table
III is that the FOM changes for each distribution. This is because the distributions themselves
change. The absorption distribution shows worse performance since the majority of the score is
concentrated at the material interface due to resonance absorptions. As discussed previously, when
a neutron undergoes a collision at a resonance the bandwidth for the KDE decreases. From Eq.
(8), reducing the bandwidth increases the variance. Thus, the areas with the largest scores in the
absorption distribution will have increased variances due to this reduction in bandwidth for the
most important collisions. The difference between the FOM for the flux and fission distributions
can be seen in the ratio of the relative uncertainties between the fractional aMFP KDE results and
the collision histogram in Fig. 16. As seen in Fig. 16, the ratio of the relative uncertainty in the
fission distribution is lower on average compared to the flux distribution for non-zero scores. This
is due to how the KDE regions are prescribed. The bandwidth in each KDE region is dependent
upon the standard deviation of the flux distribution via Eq. (11). Splitting a given distribution
into smaller KDE regions will generate smaller standard deviations, thus reducing the size of the
bandwidth. As such, the water cells in the 2-D boxcell problem generally have smaller bandwidths
than the distribution in the fuel, causing increased variance in the water compared to the fuel and
thus causing the fission distribution to have a better FOM than the flux distribution.

Speedups obtained by using the GPU are computed by comparing run times obtained using the
GPUs to run times obtained with an equivalent amount of MPI processes without using GPUs. For
the 2-D boxcell problem with 60×60 tally points and 16 MPI processes, using the GPUs results in a
speedup of 3.9. For the same problem with 120×120 tally points, a speedup of 9.3 is achieved.
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Figure 16. Ratio of relative uncertainties between the fractional aMFP KDE and the collision
histogram tally for the 2-D boxcell problem.

Assembly of Boxcells

To test the fractional aMFP KDE and the GPU-accelerated code on a more difficult problem, a
quarter-assembly of 16×16 boxcells was modeled. Again, axis-aligned material interfaces are
used in order to compare reaction rates to those obtained using histogram tallies. The problem
is depicted in Fig. 17 and consists of squares of 3% enriched UO2 with side length 0.78 cm and
0.6 mm thick Zircaloy 4 cladding surrounded by water with a lattice pitch of 1.26 cm. Absorbers
of B4C replace several of the fuel squares and are shown in black in Fig. 17. Two separate KDE
regions are defined for each boxcell: one for the fuel or absorber and another for the surrounding
cladding and water. The simulation was run with 200,000 particles per batch, 2,000 total batches
with 100 inactive batches. Results are compared to a collision histogram tally and are obtained on
a 168×168 structured grid of bins with tally points placed at the center of the bins. Flux, fission,
and absorption reaction rates for the KDE tally as well as the C/E comparison with the collision
histogram are shown in Figs. 18-20. Figures 18-20 show that the fractional aMFP KDE agrees with
the collision histogram throughout most of the flux and fission distributions, however significant
disagreement does occur in the absorption distribution. The flux comparison in Fig. 18 shows a
maximum difference of 4% occurring in the area around the control rod in the upper left corner
where the flux is at a minimum while the majority of the remaining distribution agrees within 1%.
It is hypothesized that this disagreement originates from the strong flux gradients around the control
rods. Since there is only one mesh bin within the cladding, a strong gradient may strongly influence
the flux and reaction rate comparison between the point-wise KDE result and the volume-average
histogram result within the cladding. The fission distribution comparison in Fig. 19 shows a
maximum difference of 2.2% with no pattern of error. It is likely that this error would be reduced by
increasing the number of active particles to reduce uncertainties. The absorption distribution in Fig.
20 shows significant differences, with some regions as high as 14%. Even so, the error is limited to
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Figure 17. Depiction of the assembly of boxcells.
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Figure 18. Flux estimated from fractional aMFP KDE and C/E comparison for assembly of
boxcells.

the cladding and water surrounding the fuel and control rods. This error may be a direct result of
modeling the water and cladding in a boxcell as a single KDE region. This effectively increases
the bandwidth in these regions, thus increasing the bias in the estimator. Further analysis will be
performed to determine the exact cause of this discrepancy.

Using 16 MPI processes, a speedup of 13.8 is obtained by exporting the KDE tally to the GPUs.
With the use of the GPUs, KDE to collision histogram FOM ratios of 2.6, 1.0, and 0.5 are obtained
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Figure 19. Fission estimated from fractional aMFP KDE and C/E comparison for assembly
of boxcells.
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Figure 20. Absorption estimated from fractional aMFP KDE and C/E comparison for assem-
bly of boxcells.

for the flux, fission, and absorption distributions, respectively. The decrease in FOM for the fission
distribution compared to the flux distribution is due to using a single KDE region for the water
and cladding regions in each boxcell. This increases the bandwidths used for tally points in the
water and clad, thus decreasing the variance in those regions compared to that in the fuel regions.
Additionally, FOM are lower for the assembly of boxcells versus the single boxcell problem due
to adding Zircaloy 4 and B4C to the list of materials. The KDE calculates all cross sections in the
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problem after every collision, so adding more materials will result in longer run times. For the
assembly of boxcells problem, approximately 75% of the active tally time spent looking up and
storing cross sections in all materials after every collision. Future work will include reducing the
burden of looking up cross sections for scoring to materials beyond where the collision occurred.

Assembly of Pincells

To demonstrate the capability of the fractional aMFP KDE to capture reaction rates in geometries
with non-planar, a quarter-assembly of pincells, depicted in Fig. 21, was modeled using the same
layout as the assembly of boxcells. Each pincell is comprised of a cylinder of 3% enriched UO2

with a pin diameter of 0.7 cm and a lattice pitch of 1 cm. One KDE region is assigned to each
pincell. The simulation was run with 200,000 particles per batch, 2,000 total batches with 100
inactive batches. Reference histogram results were collected on a structured grid of 120×120 bins
with KDE tally points placed at the center of each bin. The flux obtained using the fractional aMFP
KDE and its C/E comparison to a collision histogram tally is shown in Fig. 22 while the fission and
absorption reaction rates are shown in Fig. 23. Figure 22 shows that the fractional aMFP KDE is

Figure 21. Depiction of the assembly of pincells.

capable of accurately capturing the flux distribution in geometries with non-planar surfaces with
differences of less than 1% for all tally points when compared to a collision histogram tally. While
differences do exist in the flux around the absorbers, this is likely due to comparing point-wise
KDE quantities to volume-average histogram quantities in regions where the gradient of the flux is
changing and not a true fault of the KDE. Additionally, the FOM for the fractional aMFP KDE is
3.3 times higher than that of the collision histogram tally. Furthermore, smooth distributions are
obtained for the fission and absorption distributions, shown in Fig. 23.

Speedups and runtime statistics for the assembly of pincells with 120×120 tally points and 240×240
tally points are given in Tables IV and V, respectively. Table IV shows that the speedup from
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Table IV. Simulation speeds for 2-D pincell assembly problem with 120×120 tally points.
N MPI Proc. Active Inactive Speedup vs N MPI Proc.

GPU Single Precision

1 10063 17341 1.641599
2 19410 33513 1.682267
4 37008 63657 1.858391
8 66971 117209 1.977529
16 117615 221870 1.787326

GPU Double Precision

1 10015 17304 1.633768
2 19491 33704 1.689288
4 36833 63902 1.849603
8 66918 118339 1.975964
16 116889 221237 1.776294

CPU Double Precision

1 6130 17555 -
2 11538 34157 -
4 19914 64529 -
8 33866 119041 -
16 65805 242964 -

Table V. Simulation speeds for 2-D pincell assembly problem with 240×240 tally points.
N MPI Proc. Active Inactive Speedup vs N MPI Proc.

GPU Single Precision

1 11591 17560 4.288198
2 22357 34106 4.657708
4 41818 64269 4.728403
8 74568 116962 5.086147

16 98245 227637 3.728605

GPU Double Precision

1 11448 17676 4.235294
2 22252 34073 4.635833
4 41442 64897 4.685889
8 73157 120479 4.989905

16 71824 227637 2.725872

CPU Double Precision

1 2703 17676 -
2 4800 34073 -
4 8844 64897 -
8 14661 120479 -

16 26349 227637 -
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Figure 22. Flux distribution from the fractional aMFP KDE and C/E comparison to collision
histogram for the assembly of pincells.
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Figure 23. Fission and absorption distributions estimated from fractional aMFP KDE for the
assembly of pincells.

using the GPU algorithm for 120×120 tally points is relatively constant versus the number of MPI
processes, with a final speedup of 1.8 with 16 MPI processes. This speedup is lower than that of
previous problems due to the lower tally point density. The maximum speedup achievable by using
GPUs occurs when the entire KDE tally can be computed on the GPUs without the CPU having
to wait on the GPU. Thus, if the KDE tally is less expensive on the CPU, then the GPU speedup
will be smaller as long as the GPUs are not already saturated with work. The relatively constant

Page 30 of 33



GPU Acceleration of MFP KDEs

speedup as well as the similar speedups obtained by the single and double precision GPU tallies are
an indication that each GPU is able to process all tally arrays sent to it before the CPU sends the
next batch of tally arrays. In this scenario the KDE tally is essentially free with the exception of
looking up additional cross sections after every collision. This lookup of additional cross sections is
the source of the majority of the discrepancy between the active and inactive particle rates in Table
IV. Table V shows that increasing the tally point density results in an increase in speedup to 3.7 for
16 MPI processes and single precision GPU tallying. The decline in speedup when switching from
8 to 16 MPI processes as well as the increase in speed up when switching from double to single
precision shows that the GPUs are saturated with work when using 16 MPI processes. In fact, the
active particle calculation rate decreases when switching from 8 to 16 MPI processes with double
precision GPU tallying. This shows that there is a maximum problem complexity that the GPUs are
capable of handling before adding more processors per GPU becomes detrimental.

5 CONCLUSIONS

A new multivariate MFP KDE formulation that is capable of handling geometries with non-planar
surfaces without approximation has been introduced. Even though this multivariate MFP KDE
uses the same normalization coefficient as that of the 2-D MFP KDE formed using a product of
univariate kernels, there is a slight bias in the results that is eliminated by using the multivariate
MFP KDE. Even with this new multivariate MFP KDE formulation, the approximate MFP KDE
is still attractive as a means of reducing computation time by eliminating the need to conduct ray
tracing. However, spikes appear in results of the multivariate MFP KDE and the aMFP KDE in
2-D tallies in continuous energy. The use of the fracitonal aMFP KDE eliminates these spikes,
however it also introduces additional bias at material interfaces. Even so, the fractional aMFP KDE
is capable of capturing the fission distribution in a quarter-assembly problem with less than 2.2%
error at any tally point.

Additionally, the fractional aMFP KDE tally was successfully accelerated using GPUs. Speedups
are problem dependent, ranging from 1.8 to 13.8 for the problems described in this paper. Figures
of merit for the fractional aMFP KDE are generally favorable compared to collision histogram
tallies for flux and fission distributions, however the fractional aMFP KDE may not be favorable for
absorption distributions. Also, the track-length histogram tally still produces better figures of merit
for all distributions than the fractional aMFP KDE with GPU acceleration. This is not surprising, as
the aMFP KDE requires cross section information for materials beyond where the collision occurred.
Furthermore, the tallies thus far have been conducted on a structured mesh; extending applications
to an unstructured mesh would increase the histogram tally complexity without affecting the KDE
tally. Thus, its possible for the fractional aMFP KDE to have preferable figures of merit for tallies
on an unstructured mesh.

Furthermore, the MFP KDE and aMFP KDE were tested in 1-D problems with thin, strong absorbers.
The MFP KDE is capable of capturing the sharp change in flux gradients in problems with thin,
strong absorbers, however the aMFP KDE failed to capture the flux distribution near the strong
absorber in these problems. An alternative form of the aMFP KDE that uses the maximum cross
section in the problem to moderate the bandwidth was created that allows the aMFP KDE to capture
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these sharp changes in flux near thin, strong absorbers, reducing the error from 25% to 1.5% at a cost
of increased variance in the estimate of the distribution outside of the strong absorber. Even so, the
problem modeled with a thin, strong absorber in continuous energy is an unphysical representation
of a reactor physics problem, and this issue has not appeared in more physical reactor physics
problems studied thus far.

Future work includes creating a MFP KDE that is capable of handling multivariate densities without
creating spikes. One potential solution is to use a MFP KDE that is specific to the geometry around
the tally point such that only one factor of the cross section is used in the normalization coefficient.
Furthermore, the GPU algorithm will be modified to scale with tally point density rather than
linearly with tally points. Additionally, the feasibility of exporting track-length KDE tallies to the
GPU will be investigated.
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