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Abstract!

!
!

New Hash-based Energy Lookup Algorithm for Monte Carlo Codes!
Forrest Brown, XCP-3, LANL!

!
This talk provides a new algorithm for energy lookups during the construction of 
material cross-sections in a continuous-energy Monte Carlo code. A new hash-
based energy lookup algorithm provides speedups of 15-20x over conventional 
schemes and requires about 1,000x less memory than unified grid methods. The 
hashing scheme is based on a log-energy grid and provides search bounds for 
each isotope that greatly reduce the lengths of energy table searches. It should be 
useful to code developers for optimizing the performance of any Monte Carlo code 
for particle transport.  !
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Outline!

•  Introduction!

•  Table Searches!
–  Total cross-section – {search, interpolate, accumulate}!
–  Unified energy grid schemes!

•  Hash-based Energy Lookup Algorithm!
–  History!
–  Setup!
–  Usage!

•  Test Results!
–  Stand-alone!
–  MCNP6.1.1!

•  Conclusions!
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Introduction!
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Monte Carlo & MCNP History!

ENIAC – 1945!
   30 tons!
   20 ft x 40 ft room!
   18,000 vacuum tubes!
   0.1 MHz  !
   20 word memory!
   patchcords!

 

Manhattan Project – 1945...!
    Discussions on using ENIAC!
    Ulam suggested using the!
         “method of statistical trials”!
    Metropolis suggested the!
          name “Monte Carlo”!
    Von Neumann developed the !
          first computer code!
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MCNP6 Features !

mcnp6! mcnpx!
33 other particle types!

heavy ions!
CINDER depletion/burnup!

delayed particles!
!

Partisn mesh geometry!
Abaqus unstructured mesh!

mcnp5 – 100 K lines of code!
mcnp6 – 500 K lines of code!

High energy physics models!
CEM, LAQGSM, LAHET!

MARS, HETC !

New Criticality Features!
Sensitivity/Uncertainty Analysis!

Fission Matrix!
OTF Doppler Broadening!

Continuous Testing System!
~10,000 test problems / day!

mcnp6!
protons, proton radiography!
high energy physics models!

magnetic fields!

mcnp5!
neutrons, photons, electrons!
cross-section library physics!

criticality features!
shielding, dose!

“low energy” physics!
V&V history!

documentation!

Fission!
MCNP5/X multiplicity!
LLNL fission package!

CGM/LLNLGAM,   CGMF (soon)!

mcnp6.1      – 2013!
mcnp6.1.1b – 2014!
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Table Searches!
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Piecewise Linear Data !

•  Cross-section data are stored as piecewise linear functions of  E!

–  Typical   σ (E)  vs  E!

•  Usually stored as linear arrays:!
N = number of entries!
E(1..N)  =  array of E values  =  ( E1, E2, …, EN )!
σ(1..N)   =  array of σ values  =  ( σ1, σ2, …, σN )!
!

•  Two steps are required to lookup & use the data:!
1.  Given E, search the E() array to find interval k containing E  (1≤ k ≤ N-1)!
2.  Interpolate linearly between  Ek  &  Ek+1!

E1! E9!E8!E7!E6!E5!E4!E3!E2!

σ(E)!

σ1!

σ2!
σ3!

σ4! σ5!
σ6! σ7! σ8! σ9!

σ (E) =σ k +
E − Ek

Ek+1 − Ek

⎛
⎝⎜

⎞
⎠⎟
⋅ σ k+1 −σ k( ), Ek ≤ E ≤ Ek+1
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Example!

•  After a collision (before a flight)   or   entering new material!
–  Must look up & interpolate  σT  for the neutron energy E,  

for each nuclide in a material!
–  The σT's are used to determine  ΣT  for the material!
–   ΣT  is then used in randomly sampling of distance to collision!

For     U235, U238, O16, …    (fuel material)!
.!

. ! !Search the array of energies for the nuclide, find interval k containing E!

. ! !Interpolate σT for nuclide at energy E!

. . .!
Add   NσT's   for all nuclides in material to get  ΣT!
!

–   Similar  interpolate & accumulate for scattering, absorption, fission, 
…..!
!

•  This set of operations   {search, interpolate, accumulate}   often 
consumes   1/3 – 2/3   of the overall time in neutron transport MC!
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Search Algorithms!

•  There is extensive literature on search algorithms!
–  D.E. Knuth, The Art of Computer Programming Vol 3 - Sorting & 

Searching!
–  Many other references - books & journals!

•  For general Monte Carlo codes, the commonly-used methods are 
linear search &/or binary search of the cross-section energy tables!
–  Need 1 table search for each of the nuclides in a material!

–  Linear search takes  O( N )    time,   best when   N ~ 10 or less!
–  Binary search takes O( ln N ) time,   best when   N ~  large!

•  To reduce the time needed for the table searches for cross-section 
data, several unified energy grid schemes were used in the past!
–  Map the data for every nuclide in the problem onto 1 energy grid!
–  Requires only 1 energy table search, rather than 1 table search for 

every nuclide in a material!
–  Can be 10-100x faster for energy lookups!
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Unified Energy Grid Schemes!

•  Scheme 1 – very old ! ! !(racer, rcp, o5r, …)!
–  Used in the 1960s – 1980s due to memory limitations !
–  Typically 104 – 105 energy bins     (supergrouped)!
–  Map all xsec data to these bins!
–  Approximate, required weighting functions !

•  Scheme 2 – unified grid ! ! !(psg, serpent, …)!
–  Combine all xsec energy grids, including all energy points!
–  Expand all xsec data onto unified grid!
–  Exact, but required very large amounts of memory!

•  Scheme 3 – unified grid with pointers !(serpent, …)!
–  Combine all xsec energy grids, including all energy points!
–  For each unified grid bin, store pointers to bins in each nuclide xsec 

data set!
–  Exact, retains original nuclide xsec data!
–  Extra storage for unified grid & nuclide pointers!
–  Requires only 1 table search, then (indirect) lookups in nuclide tables!

•  Scheme 4 – NEW, current hash-based energy lookup !(mcnp611)!



OECD-NEA-WPNCS-EGAMCT – 12!

Unified Energy Grid Schemes – Memory Storage!

!          nuclides !E pts !ACE xs        Ugrid+xs       Ugrid+ptrs !        NEW!
!
K Smith bench !64 !.73 M !.12 GB !      1.5 GB !.38 GB !        2.2 MB!
!
Rx pin, 1 temp !77 !.66 M !.12 GB !      1.6 GB !.41 GB !        2.6 MB!
!
Rx pin, 2 temps !145 !1.2 M !.24 GB !      5.6 GB !1.4 GB !        4.8 MB!
!
Rx pin, 5 temps !349 !2.8 M !.55 GB !      31  GB !7.8 GB !        12 MB!
!
All nucs, 1 temp !423 !2.6 M !.58 GB !      36  GB !9.0 GB !        14 MB!
!
!
ACE xs = actual memory for ACE data in mcnp611!
E pts     = total energy points, summed over all ACE nucs = pts in Ugrid!
!
Ugrid+xs    = extra storage for unified E-grid + {σT, σA, σE, heating } at each E & nuc!
Ugrid+ptrs = extra storage for unified E-grid + pointers to nuc xsecs at each E & nuc!
NEW           = extra storage for current hash-based lookup, with 8192 ubins!
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!
!

Hash-based Energy!
Lookup Algorithm!
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New Hash-based Energy Lookup Algorithm!

•  History!
–  Suggested by George Zimmerman (LLNL, ret.) in 2013!
–  Used at KAPL for lattice physics code (Dave Austin) in ~1989, and in 

several variations in racer MC in 1980s!
–  Certainly much older .....!

•  Recent!
–  Zimmerman, in proprietary code mods, 2013!
–  Brown, stand-alone & in mcnp6.1.1b, 2013-2014!

•  Basic idea!

!Retain all mcnp6 machinery for energy lookups &  
!forming the total cross-section, but!

!

!   ➜ use a physics-based hash scheme to greatly narrow 
!        the bounds for each binary search of nuclide E tables!

!

!   ➜ Minimal mcnp6 code changes, but significant speedups!
!

!   ➜ Modest memory storage,  much less than unified grids!
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Setup!

•  The setup portion of the algorithm, performed prior to neutron 
random walks, involves the following steps:!

1.  Determine Emin and Emax energy bounds for the problem!
•  Check Emax & Emin for all nuclide ACE datasets in the problem!

2.  Setup the "ugrid" for the hashing function!
•  Ugrid:     uniform spacing in ln(E) between Emin and Emax!
•  M:            number of bins in  ugrid().   !
•  No need to store ugrid() --  just store M, Emin, Emax!
•  mcnp611:  M = 8192,   reasonable speed/storage tradeoff!
!

3.  Setup nuclide search bounds for each ubin index!
•  For each bin in ugrid,  lookup & store for each nuclide the 

bounding indexes k1(u,n) and k2(u,n) in the ACE energy table for 
that nuclide  (n= nuclide index, N= no. nuclides, u= index in ugrid )!

•  Only need store k1(u,n),    since  k2(u,n) = k1(u+1,n)+1!
•  Total extra storage = (M+1)∙N∙4  bytes        (int4 sufficient for ACE data)!

Note:  The above steps do NOT involve any approximations !
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Usage During Random Walk Simulation!

•  After particle energy change  or  when entering new material!

Defining ! umin= log Emin, !umax= log Emax, !du = M / (umax - umin)!
!

New algorithm for energy lookups for neutron energy E is:!
!

!u = 1 +   ⎣ du ∙ ( logE – umin ) ⎦,        ⎣ ⎦  is truncation to the next lowest integer!!
!For each nuclide n:!
!    search its energy table between entries k1(u,n)   &  k2 =k1(u+1,n)+1!

!

E!
Compute u.!
Get  k1, k2  
    for each n  
    as needed.!

⦁⦁⦁⦁⦁⦁⦁ 

⦁⦁⦁⦁⦁⦁⦁⦁⦁⦁⦁⦁⦁ ⦁⦁⦁⦁⦁⦁ 

Nuclide 1!

Nuclide 2!

Nuclide N!

k2!

k1!

k2!

k1!

k2!

k1!
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Comments!

•  Memory storage!
–  ugrid  is completely defined by M, Emin , Emax -- need not be stored!
–  Because k2(u,n) = k1(u+1,n)+1, the k2(u,n) values need not be stored !
–  Total additional memory storage =  (M+1)∙N∙4  bytes!
–  More compact memory use,  so more cache-friendly!

•  Speed/space tradeoff!
–  Larger M  gives improved speed, but dependence is weak for M >1000 !
–  Smaller M reduces speedup but also reduces memory requirements. !

•  Choice of M does not in any way affect accuracy of the xsec data!
•  k1 and k2 indexes for each nuclide for each of the ugrid bins!

–  Bounds for performing ordinary binary searches in the nuclide ACE!
–  These bounds narrow the range of the binary searches, so that only a 

small portion of each nuclide energy table need be searched!
–  Frequently the search range in the nuclide energy tables is  < 8.  

For such small ranges, a simple linear search will be slightly faster 
than a binary search & may provide additional small speedups!
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!
!

Timing Results!



OECD-NEA-WPNCS-EGAMCT – 19!

Stand-alone Testing    (1)!

•  Stand-alone coding to compare 3 methods: !
1.  Standard MCNP6.1 with external binary search function!
2.  Standard MCNP5    with explicit inline coding for binary searches!
3.  New hash-based scheme with inline binary searches. !

•  ACE datasets!
–  The energy tables for 9 nuclides from the ENDF/B-VII.1 nuclear data 

libraries were used in the comparisons:  
!  1001.80c,     8016.80c,   26056.80c,   92235.80c,  
  92238.80c,   94239.80c,   94240.80c,   94241.80c,   6000.80c. !

–  These nuclides had energy table sizes ranging from 590 to 157,744 
bins. !

•  For each energy lookup scheme, many millions of neutron 
energies were randomly sampled in the ugrid range, and then the 
energy lookups were performed for all 9 nuclides. Overall timing 
results are averages for the set of nuclides.!
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Stand-alone Testing    (2)!

•  Timing results for stand-alone test of energy lookup methods. 
Results are the average time for each energy lookup !

•  Inlining binary searches 
gives 10-20% speedup 
(mcnp5 vs mcnp6.1)!

•  New hash-based scheme 
gives 15-20x speedup!

•  M = 8192 used for table!

•  Lookup time for other M on 
MacBook!

M = 64 k       2 ns!
M = 32 k       2 ns!
M = 16 k       2 ns!
M =   8 k       3 ns!
M =   4 k       3 ns!
M =   1 k       5 ns!

•  Mixed binary/linear search 
(break at 8) did not improve 
speedup !
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MCNP6 Timing Tests    (1)!

•  MCNP6.1  (2013)  runs significantly slower than MCNP5!
–  Slowdowns are problem-dependent,  20% to 5x slower!

•  MCNP6.1.1  (2014)!
–  Significant classic optimizations performed!

Inline functions,  eliminate non-unit-stride vector ops, if-guards, …!
–  New hash-based energy lookup scheme!
–  Measured timing results for new energy lookup scheme compare 

mcnp6.1.1 before & after new scheme,  with all other optimizations 
the same!

!
•  New energy lookup scheme provides 1 – 1.9x speedup in overall 

MCNP6.1.1 problem runtime     (at least for neutron problems)!

•  MCNP6.1.1  is a  lot     faster than MCNP6.1!
•  MCNP6.1.1  is a  little  faster than MCNP5!
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MCNP6 Timing Tests    (2)!

•  MCNP6.1.1 speedups due to new hash-based energy lookup 
algorithm!

•  Speedup compares 
mcnp6.1.1 before & after 
new energy lookup scheme, 
with no other changes!

•  M = 8192 used for table!

•  All runs performed on Mac 
Pro (3 GHz, 2 quad-core) 
with 8 mcnp6 threads, using 
standard ENDF/B-VII data!
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!
!

Summary!
&!

Conclusions!
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Summary & Conclusions!

•  While the new hash-based energy lookup algorithm by itself is 15-20x 
faster than the conventional scheme, it is only a portion of the overall 
work and computations performed by MCNP. !

–  Overall speedups due to the new energy lookup algorithm will vary, depending 
on the particular physics and geometry of each problem. !

–  Problems with more collisions per history & more isotopes per material will 
show larger speedups!

–  Problems with more tallies, more complicated geometry, or fewer isotopes per 
material will show smaller or no speedups.!

•  A particular advantage of the new lookup algorithm over unified energy 
grid schemes is the very significant reduction in memory requirements!

–  MBs instead of GBs!
–  More cache-friendly!
–  Significant memory savings are important for future generations of computers 

that are expected to have very many more processors, but less memory per 
processor.  !

•  The new lookup algorithm has been incorporated into MCNP6.1.1  (2014) !
–  Currently used only for energy lookups in neutron data tables. !
–  Future work will investigate whether the new algorithm can be effective for 

other problems (e.g., photons, light ions).!
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!
!

Miscellaneous!
-!

Interesting Information!
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Monte Carlo - Computer Operations & Performance!

•  Breakdown of computer operations for typical large, general-
purpose Monte Carlo code  (approximate)!

! !40% -  indexing,  integer ops,  memory access!
! !30% -  test-and-branch!
! !25% -  arithmetic!

 !     5% -  RN generation & sampling,  64-bit integers!
!

•  MC code performance vs. computer hardware!
–  Memory access is largely random!

•  Little cache-coherency - only small gain from larger cache!
•  Bus speed is important!

–  CPU-intensive, but not floating-point!
•  Big gains from multiple integer/logical functional units!
•  Smaller gains from multiple floating-point units!

–  Compiler optimizations are critical!
•  Test-and-branch operations!
•  Indexing & memory prefetching!
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•  M.C. codes have many levels of indirection for memory access!

•  Each level of indirection:!
–  Integer ops for indexing!
–  Irregular memory access!
–  Cache-misses!
–  Inhibits   pre-fetching,   compiler optimization,  &  vectorization!

mat  = mat_in_cell( cell )!

iso = iso_in_mat( i, mat )!

cell!

k   = energy_bin_table_search( E, Eiso(1,iso) )!

sigt = sigt !
       + den*[ (1-de)*sigt_iso(k,iso) + de*sigt_iso(k+1,iso) ]!

Monte Carlo - Levels of Indirection!
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Computing - Latency & Threading!

•  Hardware - Moore’s Law!
–  Before 2000: !     2X cpu speed every 18 months!
–  After    2000: !     more cpu-cores per chip,   not faster cpus!
–  Today,  hardware speed gains come from parallelism!

•  Fast, multicore cpus!
–  Need more data & need it faster!
–  Data transfer speed from memory to CPU has not kept up!
–  Today,  data access & latency are biggest concerns!

•  Dealing with latency:!
–  Hardware    -- cache, out-of-order execution, multicore,  GPUs!
–  Algorithms -- High-level, data order & layout, vectorization, threading!
–  Important to match algorithms & hardware!

•  Most large computer systems today are clusters!
–  Many nodes: !fiber network interconnect!
–  Multicore cpus: !share memory within each node!
–  Hierarchical parallelism for Monte Carlo!
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MCNP - Hierarchical Parallelism!

! ! ! !       Concurrent Jobs ➜!
!
!
!
!
!
!
!
Parallel Processes!

–  Total processes =   (# jobs)  x  (# MPI processes)  x  (# threads)!

–  Tradeoffs:!
•  More MPI processes - !lots more memory & messages!
•  More threads - !contention from lock/unlock shared memory!
•  More jobs - ! !system complexity, combining results!

Master!

Slave! Slave!Slave!

History!History! History!History! History!History!

MESSAGE-PASSING!

THREADS! THREADS! THREADS!

Master!

Slave! Slave!Slave!

History!History! History!History! History!History!

MESSAGE-PASSING!

THREADS! THREADS! THREADS!


