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Methodology for Sensitivity and Uncertainty-Based
Criticality Safety Validation

Brian C. Kiedrowski

1 Introduction

Monte Carlo radiation transport software is used extensively for determining the effective
multiplication factor k of fissionable systems towards assessing the criticality safety of op-
erations. Understanding the predictive capability of the Monte Carlo software and nuclear
data libraries for calculations of specific applications is vital towards making these assess-
ments. Recently, sensitivity and uncertainty (S/U) methods have been developed for this
purpose. A computational tool has been developed that uses the S/U methods with MCNP6
[1] to select critical experiment benchmarks that have similar sources of computational bias,
and extreme value theory is then used to determine suitable and conservative calculational
margins. The S/U techniques are then used to perform nuclear data adjustments, which are
then used to determine a suitable margin of subcriticality from cross section uncertainties.

This document gives an overview of the theory of S/U methods used for criticality safety
validation. First an overview is given for using the sensitivity coefficients and nuclear co-
variance data towards determining neutronic similarity factors is then discussed. Next, the
extreme value theory (EVT) to determine a calculational margin is given along with how
the similarity factors are used in the analysis. Then, the Generalized Linear Least Squares
(GLLS) method for performing data adjustment and how that method is used to reject
benchmarks and compute adjusted nuclear data uncertainties in k are discussed. Last, a
discussion of the margin of subcriticality is given along with how to apply of the GLLS data
adjustment methods to quantify the effect of nuclear data variability on k.

2 Neutronic Similarity

The sensitivity coefficient to the effective multiplication factor k to some nuclear data x is
defined as the relative change in k caused by some relative change in x:

Sk,x =
∆k/k

∆x/x
. (1)

For an infinitesimal change in x, the sensitivity coefficient becomes

Sk,x =
x

k

dk

dx
. (2)
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The magnitude of the sensitivity coefficient can be thought of as the impact that some piece
of nuclear data has toward determining criticality, and its sign gives whether or not increasing
the value of the data increases or decreases k.

The sensitivity coefficient can be estimated with Monte Carlo or deterministic methods
using perturbation theory. MCNP6 uses the Iterated Fission Probability (IFP) method to
compute the sensitivity coefficients in a continuous-energy Monte Carlo simulation [2], but
other approaches are possible. The advantage to the IFP method is that, while it may not
be the most efficient, it requires minimal user involvement and is therefore easy to automate.
In either case, the similarity assessment is agnostic to the exact method used in the Monte
Carlo, and the resulting sensitivity coefficients can be used interchangeably. The details of
various approaches with multigroup cross sections and with continuous-energy physics are
given in Refs. [2, 3, 4, 5, 6, 7, 8].

Although it cannot be shown rigorously, it is generally accepted that in most cases the
predominant source of computational bias is because of uncertainties in the nuclear data.
Since the sensitivity coefficients give which nuclear data matter most and the nuclear data
uncertainties are the source of the bias, they, with the cross section covariance data to
quantify the uncertainties, can be used to determine if two systems have similar biases.

The metric that is often used to assess a similar source of bias is called ck, which is the
correlation coefficient between two systems. The sensitivity coefficients are organized into
a vector S, whose elements represent various nuclides, reactions, and energy ranges. The
nuclear covariance data is given as matrix C containing relative covariances. The sensitivity
vectors and covariance matrix are consistently ordered. The correlation coefficient ck can
then be computed by

ck =
S1CST

2√
S1CST

1

√
S2CST

2

. (3)

Here the subscripts denote the two different systems being compared.
When ck = 1, the two systems are neutronically identical and, in terms of nuclear data,

have exactly the same source of computational bias. A value of ck = 0 states that the two
systems are completely dissimilar and therefore share no common nuclear-data driven source
of computational bias. Negative ck are theoretically possible indicating anti-similarity, but
rarely observed and tend to be very small in practice. Empirically for low-enriched uranium
(LEU) lattices, systems with ck of greater than 0.9 or 0.95 have been shown to give reliable
bias trends, and those with a ck from 0.8 to 0.9 are marginally adequate. Unfortunately,
the exact nature of the value of ck to use as “similar enough” is system dependent; however,
those with a higher ck are more appropriate to use for validation than those with lower ck.

3 Validation with Extreme Value Theory

Extreme Value Theory (EVT) may be applied to avoid the question of what value of ck is
similar enough for a given system. The application of EVT predicts probabilities of “worst
case” occurrences and is conservative because increasing the sample size never decreases
the predicted margins. The question then becomes whether or not the sample size is large
enough. Answering this question rigorously for an arbitrary case is incredibly difficult, but
some empirical numbers of sample sizes may be given that appear to work in practice.
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EVT determines the probability that the maximum from a vector of random variables
X = {X1, X2, . . . , XN} is less than some value x. Suppose each random variable Xj in X
is independent and has a cumulative density function (CDF) Fj. The probability that x
bounds the maximum Xj is given by the product of the CDF of Fj, or

F (x) =
N∏

j=1

Fj(x). (4)

For criticality safety validation Fj(x) is the random distribution function of the bias in
k. Typically, the bias for an individual experiment is assumed to be normally distributed,
and therefore the CDF is

Fj(x) =
1

2

1 + erf

x− βj√
2σ2

j

 , (5)

where βj is the computational bias determined from the difference in a calculation and a
benchmark value and σ2

j is the variance of the bias, which is the sum in quadrature of
the benchmark and Monte Carlo statistical uncertainties. For mathematical convenience, a
positive βj is defined to be non-conservative, i.e., the software predicts the benchmark value
lower than it should. This change in the sign of the bias from what is typical needs to be
consistently applied when determining the upper subcritical limit.

Each benchmark experiment can also be given a weight based upon how neutronically
similar it is to the application of interest. If a benchmark has a weight wj, the CDF Fj

needs to be redefined such that as x → ∞, F (x) → 1. The corresponding probability
density function can be thought of as having a Dirac delta function at x = −∞ with weight
1−wj and a normal distribution centered about βj with variance σ2

j having weight wj. The
weighted CDF is

Fj(x) = (1− wj) +
wj

2

1 + erf

x− βj√
2σ2

j

 . (6)

For wj = 1, the weighted CDF reduces to the unweighted CDF; for wj = 0, the weighted
CDF is unity for all x. From this point forward, Fj refers to the weighted CDF.

The benchmark weight wj should represent the degree of similarity with an application
system, which can be quantified by ck. The choice of how the weight is assigned is rather
arbitrary. Since the ck is a linear correlation coefficient, a logical choice involves a linear
interpolation of some sort. The scheme used is

wj =
ck,j − ck,acc

ck,max − ck,acc

, (7)

where ck,j is the similarity coefficient ck for benchmark j, ck,max is the ck of the most similar
benchmark in the set, and ck,acc is the acceptance ck (a lower bound of which benchmarks
are used) to ensure an adequate total weight of the sample size wreq, such that

N∑
j=1

wj ≥ wreq. (8)
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Determining the required weight is likewise arbitrary. The choice selected based upon em-
pirical studies is

wreq = A + B (1− ck,max) . (9)

Here A is given as the minimum number of neutronically identical benchmarks or a set of
non-identical benchmarks that add up to the same weight when there exists a benchmark
that is neutronically identical ck,max = 1. The parameter B is a penalty factor for not having
a benchmark that is identical. The choice of B should be made such that for ck,max < 1,
more total benchmarks with ck = ck,max (i.e., wj = 1) are required than if ck,max = 1.

The choices for the parameters A and B must be made empirically. The default values
are A = 25 and B = 100. This implies that if there is a perfect benchmark in the set,
24 additional identical benchmarks are required or, more realistically, a number of bench-
marks must add up to a total additional weight of 24. If ck,max = 0.95, then 29 additional
benchmarks are required with ck,max = 0.95 or more with the statistical equivalent sum.

Once the sample benchmarks and sample weights wj is determined, the EVT CDF F (x)
can be determined. The computational or calculational margin is found by finding the value
of x where F (x) equals the desired confidence. Typical choices are 0.95 or 0.99. For the
latter choice of 0.99, this implies that there is a 99% chance that the value x bounds the
worst case bias in k for the weighted sample set selected.

3.1 Discussion of Benchmark Selection and Extreme Value Theory

The premise of performing the validation is that there needs to be a sufficient number of
benchmarks that are similar enough. In the case where there are insufficient benchmarks
of high similarity, the method will automatically select benchmarks that are increasingly
less suitable until the sample size criterion is met. The advantage of EVT is that adding
a benchmark never decreases the calculational margin, so there is no concern about adding
less relevant benchmarks from a safety point of view as the calculational margin will only
become more conservative.

In practice, not having sufficient similar benchmarks available forces the method to dig
more deeply into the suite, using a greater number of benchmarks, and increases the cal-
culational margin to account for having less certainty. An example is Pu solutions with
ENDF/B-VII.1 data. Near optimal moderation, there are a plethora of very similar bench-
mark experiments that calculate consistently and the predicted calculational margin is lower
than for mor dilute or concentrated Pu solutions. In those regions, the validation does not
have enough similar Pu solution benchmarks, so it tends to look at the Pu oxide, mixed
oxide, and mixed solution benchmarks. The net effect again is to drive the calculational
margin higher.

4 Generalized Linear Least Squares Data Adjustment

Typically the uncertainties in the nuclear data are the predominant source of computational
bias. Given the sensitivity vector (first derivatives) and the covariance matrix for the bench-
mark experiments, it should be possible to perform an adjustment of the nuclear data that
minimizes the bias within the bounds given by the covariance data. This can be used to find
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benchmarks that are inconsistent with the assumption that their bias is driven by nuclear
data uncertainties, and those can be rejected. The data adjustment process can also be
used to adjust the covariances in the nuclear data as well given the benchmark experiments.
These adjusted covariance data can be used to determine uncertainties in nuclear data.

A comprehensive coverview of the GLLS technique can be obtained in Refs. [9, 10] To
summarize, the GLLS technique minimizes the χ2 statistic, which is a quadratic function the
sums the adjusted relative deviations of the calculation from benchmark and the proposed
change in the nuclear data from its mean:

χ2 = [∆k]T Ckk [∆k] + [∆x]T Cxx [∆x] . (10)

∆k represents the relative deviation in k for each benchmark after the adjustment predicted
by the sensitivity coefficients, Ckk is the relative covariance matrix of the benchmark ex-
periments, ∆x is the relative deviation of the nuclear data from its mean, and Cxx is the
relative covariance matrix for the nuclear data. With no adjustment, the ∆x are all zero
so the χ2 is determined solely from the deviation in the benchmark experiments. As the
data is adjusted, the deviation in the benchmark k may decrease, therefore decreasing the
first term in the χ2 equation, but this also increases the deviation in the nuclear data and
therefore increases χ2. Therefore, while it is almost always possible to find a data adjustment
that reduces the experimental deviations to zero, given the very large number of degrees of
freedom for adjusting the data, it is generally not possible to do this without increasing χ2.

The goal is to find the data adjustment that minimizes χ2 balancing the decrease from
reducing the deviation of the benchmark experiments and the increase from growing the
deviation of the nuclear data with its mean. There is a unique solution to this problem.
First, define the deviation vector d as a vector of relative deviations in the calculation
from benchmark experiments. The covariance matrix of the deviation vector for a set of
benchmark experiments is

Cdd = FE/CCkkFE/C + SkxCxxSkx. (11)

FE/C is a diagonal matrix containing the ratio of the benchmark k to calculated k and Skx

is a matrix where each row is the sensitivity vector for each benchmark experiment. Given
these definitions, the minimum χ2 is

χ2
min = dTC−1

dd d, (12)

where C−1
dd is the inverse of the covariance matrix of the deviation vector.

4.1 Rejection of Inconsistent Benchmarks

The minimum χ2 represents how well a regression model can fit the benchmark data through
a nuclear data adjustment. Perfect agreement with the model would result in a χ2

min divided
by the number of degrees of freedom, i.e., the number of benchmarks, of unity. A χ2

min

of greater than one indicates that there are unexplained sources of bias other than the
nuclear data uncertainties, or that the nuclear data and/or experimental covariances may be
too small. Values of χ2

min less than one indicates that the benchmark and/or nuclear data
uncertainties are too large.

5



In practice, χ2
min is going to be greater than unity, and the statistic may be used to

reject inconsistent benchmarks until χ2
min falls below a certain threshold. Exactly what the

threshold should be is somewhat arbitrary, but a canonical value used for this application is
that the χ2

min divided by the number of benchmarks should be less than 1.2.
Two approaches are offered for the rejection of benchmarks. The first is the ∆χ2 method,

which is the most rigorous. While χ2
min is greater than the threshold, the rejection routine

recomputes for every benchmark the value of χ2
min had that benchmark been rejected. The

benchmark that it rejects is the one with that gives the greatest decrease in χ2
min. If χ2

min is
greater than the threshold, the rejection routine proceeds anew and continues until χ2

min is
below the threshold.

Since this approach is very computationally costly for a large benchmark suite, the second
more approximate approach is implemented. This is called the Iterative Diagonal χ2 method.
While the χ2

min is less than the threshold, the diagonal χ2 is computed for each benchmark:

χ2
diag,j = djC

−1
dd (j, j)dj. (13)

Here dj is the deviation in k from the jth benchmark, and C−1
dd (j, j) is the corresponding

diagonal element of the inverse of the deviation covariance matrix. The benchmark with the
greatest χ2

diag is rejected. As with the ∆χ2 method, χ2
min is recomputed and the rejection

process continues until χ2
min is recomputed. Note that for each rejection iteration, the inverse

of the deviation covariance matrix C−1
dd is recomputed. The Iterative Diagonal χ2 method

tends to reject a greater number of benchmarks than the ∆χ2 method, but is significantly
more computationally efficient.

Because the rejection of benchmarks is a function of the validation suite and independent
of the applications being analyzed, the rejection of benchmarks is typically done once for the
entire validation suite. The information about which benchmarks to reject, i.e., not include
in the validation, is stored and read in when performing the validation with the EVT method.

4.2 Adjusted Nuclear Data Uncertainty

The nuclear data covariance matrix Cxx represents the prior uncertainties of the nuclear
data given the differential measurements. In preparing a nuclear data evaluation, integral
measurements, e.g., critical experiment benchmarks, are used to constrain the choices for
cross sections as well, i.e., evaluators do not allow changes to nuclear data libraries that have
too adverse an effect on the predictive performance of the critical experiment benchmarks.
Because of this fact, there exists a dependency between the nuclear data and the critical
experiment benchmarks, and the actual nuclear data uncertainties are therefore lower than
the differential measurements alone would indicate.

The GLLS method, through its nuclear data adjustment, allows for an adjustment of the
nuclear data covariances as well. The adjusted or residual covariance matrix post adjustment
is found by

Cx′x′ = Cxx −
[
CxxS

T
kxC

−1
dd SkxCxx

]
. (14)

This residual covariance matrix Cx′x′ may be used to determine an adjusted uncertainty in k
because of the uncertainties in nuclear data. The sensitivity matrices Skx are for the critical
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experiment benchmarks, typically following a χ2 rejection. The adjusted uncertainties in k
for a set of applications may be found with the sandwich rule:

Ck′k′ = SkxCx′x′ST
kx. (15)

Here Skx is a matrix with rows as the sensitivity vectors for the applications, and Ck′k′ is
the covariance matrix for k of the applications. The square root of the diagonal elements
of Ck′k′ represent the adjusted relative uncertainties of k from the adjusted nuclear data
covariances.

5 Margin of Subcriticality

In addition to the calculational margin, which is the bias plus bias uncertainty, an additional
margin must be applied such that the analyst can ensure the process is actually subcritical.
While this is ultimately the responsibility of the analyst as the details are inexorably linked
with the process being analyzed, there are factors that the validation can address. First
is the uncertainty in k because of variability in the cross sections, and second is the possi-
ble discrepancy in k from a calculation because of errors in transport and data processing
software.

5.1 Variability in Cross Section Libraries

There are several modern cross section libraries available for performing criticality safety
analysis. Because the preparation of a nuclear data evaluation involves expert judgment
about which experimental results, theoretical models, and integral experiments to use, the
results from one library almost always differ from another.

Typically, a new validation study selects a single cross section library that is recent.
The choice of this is usually for non-technical reasons such as historical precedent and the
geographic origin of the library relative to the facility (e.g., facilities in the US tend to
use ENDF libraries, which are developed in the US; facilities in Europe tend to use JEFF
libraries, which are developed in Europe). Because of this, there is no a priori reason to trust
one set of experts over another, and different conclusions may result because of the choice
of data library.

The traditional approach toward quantifying this is to swap out one nuclear data library
with at least one other and to empirically determine the effect on the calculated k within
the area of applicability. Doing this is not always easy from a workflow point of view, and
there is always the question of why particular alternate libraries are selected over another.

The GLLS nuclear data adjustment methods offer an alternative way to determine the
effect of this variability. In making an evaluation, both the cross section covariances and the
critical experiment benchmarks are considered. The final nuclear data that gets released is
usually chosen to be within their prior, differential measurement uncertainties and such that
they do not have too adverse an impact on the critical experiment benchmarks. The reduced
covariances following a GLLS nuclear data adjustment approximate the true uncertainty
that an evaluator has available, in practice, for adjusting the nuclear data using their expert
judgment.
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Given this premise, the residual nuclear data covariance matrix can therefore be used
via the sandwich rule to approximate the variation in k because of the variability in nuclear
data libraries. Application of the sandwich rule implies an assumption of underlying multi-
variate normal distributions, and the standard rules of specifying confidence intervals apply.
For example, at a 99% confidence interval, about 2.6 times the uncertainty in k from the
variability in nuclear data can be applied towards determining a margin of subcriticality.

5.2 Undetected Errors from Transport and Nuclear Data Processing Software

Radiation transport software are a very complicated, and inevitably have errors that impact
results in k. The same is true of the software used to process the nuclear data libraries from
their native formats to those capable of being used by the transport software. Because of
the unpredictable nature of software errors, these may not be detected as part of even an
extensive validation.

As part of the process of determining an appropriate margin of subcriticality for this
effect, a detection limit for the degree to which results would be impacted and to not be
or have been noticed (else it would have already been fixed by the software developers)
needs to be established. This needs to consider the typical experimental uncertainties in
available benchmarks, the maturity of the software, the current amount of support, the
current pedigree of the software quality assurance in the development, and the current and
past amount of use for the application of interest. Software that is decades old and has
currently and historically had thousands of users is more likely to have fewer errors than a
newer software package with fewer than a hundred.

Determining the detection limit requires expert judgment by the software developers. For
example, the MCNP software has a history dating back to before the 1970’s, has been under
continuous active development, and has over 10,000 users, of which a significant fraction
perform criticality calculations of some sort. Considering that the best integral experiments
have a benchmark uncertainty of 0.001 to 0.002, it is the expert opinion of the MCNP
software developers that a suitable detection limit for k for criticality safety is 0.005. Errors
of a larger magnitude would have already been addressed in such a mature software package.

The detection limit of 0.005 would also likely apply to KENO or SCALE as well, which
has been used extensively for criticality safety analysis for decades. Less mature or used may
require a detection limit of 0.01 to 0.03 depending on the maturity, level of use, support, and
testing. In setting this detection limit, it is important to consult with the software developers
to ascertain the degree to which they believe errors in k would have been detected.
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