
LA-UR-15-25143
Approved for public release; distribution is unlimited.

Title: MCNP6 Unstructured Mesh Tutorial Using Abaqus/CAE 6.12-1

Author(s): Joel A. Kulesza
Roger L. Martz

Intended For: General Reference / MCNP Website

Issued: July 9, 2015

Disclaimer: Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC
for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this article, the
publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or
to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed
under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher’s right to
publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Abstract

The purpose of this report is to provide a tutorial for nuclear engineers, who have some experience

with 3-D design software, in how to create an MCNP6 unstructured mesh model. This is not an exhaus-

tive review of 3-D CAD/CAE design tools and techniques, but rather is intended to provide sufficient

instruction for an engineer to proceed through the steps necessary to create an unstructured mesh model

using the current Abaqus CAE tool. This report is suitable for users who have Abaqus available to create

an unstructured mesh input file from scratch and for users who have an Abaqus-formatted mesh file and

need to perform the final steps of preparation prior to MCNP6 execution.

The reader is taken through the process of creating Abaqus Parts (the fundamental geometric building

block within Abaqus), assigning element sets to the Parts, defining materials, meshing the Parts, and

combining the Parts into an Assembly for use in MCNP6. This document has screenshots to accompany

the discussion and the major steps are also captured in Python scripts (which can be directly used within

Abaqus) to reproduce the work described herein. Utilities provided with MCNP6 are used to build a

skeleton input file from the Abaqus mesh file and an example, completed, input file is provided. Finally,

the calculation is executed and the results are examined (briefly).

LA-UR-15-25143 1 of 46

Contents

1 Introduction 4

2 Abaqus Operations 5

2.1 Running Abaqus Python Macros . 5

2.2 Geometry Creation . 5

2.3 Part Cutting Operations . 10

2.4 Assignment of Element Sets (elsets) . 14

2.5 Definition of Materials . 15

2.6 Mesh Parts . 17

2.7 Create Assembly . 21

2.8 Write Abaqus Mesh File . 22

3 Pre-MCNP6 Execution Operations 23

4 MCNP6 Execution Notes 24

5 Results Processing 24

5.1 Geometry Visualization . 24

5.2 Unstructured Mesh Results Visualization . 25

6 Conclusions 29

References 30

Appendix A Abaqus Python Macros 31

A.1 01_Rename_Model.py — Rename Model For Convenience . 32

A.2 02_Create_Paraffin_Block.py — Create Cube to Form Basis of Paraffin Block 33

A.3 03_Create_Cutter.py — Create Conic Volume to Subtract from Paraffin Block 34

A.4 04_Cut_Paraffin.py — Perform ‘Cut’ Operation on Paraffin Block with Cubic Volume . . . 35

A.5 05_Create_Graphite.py — Create 20 cm Graphite Shield 36

A.6 06_Create_Air.py — Create 5× 5× 5 cm Air Detector Region 37

A.7 07_Assign_Elsets.py — Assign Element Set Identifiers to Parts 38

A.8 08_Create_Materials.py — Create Material Names & Assign Densities 39

LA-UR-15-25143 2 of 46

A.9 09_Partition_Paraffin.py — Partition Paraffin to Permit Hexahedral Meshing 40

A.10 10_Mesh_Paraffin.py — Seed and Mesh Paraffin with Hexahedral Elements 41

A.11 11_Mesh_Graphite_Air.py — Seed and Mesh Graphite & Air with Hexahedral Elements . . 42

A.12 12_Create_Assembly.py — Create Assembly from Individual Parts 43

A.13 13_Create_Job.py — Create Abaqus Mesh Input File from Assembly 44

Appendix B MCNP6 Input File 45

LA-UR-15-25143 3 of 46

1 Introduction

The purpose of this report is to provide a tutorial for nuclear engineers, who have some experience with 3-D

design software, in how to create an MCNP6 unstructured mesh model. This is not an exhaustive review of

3-D CAD/CAE design tools and techniques, but rather is intended to provide sufficient instruction for an

engineer to proceed through the steps necessary to create an unstructured mesh model suitable for use in

MCNP6. Furthermore, this report is intended to complement Refs. 1, 2; if the reader is not familiar with

those documents, he or she is strongly encouraged to review them to better understand the unstructured

mesh capabilities (and limitations) within MCNP6.

In order to motivate this tutorial, one of the Ueki fixed-source shielding benchmark experiments discussed

in Ref. 3 (which is subtly different than the benchmark experiments described in Ref. 4) is modeled. This

benchmark was selected for use herein because it is characterized by simple but non-trivial geometry and

continues to be used to validate both transport methods (Ref. 5) and nuclear data (Ref. 6), and is thus

well-studied and understood. For the purposes of this document, a 20 cm thick graphite shield is required.

To the left, a paraffin block with a conical cutout houses an isotropic point Cf-252 source at (approximately)

the center. To the right, two tallies are used: a volumetric track-length (F4 type) tally with a point flux

detector (F5 type) type centered within. The geometric arrangement of these components is illustrated in

Figure 1.

90 20
25 T = 20 5

50× 50 Surface

80× 80 Surface

5× 5 Surface
45◦

Paraffin

Graphite

Figure 1: Schematic of Ueki Benchmark Geometry (Dimensions are Centimeters)

LA-UR-15-25143 4 of 46

The reader is taken through the process of creating Abaqus Parts1 (the fundamental geometric building block

within Abaqus), assigning element sets to the Parts, defining materials, meshing the Parts, and combining

the Parts into an Assembly for use in MCNP6. Screenshots accompany the discussion and the major steps

are also captured in Python scripts (which can be directly used within Abaqus) to reproduce the work

described herein. More information on these scripts is available in Appendix A. Finally, utilities provided

with MCNP6 are used to build a skeleton input file from the Abaqus mesh (.inp) file, the calculation is

executed, and the results examined (briefly).

2 Abaqus Operations

2.1 Running Abaqus Python Macros

Instead of manually working through all aspects of this section, we could instead use the Abaqus Python

macros listed in Appendix A (concatenated together into a single file as described in Appendix A). Macros

are accessed with File → Macro Manager which will display a dialog box listing macros in the Abaqus home

directory and user-specified Work Directory. Macros are run by selecting the desired macro and clicking

“Run.” Note that these macros depend on specific Part names, so the reader is encouraged to follow the

conventions suggested herein.

2.2 Geometry Creation

Upon launching Abaqus/CAE, we should see a screen similar to that shown in Figure 2.

1Words such as Parts and Assemblies are capitalized throughout to reflect how they appear within Abaqus and to differentiate
them from more generic uses of the same terms.

LA-UR-15-25143 5 of 46

Figure 2: Abaqus/CAE 6.12 Launch Screen

Here, a “Standard/Explicit” model is used. We then save the model in a working directory and set this

directory as the Abaqus Work Directory with File → Set Work Directory. Note that setting the working

directory accomplishes several objectives:

• The Abaqus Macro Manager, which records and executes Python-based macros, will look in the Abaqus

home directory (e.g., C:\Abaqus) and the user-specified working directory for macro definitions. As

such, it is important that any macros intended for use are stored in either location, and

• When Abaqus executes a job to write the mesh input file intended for use with MCNP6, it writes it in

the Abaqus home directory if no working directory is specified.

Next, we rename our model to something more descriptive (e.g., “Ueki_20cm”) by clicking on the model

name “Model-1” on the left-hand part of the screen in the model database browser, right-clicking, and

selecting Rename.

We now create our first Part: the Paraffin block. We do this by clicking “Create Part” (, on the toolbar

left of the main viewport) and entering reasonable information in the dialog box that comes up (see Figure 3

for suggested parameters). For this type of Part (an extruded Part), most of the defaults are acceptable.

LA-UR-15-25143 6 of 46

Figure 3: Create Part Dialog for Paraffin Block

From here, we sketch the Part’s profile to extrude. We sketch a 50× 50 cm square centered about the origin

so that it extends in both directions by 25 cm as shown in Figure 4.

LA-UR-15-25143 7 of 46

Figure 4: Layout Sketch for Paraffin Block

Once the sketch is satisfactory, click “Done” at the bottom and enter the extrusion length in the dialog box

that appears (shown in Figure 5).

Figure 5: Create Part Dialog for Paraffin Block

Note that in Abaqus, instead of “Done” we are sometimes presented with a red “X” () that, despite its

ominous appearance, can produce the desired result — don’t be afraid to use it. Nevertheless, we now have

a Part created that represents half of our cube because we could not extrude bi-directionally. As such, we

LA-UR-15-25143 8 of 46

now extrude the face that lies along the origin with the Create Solid: Extrude () function. We select

the face that we want to extrude and a line that will orient the rotation (which, for our purposes here, is

irrelevant). We then have a sketch appear with the existing Part geometry projected on it. As such, we

create another 50 × 50 square sketch using the projected geometry of the previously-created Part to snap

two opposing corner points. After finishing the sketch, we can enter the extrusion distance (25 cm) in the

dialog box as shown in Figure 6 and should see a 50× 50× 50 cube as shown in Figure 7.

Figure 6: Create Part Dialog for Paraffin Block

LA-UR-15-25143 9 of 46

Figure 7: Final Extruded Paraffin Cube

These same operations can be performed with the macro 02_Create_Paraffin_Block. Note that dimensions

can be verified by using Tools → Query → Distance and selecting corner vertices where the coordinates and

distances will be printed in the status window at the bottom of Abaqus.

Alternatively, we could have extruded by 50 cm, when the part was created initially, and then translated the

Part by 25 cm when instanced into the Assembly to center it at the origin.

2.3 Part Cutting Operations

We have now created our first Part. It is left as an exercise to create a cutting Part to remove a cone

of material from the paraffin block (hint: use a revolve operation to create the cutter Part by revolving a

triangle). We use the two Parts to cut out the cone with the "Cut geometry" operation. To do this, we

right-click on Assembly → Instances in our model tree and select “Create” and select the two Parts that we

just made; these appear in the construction area. We then choose “OK” to place the Instances. See Figure 8.

LA-UR-15-25143 10 of 46

Figure 8: Placed Instances of Parts in an Assembly

We now select Merge/Cut Instances (), name the new Instance, choose to perform a “Cut” and to delete

the original Instances, and click OK (see Figure 9).

LA-UR-15-25143 11 of 46

Figure 9: Merge/Cut Dialog for Paraffin Block

We then select the Instance to be cut (i.e., the block) and the Instance(s) to perform the cutting (i.e., the

cone). After clicking “Done,” we are left with our cut block which has become a new Part with the name

we gave it (see Figure 10).

LA-UR-15-25143 12 of 46

Figure 10: Final Paraffin Part

The creation of the cut action can be performed with the macros 03_Create_Cutter and 04_Cut_Paraffin,

respectively.

It is left as an exercise to create the graphite shield and an air (detector) cube using similar operations

so that there are three Parts (named: Paraffin, Graphite, Air). When creating these Parts (which are not

centered about the origin in the final arrangement), we have two options:

• Create the sketch and extruded geometries centered about the origin, or

• Create the sketch and extruded geometries in their final position.

Both of these approaches have benefits and drawbacks, but this document assumes all geometry is made using

the latter approach (i.e., with Parts created in their final position relative to the global origin). The graphite

and air Parts can be created using the macros 05_Create_Graphite and 06_Create_Air, respectively.

LA-UR-15-25143 13 of 46

2.4 Assignment of Element Sets (elsets)

We now need to associate element sets with the geometry so that MCNP6 understands which elements

correspond to which materials, tallies, and sources. To do this, we begin with the Paraffin, expand it in

the tree, right click “Sets,” and select “Create.” Assign a set named “Set_tally_material_1” and click

“Continue...” to select the (entire) Part with a click-and-drag “lasso”; finally, click “Done.” We just assigned

a tally and material, both numbered 1, to the Paraffin Part. We perform similar operations with the Graphite

and Air Parts, but increment the number assigned for both the tally and material. This should gives us the

following three elsets:

1. Set_material_tally_1 (assigned to the Paraffin),

2. Set_material_tally_2 (assigned to the Graphite), and

3. Set_material_tally_3 (assigned to the Air).

Some notes regarding elsets:

1. Care should be taken when assigning elset names. For the material number, use the material number

that is used in the MCNP6 data cards. If there is only one tally region in a part, its number is

immaterial. However, if there is more than one tally region, make the tally numbers unique. This

process implies the need for multiple elsets. More details regarding elset naming and assignment are

available in Ref. 2.

2. The elsets assigned within this section were assigned before the Part was meshed. As such, we had a

relatively simple Set assignment dialog box to use which only required us to enter a name and click

“Continue...” to select the appropriate geometry. However, if the Part was already meshed, a more

complicated Set assignment dialog box is presented as shown in Figure 11. The correct option to use

is “Geometry” when assigning elsets to a Part after it has been meshed.

LA-UR-15-25143 14 of 46

Figure 11: Post-Meshing Set Assignment Dialog Box

The macro 07_Assign_Elsets can be used to assign the appropriate element sets for all three Parts.

2.5 Definition of Materials

With our element sets assigned, the next step is to create materials that correspond to the Paraffin, Graphite,

and Air. For the Paraffin, we right-click on “Materials” in the Model Tree and click “Create.” We name

the material “Material_Paraffin_1” (to tie the material number 1 to the element set assigned previously).

We also set the density with General → Density. Note that when entering the density, one should use the

MCNP6 sign conventions (i.e., a negative number represents a mass density and a positive number represents

an atom density)2.

2If the user intends to perform subsequent thermal-mechanical calculations, then Abaqus requires material definitions with
positive densities.

LA-UR-15-25143 15 of 46

Figure 12: Paraffin Material Definition

See Figure 12. The material densities in use are:

• Paraffin: (-)0.93 g/cc,

• Graphite: (-)1.7 g/cc, and

• Air: (-)0.001205 g/cc.

LA-UR-15-25143 16 of 46

When finished, click OK and create material definitions for the Graphite and Air in a similar way. Instead,

the macro 08_Create_Materials can be used to create the materials with the appropriate density values

assigned.

2.6 Mesh Parts

Next, each part needs to be meshed. Because the Parts generally fit neatly on a Cartesian grid, we choose

to mesh them with hexahedral elements. To do this, we can right-click on the Paraffin and choose “Make

Current.” Then, using the Module drop-down, choose “Mesh.” We should see the Paraffin change color to

become yellow (see Figure 13).

Figure 13: Paraffin Meshability: Yellow

Abaqus uses colors to indicate what ability it has to mesh the Part given the current options (where the

options are available in Mesh→ Controls). To mesh the Part, we want it to display “green” and not “yellow.”

Yellow often works but may not produce the desired result. Orange is bad — a sign that partitioning is

needed. We create a better meshing configuration by partitioning the Part using datum planes.

We will create two datum planes using the Create Datum Plane function (). Click the button, select the

XY Plane, and enter a distance of zero. A plane should appear bisecting the paraffin. Repeat the operation

LA-UR-15-25143 17 of 46

for the XZ plane and click the red “X” () to end the creation of cutting planes.

Next, we will partition the cell using these new datum planes. Use the “Partition Cell: Use Datum Plane”

function accessed by left-clicking and holding on “Partition Cell: Define Cutting Plane” and moving to the

right to select the appropriate operation (, also accessible by left-clicking on the black triangle in the

lower right-hand corner). When selected, because Abaqus is already aware of the Part selected, we need only

select the appropriate datum plane. Then immediately re-select the entire Part and the next datum plane.

When finished partitioning, a green Part should appear (see Figure 14).

Figure 14: Paraffin Meshability: Green

The datum plane creation and partition operations can also be performed using the macro 09_Partition_

Paraffin.

To mesh the Part, first seed it with mesh points using the Seed→ Part dialog; choose a global size of 5 (cm)3.

See the dialog box in Figure 15 and the seeded Part in Figure 16.

3The Abaqus dimensions are effectively unitless — they are what the user intends them to be. As such, we specify everything
in centimeters for MCNP6.

LA-UR-15-25143 18 of 46

Figure 15: Seeding Parameters

Figure 16: Seeded Paraffin

Finally, select Mesh → Part and confirm “Yes” that we want to mesh it. The Part meshed using hexahedral

elements (see Figure 17) appears.

LA-UR-15-25143 19 of 46

Figure 17: Meshed Paraffin

Seeding and meshing can also be performed using the macro 10_Mesh_Paraffin.

The same seeding and meshing operations for the graphite and air are left as exercises to the user noting

that as purely Cartesian elements, no partitioning is necessary. These components can be meshed with the

macro 11_Mesh_Graphite_Air.

Some notes regarding meshing:

1. When a part is meshed, a lasso operation over some or all of the elements will highlight the vertices

and edges lassoed. This is a good way to view and/or confirm edge-center vertices associated with

quadratic elements. These vertices are not otherwise visible.

2. Meshing serves multiple purposes for a MCNP6 practitioner. First, the mesh is used to (accurately)

represent the geometry of interest. Because the mesh is constructed using linear edges, curved surfaces

are approximated and it is up to the user to determine what degree of approximation is appropriate.

Next, results on the mesh can be visualized. As such, the user might wish to make the mesh finer

than would otherwise be necessary to get a more pleasing and/or informative visualization of the edit

information, particularly where high flux gradients are expected.

LA-UR-15-25143 20 of 46

2.7 Create Assembly

Next, we insert Instances, one of each, of the three Parts that were created. It may be necessary to delete

(or suppress) any other Instances already present. Regardless, once inserted (and perhaps repositioned

depending on whether absolute or relative coordinates were used in Part creation — see note at end of

Subsection 2.2), one should see the Parts arranged as shown in Figure 18. Furthermore, one can change

the palette to be based on “Sets,” rather than “Assembly defaults,” and change the Module dropdown to

“Mesh” to see something similar to Figure 19.

Figure 18: Assembly, Default Coloring

LA-UR-15-25143 21 of 46

Figure 19: Assembly, Set-based Coloring with Mesh Shown

This confirms that the sets assigned uniquely to each Part have been brought through the meshing and

assembly creation processes. The Assembly can also be created with the macro 12_Create_Assembly noting

that adjusting the view following the macro will likely be necessary.

2.8 Write Abaqus Mesh File

With the Assembly created and with all Parts correctly positioned, we can now create a “Job” to write the

input file. From the Assembly view, select Job → Manager → Create and name the job (which will become

the file name created, e.g., um_ueki_20cm, where .inp will be appended by Abaqus). Click “Continue” and

give the job a description (which is reused as the case title in MCNP, e.g., Ueki Benchmark, 20 cm Graphite).

Click “OK” and then in the Job Manager click “Write Input.” Having set the Work Directory early on, this

file should be created where that work directory was specified. Otherwise, it will be created in Abaqus’s

default working location. Once the file is created, open it to see that it was written fully. However, there

should be nothing more required from the user within Abaqus at this point.

LA-UR-15-25143 22 of 46

3 Pre-MCNP6 Execution Operations

MCNP6 ships with several utilities intended to make working with unstructured mesh files more convenient.

In order to create a skeleton MCNP6 input file, we can use the um_pre_op utility (which must be in the

user’s PATH environment variable) with the following command:

1 um_pre_op -m um_ueki_20cm .inp -b 3 -ex mcnpinp

which will then create the MCNP6 skeleton input file shown below.

1 Ueki Benchmark , 20 cm Graphite

2 c

3 c Created from file : um_ueki_20cm .inp

4 c Created on : 6 -25 -2015 @ 7:50:46

5 c

6 c

7 c PSEUDO CELLS

8 1 3 -1.205000E -03 0 u=1

9 2 2 -1.70000 0 u=1

10 3 1 -0.930000 0 u=1

11 4 1 -1.205000E -03 0 u=1

12 c

13 c LEGACY CELLS

14 5 0 -99 fill =1

15 6 0 99

16

17 c

18 c SURFACES

19 99 sph 4.37500 E+01 0.00000 E+00 0.00000 E+00 1.06837 E+02

20

21 c

22 c DATA CARDS

23 embed1 meshgeo = abaqus

24 mgeoin = um_ueki_20cm .inp

25 meeout = um_ueki_20cm . eeout

26 length = 1.00000 E+00

27 background = 4

28 matcell = 1 1 2 2 3 3

29 c

30 c

31 c

In this file, we can see that the Parts we defined previously have corresponding pseudo cells with the material

numbers and densities assigned within Abaqus. We now need to transform this skeleton file into a functional

MCNP6 input file, primarily by adding appropriate data cards. These details are omitted, but the final

LA-UR-15-25143 23 of 46

MCNP6 input file is given in Appendix B. However, one note regarding the transformation from skeleton

to a functional MCNP6 input: the background (Cell 4) material number was set on the command line but

the fill (Cell 5) cells is voided by default (because the background cell material number was not defined in

the Abaqus mesh .inp file). Not populating the background cell with the appropriate material is an easily

overlooked step. More details on um_pre_op can be found in Ref. 2.

4 MCNP6 Execution Notes

When executing MCNP6, no special precautions are needed, per se. Naturally, every computer system and

organization will have a different way of executing MCNP6 so it is left to the reader to follow-up with his

or her system administrator to determine how best to run (e.g., what the procedures and “rules” are for

running MCNP6). Moreover, we only need to make sure that the mgeoin file (i.e., the Abaqus mesh file) is

with the MCNP6 conventional input file and that write permission is available to create the various working

files (e.g., runtpe, outp, and eeout files).

5 Results Processing

Having run MCNP6 with the input file shown in Appendix B, in addition to the traditional outp and runtpe

files, we find an eeout file that corresponds to unstructured mesh edit output. This file contains a generic

description of the unstructured mesh geometry, results, and other information important to MCNP6 when

performing a continue run. More information on the eeout file is available in Reference 2. We also requested

a gmv file (not produced by default) which can be used to visualize the unstructured geometry.

5.1 Geometry Visualization

The unstructured mesh geometry and materials can be easily visualized using the application gmv (or an

equivalent application that can read gmv-formatted files). Using gmv is straightforward and will not be

discussed in detail. However, after reading the um_ueki_20cm.gmv file in gmv, enabling the display of Edges,

and clicking apply, we see the geometry and materials shown in Figure 20.

LA-UR-15-25143 24 of 46

Figure 20: GMV Display of Unstructured Geometry and Materials

Unfortunately, it is not currently possible to visualize results within gmv.

5.2 Unstructured Mesh Results Visualization

One method to visualize results with the unstructured mesh geometry is to convert the eeout results to an

Abaqus .odb file. This conversion process will not be described herein, and it is assumed that the user has

performed this conversion before proceeding.

We first load our .odb file into Abaqus with File→ Open, change File Filter to “Output Database (*.odb)”,

navigate to and select the .odb file, and click OK. The Assembly with a visible mesh is loaded as shown in

Figure 21.

LA-UR-15-25143 25 of 46

Figure 21: Results Assembly and Mesh

Use the “Plot Contours on Undeformed Shape” function accessed by long-left-clicking on “Plot Contours

on Deformed Shape” and moving to the right to select the appropriate operation (). The assembly

becomes blue and a colorbar appears to indicate the contour levels (which are not apparent yet). See

Figure 22.

LA-UR-15-25143 26 of 46

Figure 22: Default Results Display

To make the contours become recognizable, we adjust the Contour Options () wherein we change Interval

Type from “Uniform” to “Log” and click OK. The result is shown in Figure 23.

LA-UR-15-25143 27 of 46

Figure 23: Final Type 6 Edit Appearance

Note that the label above the colorbar indicates that these results correspond to the type 6 edit specified

with the embee card. To change to the type 4 edit, we select the edit from the dropdown menu in the toolbar

(see Figure 24).

Figure 24: Dropdown to Select Edit for Visualization

Having done this, the viewport updates to display the type 4 edit results as shown in Figure 25.

LA-UR-15-25143 28 of 46

Figure 25: Final Type 4 Edit Appearance

6 Conclusions

It is hoped that this document serves as an introductory functional guide to the reader for how to approach

unstructured mesh models created within Abaqus destined for use within MCNP6. The major operations

have been defined in terms of geometry creation, elset assignment, material definitions, meshing, and ulti-

mately generating the unstructured mesh input file. This file was then processed with um_pre_op to create

a skeleton MCNP6 input file which the user must then modify to incorporate the proper background/fill

materials as well as the appropriate data cards.

Acknowledgements

The authors wish to thank Karen C. Kelley for a thorough technical review of this document and, particularly,

the appendices.

LA-UR-15-25143 29 of 46

References

[1] R. L. Martz and D. L. Crane, “The MCNP6 Book on Unstructured Mesh Geometry: Foundations,” Tech.

Rep. LA-UR-12-25478 Rev 1, Los Alamos National Laboratory, Los Alamos, NM, USA, 2014.

[2] R. L. Martz, “The MCNP6 Book on Unstructured Mesh Geometry: User’s Guide,” Tech. Rep. LA-UR-

11-05668 Rev 8, Los Alamos National Laboratory, Los Alamos, NM, USA, 2014.

[3] K. Ueki, A. Ohashi, and Y. Anayama, “Neutron Shielding Ability of KRAFTON N2 — Mannan —

KRAFTON N2 Sandwich-type Materials and Others.,” in Radiation Protection and Shielding Division

Topical Meeting, (Pasco, WA, USA), American Nuclear Society, April 26 – May 1, 1992.

[4] K. Ueki, A. Ohashi, N. Nariyama, S. Nagayama, T. Fujita, K. Hattori, and Y. Anayama, “System-

atic Evaluation of Neutron Shielding Effects for Materials,” Nuclear Science and Engineering, vol. 124,

pp. 455–464, 1996.

[5] S. W. Mosher, A. M. Bevill, S. R. Johnson, A. M. Ibrahim, C. R. Daily, T. M. Evans, J. C. Wagner, J. O.

Johnson, and R. E. Grove, “ADVANTG — An Automated Variance Reduction Parameter Generator,”

Tech. Rep. ORNL/TM-2013/416, Oak Ridge National Laboratory, Oak Ridge, TN, USA, 2013.

[6] J. M. Risner, D. Wiarda, M. E. Dunn, T. M. Miller, D. E. Peplow, and B. W. Patton, “Production

and Testing of the VITAMIN-B7 Fine-Group and BUGLE-B7 Broad-Group Coupled Neutron/Gamma

Cross-Section Libraries Derived from ENDF/B-VII.0 Nuclear Data,” Tech. Rep. NUREG/CR-7045

(ORNL/TM-2011/12), Oak Ridge National Laboratory, Oak Ridge, TN, USA, 2011.

LA-UR-15-25143 30 of 46

Appendix A Abaqus Python Macros

The macros (i.e., Python scripts) listed in the subsections of this appendix were recorded within Abaqus.

The driver macro 00_Run_All.py was then created to run them, in the proper order, to fulfill the steps

within Section 2. Nevertheless, all of these macros (i.e., 00_ ... 13_) can be concatenated together into the

file abaqusMacros.py and used within Abaqus individually to reproduce the steps found within Section 2 or

executed at once using 00_Run_All.py. Note that these macros depend on naming conventions consistent

with those described in this document and will not work correctly for models and/or Parts with different

names (or if different dimensions are specified for some Parts manually).

Listing 1: "Main Abaqus Driver Macro"
1 # -*- coding : mbcs -*-

2 # Do not delete the following import lines

3 from abaqus import *

4 from abaqusConstants import *

5 import __main__

6

7 def a00_Run_All ():

8 a01_Rename_Model ()

9

10 a02_Create_Paraffin_Block ()

11 a03_Create_Cutter ()

12 a04_Cut_Paraffin ()

13 a05_Create_Graphite ()

14 a06_Create_Air ()

15

16 a07_Assign_Elsets ()

17

18 a08_Create_Materials ()

19

20 a09_Partition_Paraffin ()

21

22 a10_Mesh_Paraffin ()

23 a11_Mesh_Graphite_Air ()

24

25 a12_Create_Assembly ()

26

27 a13_Create_Job ()

LA-UR-15-25143 31 of 46

A.1 01_Rename_Model.py — Rename Model For Convenience

Listing 2: "01_Rename_Model.py"
1 def a01_Rename_Model ():

2 import section

3 import regionToolset

4 import displayGroupMdbToolset as dgm

5 import part

6 import material

7 import assembly

8 import step

9 import interaction

10 import load

11 import mesh

12 import optimization

13 import job

14 import sketch

15 import visualization

16 import xyPlot

17 import displayGroupOdbToolset as dgo

18 import connectorBehavior

19 mdb. models . changeKey (fromName =’Model -1 ’, toName =’Ueki_20cm ’)

LA-UR-15-25143 32 of 46

A.2 02_Create_Paraffin_Block.py — Create Cube to Form Basis of Paraffin

Block

Listing 3: "02_Create_Paraffin_Block.py"
1 def a02_Create_Paraffin_Block ():

2 import section

3 import regionToolset

4 import displayGroupMdbToolset as dgm

5 import part

6 import material

7 import assembly

8 import step

9 import interaction

10 import load

11 import mesh

12 import optimization

13 import job

14 import sketch

15 import visualization

16 import xyPlot

17 import displayGroupOdbToolset as dgo

18 import connectorBehavior

19 s1 = mdb. models [’Ueki_20cm ’]. ConstrainedSketch (name=’__profile__ ’,

20 sheetSize =50.0)

21 g, v, d, c = s1.geometry , s1.vertices , s1. dimensions , s1. constraints

22 s1. setPrimaryObject (option = STANDALONE)

23 s1. rectangle (point1 =(-25.0 , 25.0) , point2 =(25.0 , -25.0))

24 p = mdb. models [’Ueki_20cm ’]. Part(name=’Paraffin_Block ’, dimensionality =THREE_D ,

25 type= DEFORMABLE_BODY)

26 p = mdb. models [’Ueki_20cm ’]. parts [’Paraffin_Block ’]

27 p. BaseSolidExtrude (sketch =s1 , depth =25.0)

28 s1. unsetPrimaryObject ()

29 p = mdb. models [’Ueki_20cm ’]. parts [’Paraffin_Block ’]

30 del mdb. models [’Ueki_20cm ’]. sketches [’__profile__ ’]

31 p = mdb. models [’Ueki_20cm ’]. parts [’Paraffin_Block ’]

32 f, e = p.faces , p. edges

33 t = p. MakeSketchTransform (sketchPlane =f[5] , sketchUpEdge =e[2] ,

34 sketchPlaneSide =SIDE1 , sketchOrientation =RIGHT , origin =(0.0 , 0.0 , 0.0))

35 s = mdb. models [’Ueki_20cm ’]. ConstrainedSketch (name=’__profile__ ’,

36 sheetSize =141.42 , gridSpacing =3.53 , transform =t)

37 g, v, d, c = s.geometry , s.vertices , s. dimensions , s. constraints

38 s. setPrimaryObject (option = SUPERIMPOSE)

39 p = mdb. models [’Ueki_20cm ’]. parts [’Paraffin_Block ’]

40 p. projectReferencesOntoSketch (sketch =s, filter = COPLANAR_EDGES)

41 s. rectangle (point1 =(-25.0 , -25.0) , point2 =(25.0 , 25.0))

42 p = mdb. models [’Ueki_20cm ’]. parts [’Paraffin_Block ’]

43 f1 , e1 = p.faces , p. edges

44 p. SolidExtrude (sketchPlane =f1 [5] , sketchUpEdge =e1 [2] , sketchPlaneSide =SIDE1 ,

45 sketchOrientation =RIGHT , sketch =s, depth =25.0 ,

46 flipExtrudeDirection =OFF)

47 s. unsetPrimaryObject ()

48 del mdb. models [’Ueki_20cm ’]. sketches [’__profile__ ’]

LA-UR-15-25143 33 of 46

A.3 03_Create_Cutter.py — Create Conic Volume to Subtract from Paraffin

Block

Listing 4: "03_Create_Cutter.py"
1 def a03_Create_Cutter ():

2 import section

3 import regionToolset

4 import displayGroupMdbToolset as dgm

5 import part

6 import material

7 import assembly

8 import step

9 import interaction

10 import load

11 import mesh

12 import optimization

13 import job

14 import sketch

15 import visualization

16 import xyPlot

17 import displayGroupOdbToolset as dgo

18 import connectorBehavior

19 s1 = mdb. models [’Ueki_20cm ’]. ConstrainedSketch (name=’__profile__ ’,

20 sheetSize =25.0)

21 g, v, d, c = s1.geometry , s1.vertices , s1. dimensions , s1. constraints

22 s1. setPrimaryObject (option = STANDALONE)

23 s1. ConstructionLine (point1 =(0.0 , -12.5) , point2 =(0.0 , 12.5))

24 s1. FixedConstraint (entity =g[2])

25 s1.Spot(point =(0.0 , 0.0))

26 s1.Spot(point =(25.0 , 0.0))

27 s1.Spot(point =(25.0 , 10.3553390593))

28 s1.Line(point1 =(0.0 , 0.0) , point2 =(25.0 , 0.0))

29 s1. HorizontalConstraint (entity =g[3] , addUndoState = False)

30 s1.Line(point1 =(25.0 , 0.0) , point2 =(25.0 , 10.3553390593))

31 s1. VerticalConstraint (entity =g[4] , addUndoState = False)

32 s1. PerpendicularConstraint (entity1 =g[3] , entity2 =g[4] , addUndoState = False)

33 s1.Line(point1 =(25.0 , 10.3553390593) , point2 =(0.0 , 0.0))

34 s1.Line(point1 =(0.0 , 0.0) , point2 =(-5.0 , 0.0))

35 s1. HorizontalConstraint (entity =g[6] , addUndoState = False)

36 s1. setAsConstruction (objectList =(g[6] ,))

37 s1. sketchOptions . setValues (constructionGeometry =ON)

38 s1. assignCenterline (line=g[6])

39 p = mdb. models [’Ueki_20cm ’]. Part(name=’Paraffin_Cutter ’,

40 dimensionality =THREE_D , type= DEFORMABLE_BODY)

41 p = mdb. models [’Ueki_20cm ’]. parts [’Paraffin_Cutter ’]

42 p. BaseSolidRevolve (sketch =s1 , angle =360.0 , flipRevolveDirection =OFF)

43 s1. unsetPrimaryObject ()

44 p = mdb. models [’Ueki_20cm ’]. parts [’Paraffin_Cutter ’]

LA-UR-15-25143 34 of 46

A.4 04_Cut_Paraffin.py — Perform ‘Cut’ Operation on Paraffin Block with

Cubic Volume

Listing 5: "04_Cut_Paraffin.py"
1 def a04_Cut_Paraffin ():

2 import section

3 import regionToolset

4 import displayGroupMdbToolset as dgm

5 import part

6 import material

7 import assembly

8 import step

9 import interaction

10 import load

11 import mesh

12 import optimization

13 import job

14 import sketch

15 import visualization

16 import xyPlot

17 import displayGroupOdbToolset as dgo

18 import connectorBehavior

19 a = mdb. models [’Ueki_20cm ’]. rootAssembly

20 a. DatumCsysByDefault (CARTESIAN)

21 p = mdb. models [’Ueki_20cm ’]. parts [’Paraffin_Block ’]

22 a. Instance (name=’Paraffin_Block -1 ’, part=p, dependent =ON)

23 p = mdb. models [’Ueki_20cm ’]. parts [’Paraffin_Cutter ’]

24 a. Instance (name=’Paraffin_Cutter -1 ’, part=p, dependent =ON)

25 a = mdb. models [’Ueki_20cm ’]. rootAssembly

26 a. InstanceFromBooleanCut (name=’Paraffin ’,

27 instanceToBeCut =mdb. models [’Ueki_20cm ’]. rootAssembly . instances [’Paraffin_Block -1 ’],

28 cuttingInstances =(a. instances [’Paraffin_Cutter -1 ’],),

29 originalInstances = DELETE)

30 p1 = mdb. models [’Ueki_20cm ’]. parts [’Paraffin ’]

LA-UR-15-25143 35 of 46

A.5 05_Create_Graphite.py — Create 20 cm Graphite Shield

Listing 6: "05_Create_Graphite.py"
1 def a05_Create_Graphite ():

2 import section

3 import regionToolset

4 import displayGroupMdbToolset as dgm

5 import part

6 import material

7 import assembly

8 import step

9 import interaction

10 import load

11 import mesh

12 import optimization

13 import job

14 import sketch

15 import visualization

16 import xyPlot

17 import displayGroupOdbToolset as dgo

18 import connectorBehavior

19 s1 = mdb. models [’Ueki_20cm ’]. ConstrainedSketch (name=’__profile__ ’,

20 sheetSize =80.0)

21 g, v, d, c = s1.geometry , s1.vertices , s1. dimensions , s1. constraints

22 s1. setPrimaryObject (option = STANDALONE)

23 s1. rectangle (point1 =(70.0 , -40.0) , point2 =(90.0 , 40.0))

24 p = mdb. models [’Ueki_20cm ’]. Part(name=’Graphite ’, dimensionality =THREE_D ,

25 type= DEFORMABLE_BODY)

26 p = mdb. models [’Ueki_20cm ’]. parts [’Graphite ’]

27 p. BaseSolidExtrude (sketch =s1 , depth =40.0)

28 s1. unsetPrimaryObject ()

29 p = mdb. models [’Ueki_20cm ’]. parts [’Graphite ’]

30 del mdb. models [’Ueki_20cm ’]. sketches [’__profile__ ’]

31 p = mdb. models [’Ueki_20cm ’]. parts [’Graphite ’]

32 f, e = p.faces , p. edges

33 t = p. MakeSketchTransform (sketchPlane =f[5] , sketchUpEdge =e[6] ,

34 sketchPlaneSide =SIDE1 , sketchOrientation =RIGHT , origin =(80.0 , 0.0 ,

35 0.0))

36 s = mdb. models [’Ueki_20cm ’]. ConstrainedSketch (name=’__profile__ ’,

37 sheetSize =256.12 , gridSpacing =6.4 , transform =t)

38 g, v, d, c = s.geometry , s.vertices , s. dimensions , s. constraints

39 s. setPrimaryObject (option = SUPERIMPOSE)

40 p = mdb. models [’Ueki_20cm ’]. parts [’Graphite ’]

41 p. projectReferencesOntoSketch (sketch =s, filter = COPLANAR_EDGES)

42 s. rectangle (point1 =(-40.0 , -10.0) , point2 =(40.0 , 10.0))

43 p = mdb. models [’Ueki_20cm ’]. parts [’Graphite ’]

44 f1 , e1 = p.faces , p. edges

45 p. SolidExtrude (sketchPlane =f1 [5] , sketchUpEdge =e1 [6] , sketchPlaneSide =SIDE1 ,

46 sketchOrientation =RIGHT , sketch =s, depth =40.0 ,

47 flipExtrudeDirection =OFF)

48 s. unsetPrimaryObject ()

49 del mdb. models [’Ueki_20cm ’]. sketches [’__profile__ ’]

50 p1 = mdb. models [’Ueki_20cm ’]. parts [’Graphite ’]

LA-UR-15-25143 36 of 46

A.6 06_Create_Air.py — Create 5× 5× 5 cm Air Detector Region

Listing 7: "06_Create_Air.py"
1 def a06_Create_Air ():

2 import section

3 import regionToolset

4 import displayGroupMdbToolset as dgm

5 import part

6 import material

7 import assembly

8 import step

9 import interaction

10 import load

11 import mesh

12 import optimization

13 import job

14 import sketch

15 import visualization

16 import xyPlot

17 import displayGroupOdbToolset as dgo

18 import connectorBehavior

19 s1 = mdb. models [’Ueki_20cm ’]. ConstrainedSketch (name=’__profile__ ’,

20 sheetSize =5.0)

21 g, v, d, c = s1.geometry , s1.vertices , s1. dimensions , s1. constraints

22 s1. setPrimaryObject (option = STANDALONE)

23 s1. rectangle (point1 =(112.5 , -2.5) , point2 =(107.5 , 2.5))

24 p = mdb. models [’Ueki_20cm ’]. Part(name=’Air ’, dimensionality =THREE_D ,

25 type= DEFORMABLE_BODY)

26 p = mdb. models [’Ueki_20cm ’]. parts [’Air ’]

27 p. BaseSolidExtrude (sketch =s1 , depth =2.5)

28 s1. unsetPrimaryObject ()

29 p = mdb. models [’Ueki_20cm ’]. parts [’Air ’]

30 del mdb. models [’Ueki_20cm ’]. sketches [’__profile__ ’]

31 p = mdb. models [’Ueki_20cm ’]. parts [’Air ’]

32 f, e = p.faces , p. edges

33 t = p. MakeSketchTransform (sketchPlane =f[5] , sketchUpEdge =e[6] ,

34 sketchPlaneSide =SIDE1 , sketchOrientation =RIGHT , origin =(110.0 , 0.0 ,

35 0.0))

36 s = mdb. models [’Ueki_20cm ’]. ConstrainedSketch (name=’__profile__ ’,

37 sheetSize =235.21 , gridSpacing =5.88 , transform =t)

38 g, v, d, c = s.geometry , s.vertices , s. dimensions , s. constraints

39 s. setPrimaryObject (option = SUPERIMPOSE)

40 p = mdb. models [’Ueki_20cm ’]. parts [’Air ’]

41 p. projectReferencesOntoSketch (sketch =s, filter = COPLANAR_EDGES)

42 s. rectangle (point1 =(-2.5 , -2.5) , point2 =(2.5 , 2.5))

43 p = mdb. models [’Ueki_20cm ’]. parts [’Air ’]

44 f1 , e1 = p.faces , p. edges

45 p. SolidExtrude (sketchPlane =f1 [5] , sketchUpEdge =e1 [6] , sketchPlaneSide =SIDE1 ,

46 sketchOrientation =RIGHT , sketch =s, depth =2.5 , flipExtrudeDirection =OFF)

47 s. unsetPrimaryObject ()

48 del mdb. models [’Ueki_20cm ’]. sketches [’__profile__ ’]

49 p1 = mdb. models [’Ueki_20cm ’]. parts [’Air ’]

LA-UR-15-25143 37 of 46

A.7 07_Assign_Elsets.py — Assign Element Set Identifiers to Parts

Listing 8: "07_Assign_Elsets.py"
1 def a07_Assign_Elsets ():

2 import section

3 import regionToolset

4 import displayGroupMdbToolset as dgm

5 import part

6 import material

7 import assembly

8 import step

9 import interaction

10 import load

11 import mesh

12 import optimization

13 import job

14 import sketch

15 import visualization

16 import xyPlot

17 import displayGroupOdbToolset as dgo

18 import connectorBehavior

19

20 p = mdb. models [’Ueki_20cm ’]. parts [’Paraffin ’]

21 p.Set(cells =p.cells , name=’Set_material_tally_1 ’)

22

23 p = mdb. models [’Ueki_20cm ’]. parts [’Graphite ’]

24 p.Set(cells =p.cells , name=’Set_material_tally_2 ’)

25

26 p = mdb. models [’Ueki_20cm ’]. parts [’Air ’]

27 p.Set(cells =p.cells , name=’Set_material_tally_3 ’)

LA-UR-15-25143 38 of 46

A.8 08_Create_Materials.py — Create Material Names & Assign Densities

Listing 9: "08_Create_Materials.py"
1 def a08_Create_Materials ():

2 import section

3 import regionToolset

4 import displayGroupMdbToolset as dgm

5 import part

6 import material

7 import assembly

8 import step

9 import interaction

10 import load

11 import mesh

12 import optimization

13 import job

14 import sketch

15 import visualization

16 import xyPlot

17 import displayGroupOdbToolset as dgo

18 import connectorBehavior

19 mdb. models [’Ueki_20cm ’]. Material (name=’Material_Paraffin_1 ’)

20 mdb. models [’Ueki_20cm ’]. materials [’Material_Paraffin_1 ’]. Density (table =((-0.93 ,

21),))

22 mdb. models [’Ueki_20cm ’]. Material (name=’Material_Graphite_2 ’)

23 mdb. models [’Ueki_20cm ’]. materials [’Material_Graphite_2 ’]. Density (table =((-1.7 ,

24),))

25 mdb. models [’Ueki_20cm ’]. Material (name=’Material_Air_3 ’)

26 mdb. models [’Ueki_20cm ’]. materials [’Material_Air_3 ’]. Density (table =((-0.001205 ,

27),))

LA-UR-15-25143 39 of 46

A.9 09_Partition_Paraffin.py —Partition Paraffin to Permit Hexahedral Mesh-

ing

Listing 10: "09_Partition_Paraffin.py"
1 def a09_Partition_Paraffin ():

2 import section

3 import regionToolset

4 import displayGroupMdbToolset as dgm

5 import part

6 import material

7 import assembly

8 import step

9 import interaction

10 import load

11 import mesh

12 import optimization

13 import job

14 import sketch

15 import visualization

16 import xyPlot

17 import displayGroupOdbToolset as dgo

18 import connectorBehavior

19 p = mdb. models [’Ueki_20cm ’]. parts [’Paraffin ’]

20 p. DatumPlaneByPrincipalPlane (principalPlane =XYPLANE , offset =0.0)

21 p = mdb. models [’Ueki_20cm ’]. parts [’Paraffin ’]

22 p. DatumPlaneByPrincipalPlane (principalPlane =XZPLANE , offset =0.0)

23

24 p = mdb. models [’Ueki_20cm ’]. parts [’Paraffin ’]

25 d = p. datums

26 p. PartitionCellByDatumPlane (datumPlane =d[3] , cells =p. cells)

27 p = mdb. models [’Ueki_20cm ’]. parts [’Paraffin ’]

28 d1 = p. datums

29 p. PartitionCellByDatumPlane (datumPlane =d1 [4] , cells =p. cells)

LA-UR-15-25143 40 of 46

A.10 10_Mesh_Paraffin.py — Seed and Mesh Paraffin with Hexahedral Ele-

ments

Listing 11: "10_Mesh_Paraffin.py"
1 def a10_Mesh_Paraffin ():

2 import section

3 import regionToolset

4 import displayGroupMdbToolset as dgm

5 import part

6 import material

7 import assembly

8 import step

9 import interaction

10 import load

11 import mesh

12 import optimization

13 import job

14 import sketch

15 import visualization

16 import xyPlot

17 import displayGroupOdbToolset as dgo

18 import connectorBehavior

19 p = mdb. models [’Ueki_20cm ’]. parts [’Paraffin ’]

20 p. seedPart (size =5.0 , deviationFactor =0.1 , minSizeFactor =0.1)

21 p = mdb. models [’Ueki_20cm ’]. parts [’Paraffin ’]

22 p. seedPart (size =8.0 , deviationFactor =0.1 , minSizeFactor =0.1)

23 p = mdb. models [’Ueki_20cm ’]. parts [’Paraffin ’]

24 p. seedPart (size =5.0 , deviationFactor =0.1 , minSizeFactor =0.1)

25 p = mdb. models [’Ueki_20cm ’]. parts [’Paraffin ’]

26 p. generateMesh ()

LA-UR-15-25143 41 of 46

A.11 11_Mesh_Graphite_Air.py — Seed and Mesh Graphite & Air with Hexa-

hedral Elements

Listing 12: "11_Mesh_Graphite_Air.py"
1 def a11_Mesh_Graphite_Air ():

2 import section

3 import regionToolset

4 import displayGroupMdbToolset as dgm

5 import part

6 import material

7 import assembly

8 import step

9 import interaction

10 import load

11 import mesh

12 import optimization

13 import job

14 import sketch

15 import visualization

16 import xyPlot

17 import displayGroupOdbToolset as dgo

18 import connectorBehavior

19

20 p1 = mdb. models [’Ueki_20cm ’]. parts [’Graphite ’]

21 p = mdb. models [’Ueki_20cm ’]. parts [’Graphite ’]

22 p. seedPart (size =10.0 , deviationFactor =0.1 , minSizeFactor =0.1)

23 p = mdb. models [’Ueki_20cm ’]. parts [’Graphite ’]

24 p. generateMesh ()

25

26 p1 = mdb. models [’Ueki_20cm ’]. parts [’Air ’]

27 p = mdb. models [’Ueki_20cm ’]. parts [’Air ’]

28 p. seedPart (size =2.5 , deviationFactor =0.1 , minSizeFactor =0.1)

29 p = mdb. models [’Ueki_20cm ’]. parts [’Air ’]

30 p. generateMesh ()

LA-UR-15-25143 42 of 46

A.12 12_Create_Assembly.py — Create Assembly from Individual Parts

Listing 13: "12_Create_Assembly.py"
1 def a12_Create_Assembly ():

2 import section

3 import regionToolset

4 import displayGroupMdbToolset as dgm

5 import part

6 import material

7 import assembly

8 import step

9 import interaction

10 import load

11 import mesh

12 import optimization

13 import job

14 import sketch

15 import visualization

16 import xyPlot

17 import displayGroupOdbToolset as dgo

18 import connectorBehavior

19 a1 = mdb. models [’Ueki_20cm ’]. rootAssembly

20 p = mdb. models [’Ueki_20cm ’]. parts [’Air ’]

21 a1. Instance (name=’Air -1 ’, part=p, dependent =ON)

22 p = mdb. models [’Ueki_20cm ’]. parts [’Graphite ’]

23 a1. Instance (name=’Graphite -1 ’, part=p, dependent =ON)

24 p = mdb. models [’Ueki_20cm ’]. parts [’Paraffin ’]

25 a1. Instance (name=’Paraffin -1 ’, part=p, dependent =ON)

LA-UR-15-25143 43 of 46

A.13 13_Create_Job.py — Create Abaqus Mesh Input File from Assembly

Listing 14: "13_Create_Job.py"
1 def a13_Create_Job ():

2 import section

3 import regionToolset

4 import displayGroupMdbToolset as dgm

5 import part

6 import material

7 import assembly

8 import step

9 import interaction

10 import load

11 import mesh

12 import optimization

13 import job

14 import sketch

15 import visualization

16 import xyPlot

17 import displayGroupOdbToolset as dgo

18 import connectorBehavior

19 mdb.Job(name=’um_ueki_20cm ’, model =’Ueki_20cm ’,

20 description =’Ueki Benchmark , 20 cm Graphite ’, type=ANALYSIS ,

21 atTime =None , waitMinutes =0, waitHours =0, queue =None , memory =90 ,

22 memoryUnits = PERCENTAGE , getMemoryFromAnalysis =True ,

23 explicitPrecision =SINGLE , nodalOutputPrecision =SINGLE , echoPrint =OFF ,

24 modelPrint =OFF , contactPrint =OFF , historyPrint =OFF , userSubroutine =’’,

25 scratch =’’, parallelizationMethodExplicit =DOMAIN , numDomains =1,

26 activateLoadBalancing =False , multiprocessingMode =DEFAULT , numCpus =1)

27 mdb.jobs[’um_ueki_20cm ’]. writeInput (consistencyChecking =OFF)

LA-UR-15-25143 44 of 46

Appendix B MCNP6 Input File

This section includes a listing of the complete MCNP6 input file that interacts with the Abaqus mesh file

generated following the instructions herein.

Listing 15: "MCNP6 Input File for Ueki Benchmark Experiment with 20 cm of Graphite"
1 Ueki Benchmark , 20 cm Graphite

2 c

3 c cc

4 c Pseudo Cell Definitions

5 c cc

6 c

7 1 3 -1.205000E -03 0 u=1 $ Detector Region

8 2 2 -1.70000 0 u=1 $ Graphite

9 3 1 -0.930000 0 u=1 $ Paraffin

10 4 3 -1.205000E -03 0 u=1 $ Background (Surrounding Air)

11 c

12 c cc

13 c CSG Cell Definitions

14 c cc

15 c

16 5 0 -99 fill =1 $ UM Cell

17 6 0 99 $ Graveyard

18

19 c

20 c cc

21 c Surface Definitions

22 c cc

23 c

24 99 sph 4.37500 E+01 0.00000 E+00 0.00000 E+00 1.06837 E+02

25

26 c cc

27 c Physics

28 c cc

29 c

30 mode n

31 c

32 c cc

33 c Material Definitions

34 c cc

35 c

36 m1 1001 -0.1486 $ Paraffin

37 6000 -0.8514 $ Density : 0.93 g/cc

38 c

39 m2 6000 -1.00 $ Graphite

40 c $ Density : 1.7 g/cc

41 c

42 m3 6000 -0.000124 $ Air

43 7014 -0.755268 $ Density : 0.001205 g/cc

44 8016 -0.231781

45 18000 -0.012827

46 c

LA-UR-15-25143 45 of 46

47 mt1 poly .10t

48 mt2 grph .10t

49 c

50 c cc

51 c Source Definition

52 c cc

53 c

54 sdef pos= 0.00001 0 0 erg=d1

55 sp1 -3 1.025 2.926

56 c

57 c cc

58 c Unstructured Mesh Setup

59 c cc

60 c

61 embed1 meshgeo = abaqus

62 mgeoin = um_ueki_20cm .inp

63 meeout = um_ueki_20cm . eeout

64 gmvfile = um_ueki_20cm .gmv

65 length = 1.00000 E+00

66 background = 4

67 matcell = 1 1 2 2 3 3

68 c

69 imp:n 1 1 1 1 1 0

70 c

71 c cc

72 c Neutron Tallies

73 c cc

74 c

75 f15:n 110 0 0 0

76 fm15 4.05e+7

77 df15 iu =2 $ sieverts /hr/src - particle

78 fac =1e+6 $ normalization factor

79 ic =20 $ ANSI/ANS 6.1.1 -1977

80 log $ energy interpolation

81 c

82 f14:n 1

83 fm14 4.05e+7

84 df14 iu =2 $ sieverts /hr/src - particle

85 fac =1e+6 $ normalization factor

86 ic =20 $ ANSI/ANS 6.1.1 -1977

87 log $ energy interpolation

88 c

89 embee4 :n embed =1 $ Report flux edit over UM

90 c

91 embee6 :n embed =1 $ Report energy deposition edit over UM

92 c

93 c cc

94 c Print & Go

95 c cc

96 c

97 print

98 rand gen =2 seed =13

99 prdmp 2j 1

100 nps 1e6

LA-UR-15-25143 46 of 46

	Introduction
	Abaqus Operations
	Running Abaqus Python Macros
	Geometry Creation
	Part Cutting Operations
	Assignment of Element Sets (elsets)
	Definition of Materials
	Mesh Parts
	Create Assembly
	Write Abaqus Mesh File

	Pre-MCNP6 Execution Operations
	MCNP6 Execution Notes
	Results Processing
	Geometry Visualization
	Unstructured Mesh Results Visualization

	Conclusions
	References
	Appendix Abaqus Python Macros
	01_Rename_Model.py — Rename Model For Convenience
	02_Create_Paraffin_Block.py — Create Cube to Form Basis of Paraffin Block
	03_Create_Cutter.py — Create Conic Volume to Subtract from Paraffin Block
	04_Cut_Paraffin.py — Perform `Cut' Operation on Paraffin Block with Cubic Volume
	05_Create_Graphite.py — Create 20 cm Graphite Shield
	06_Create_Air.py — Create 555 cm Air Detector Region
	07_Assign_Elsets.py — Assign Element Set Identifiers to Parts
	08_Create_Materials.py — Create Material Names & Assign Densities
	09_Partition_Paraffin.py — Partition Paraffin to Permit Hexahedral Meshing
	10_Mesh_Paraffin.py — Seed and Mesh Paraffin with Hexahedral Elements
	11_Mesh_Graphite_Air.py — Seed and Mesh Graphite & Air with Hexahedral Elements
	12_Create_Assembly.py — Create Assembly from Individual Parts
	13_Create_Job.py — Create Abaqus Mesh Input File from Assembly

	Appendix MCNP6 Input File

