LA-UR-14-23159

Approved for public release; distribution is unlimited.

Title: Bad Estimates as a Function of Exceeding the MCNP Random Number Stride
$\begin{array}{ll}\text { Author(s): } & \text { Booth, Thomas E. } \\ \text { Intended for: } & \begin{array}{l}\text { share with interested colleagues and menp forum } \\ \text { Report } \\ \text { Web }\end{array}\end{array}$

Issued: 2014-05-05

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National
Security, LLC for the National NuclearSecurity Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396.
By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to
publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes.
Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the
U.S. Departmentof Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Bad Estimates as a Function of Exceeding the MCNP Random Number Stride

Thomas E. Booth

LA-UR-14-DRAFT, Feb 14, 2014

Abstract

Examples of bad MCNP estimates resulting from exceeding the MCNP random number stride are given for a simple infinite medium problem.

1 Introduction

There have been a number of informal assertions that exceeding the MCNP random number stride does not result in bad estimates. There apparently are no theoretical justifications ever presented for these assertions. Often, it is simply asserted, as apparently obvious, that no bad estimates will result because the random numbers reused when exceeding the stride will be "used for different purposes" in "real problems." The recent discussion concerning this random number stride issue was on the MCNP forum on January 9, 2014. Typical assertions over the years have been similar to Brian Kiedrowski's [1].
"Like the choice of the random number seed, the choice of the stride is entirely arbitrary. The stride does need to be large enough such that the random numbers will not be used for the same thing."

Note several things:

1. Though this quote is out of context, the main assertion here is typically what people remember and repeat; the context is often insufficiently emphasized or even not mentioned at all.
2. The context is sometimes implicitly assumed rather than explicitly stated.
3. The authors of the statements may intend that their statements be interpreted for the typical cases that the authors have in mind. The proper interpretation of the statements is often inadequately conveyed.
4. There is a lot of leeway in the terms "large enough" and "for the same thing." A number of people have asserted that exceeding the stride did not matter using similarly vague terminology.

The purpose of this work is to give a simple infinite medium transport example for which MCNP flux tallies depend on the stride. Note that the example cannot be said to prove or disprove the imprecise lore about random number strides. It is not the purpose of this note to debate whether the examples given meet the "large enough" and "for the same thing" criteria. It is not unlikely that the lore may be valid in most cases. On the other hand, perhaps the examples show that caveat emptor is a reasonable approach to the lore in some circumstances.

2 The Test Problem

The test problem is an infinite medium fission system as shown below.

```
infinite medium fission system
    1 1 -1.0 -1
    2 1
    1 so 1.e11
mode n
imp:n 1 0
m1 92239.70c 4.45 1001.70c 2 8016.70c 1
sdef erg=2.0
f4:n 1
t4 1e4 1e5 1e6 1e7 1e8 1e9 1e10 1e11 1e12
vol 1 0
nps 1000000
cut:n 2.e9 j 0 0
rand gen=2 stride= 1111152917
print
```

There were two sets of runs; one set of million particle runs and one set of ten million particle runs. Within a set, the only difference was the random number stride that was used.

3 One million particle runs

Tables 1 and 2 show early time and late time MCNP results for the 1 million particle runs. The reference case is with a stride of 111152917 ; this reference stride was never exceeded. Note that a stride of 1000 shows a large difference from the reference case. In particular there is almost a factor of two difference in the 2×10^{9} time bin. That is $2.91570 \mathrm{E}+04$ (reference) versus
$1.58374 \mathrm{E}+04$. Even at strides of 5000 and 10000 in the 2×10^{9} time bin, the results look suspicious. Note that the one million particle run with a stride of 2000 did not pass MCNP's statistical tests. The rest of the one million particle runs passed the statistical tests. Here is MCNP output detail for the run with stride of 2000.

results of 10 statistical checks for the estimated answer for the tally fluctuation chart (tfc) bin of tally 4

tfc bin behavior	$\begin{aligned} & \text {--mean-- } \\ & \text { behavior } \end{aligned}$	value	-relati decreas	$\begin{aligned} & \text { error--------- } \\ & \text { decrease rate } \end{aligned}$	----variance of the variance---value decrease decrease rate			--figure of merit-value behavior		$\begin{aligned} & \text {-pdf- } \\ & \text { slope } \end{aligned}$
desired	random	<0.10	yes	1/sqrt (nps)	<0.10	yes	$1 / \mathrm{nps}$	constant	random	>3.00
observed	random	0.02	no	no	0.00	yes	no	decrease	random	3.11
passed?	yes	yes	no	no	yes	yes	no	no	yes	yes

warning. the tally in the tally fluctuation chart bin did not pass 4 of the 10 statistical checks.

nps	mean	error	vov	slope	fom
64000	$6.9068 \mathrm{E}+04$	0.0566	0.0181	3.4	24
128000	$7.7291 \mathrm{E}+04$	0.0372	0.0068	10.0	25
192000	$7.8675 \mathrm{E}+04$	0.0305	0.0050	10.0	25
256000	$8.0300 \mathrm{E}+04$	0.0280	0.0063	4.7	21
320000	$7.8963 \mathrm{E}+04$	0.0249	0.0048	2.7	22
384000	$7.8227 \mathrm{E}+04$	0.0228	0.0038	5.6	22
448000	$8.1384 \mathrm{E}+04$	0.0213	0.0030	10.0	21
512000	$8.1112 \mathrm{E}+04$	0.0200	0.0025	10.0	21
576000	$8.3744 \mathrm{E}+04$	0.0196	0.0029	10.0	19
640000	$8.8009 \mathrm{E}+04$	0.0198	0.0036	5.9	16
704000	$8.7093 \mathrm{E}+04$	0.0187	0.0033	5.4	16
768000	$9.2101 \mathrm{E}+04$	0.0199	0.0048	6.1	12
832000	$9.2108 \mathrm{E}+04$	0.0189	0.0043	5.2	13
896000	$9.2216 \mathrm{E}+04$	0.0182	0.0039	6.1	13
960000	$9.2512 \mathrm{E}+04$	0.0174	0.0035	3.1	13
1000000	$9.2152 \mathrm{E}+04$	0.0170	0.0034	3.1	13

Table 1: Early times on 1 million particle runs

	time	time	time	time	times stride
stride	$1.0000 \mathrm{E}+04$	$1.0000 \mathrm{E}+05$	$1.0000 \mathrm{E}+06$	$1.0000 \mathrm{E}+07$	exceeded
1000	$8.29471 \mathrm{E}+030.0049$	$1.58804 \mathrm{E}+040.0111$	$2.52317 \mathrm{E}+030.0387$	$1.21254 \mathrm{E}+030.0446$	283984
2000	$8.33418 \mathrm{E}+030.0049$	$1.66519 \mathrm{E}+040.0115$	$3.89681 \mathrm{E}+030.0505$	$1.38708 \mathrm{E}+030.0520$	199366
5000	$8.42154 \mathrm{E}+030.0050$	$1.75335 \mathrm{E}+040.0115$	$3.64764 \mathrm{E}+030.0462$	$1.53010 \mathrm{E}+030.0577$	124568
10000	$8.37007 \mathrm{E}+030.0050$	$1.71213 \mathrm{E}+040.0115$	$3.45582 \mathrm{E}+030.0463$	$1.45445 \mathrm{E}+030.0508$	87643
20000	$8.38088 \mathrm{E}+030.0050$	$1.77812 \mathrm{E}+040.0114$	$3.77033 \mathrm{E}+030.0446$	$1.55431 \mathrm{E}+030.0500$	61521
50000	$8.34281 \mathrm{E}+030.0050$	$1.75441 \mathrm{E}+040.0116$	$3.59448 \mathrm{E}+030.0429$	$1.53030 \mathrm{E}+030.0491$	38164
111152917	$8.42560 \mathrm{E}+030.0050$	$1.76903 \mathrm{E}+040.0116$	$3.64263 \mathrm{E}+030.0401$	$1.52114 \mathrm{E}+030.0505$	0

Table 2: Late times on 1 million particle runs

	time	time	time	time	times stride
stride	$1.0000 \mathrm{E}+08$	$1.0000 \mathrm{E}+09$	$2.0000 \mathrm{E}+09$	total	exceeded
1000	$6.90403 \mathrm{E}+030.0243$	$3.22593 \mathrm{E}+040.0197$	$1.58374 \mathrm{E}+040.0308$	$8.29116 \mathrm{E}+040.0144$	283984
2000	$7.66249 \mathrm{E}+030.0238$	$3.53743 \mathrm{E}+040.0218$	$1.88448 \mathrm{E}+040.0307$	$9.21515 \mathrm{E}+040.0170$	199366
5000	$8.43538 \mathrm{E}+030.0262$	$3.94349 \mathrm{E}+040.0222$	$2.59983 \mathrm{E}+040.0322$	$1.05001 \mathrm{E}+050.0177$	124568
10000	$8.68752 \mathrm{E}+030.0269$	$4.04040 \mathrm{E}+040.0236$	$2.72949 \mathrm{E}+040.0324$	$1.06788 \mathrm{E}+050.0182$	87643
20000	$8.76767 \mathrm{E}+030.0264$	$4.31024 \mathrm{E}+040.0227$	$2.84519 \mathrm{E}+040.0312$	$1.11809 \mathrm{E}+050.0179$	61521
50000	$8.94740 \mathrm{E}+030.0266$	$4.31878 \mathrm{E}+040.0233$	$2.89412 \mathrm{E}+040.0319$	$1.12088 \mathrm{E}+050.0184$	38164
111152917	$9.03989 \mathrm{E}+030.0275$	$4.35742 \mathrm{E}+040.0226$	$2.91570 \mathrm{E}+040.0299$	$1.13051 \mathrm{E}+050.0177$	0

4 Ten million particle runs

Tables 3 and 4 show early time and late time MCNP results for the 10 million particle runs. The reference case is with a stride of 111152917 ; this reference stride was never exceeded. Note that runs below a stride of 2000 show significant differences from the reference case. Note that all the ten million particle runs with a strides 256 and smaller did not pass MCNP's statistical tests. The rest of the ten million particle runs passed the statistical tests. Here is MCNP output detail for the run with stride of 256 :

time:	$1.0000 \mathrm{E}+09$	$2.0000 \mathrm{E}+09$	total	
	$3.92528 \mathrm{E}+04$	0.0069	$2.43567 \mathrm{E}+04$	0.0106

results of 10 statistical checks for the estimated answer for the tally fluctuation chart (tfc) bin of tally
4

tfc bin behavior	--mean-- behavior	value	decrease	decrease rate	----variance of the variance----			--figure of merit--		$\begin{aligned} & \text {-pdf- } \\ & \text { slope } \end{aligned}$
desired	random	<0.10	yes	1/sqrt(nps)	<0.10	yes	1/nps	constant	random	>3.00
observed	random	0.01	no	no	0.00	yes	no	decrease	random	2.60
passed?	yes	yes	no	no	yes	yes	no	no	yes	no

warning. the tally in the tally fluctuation chart bin did not pass 5 of the 10 statistical checks.

nps	mean	error	vov	slope	fom
512000	$6.7548 \mathrm{E}+04$	0.0191	0.0026	10.0	15
1024000	$7.7226 \mathrm{E}+04$	0.0132	0.0009	10.0	13
1536000	$7.8037 \mathrm{E}+04$	0.0110	0.0007	10.0	13
2048000	$7.9415 \mathrm{E}+04$	0.0101	0.0008	10.0	11
2560000	$7.9253 \mathrm{E}+04$	0.0089	0.0006	10.0	11
3072000	$8.0405 \mathrm{E}+04$	0.0082	0.0005	10.0	11
3584000	$8.2885 \mathrm{E}+04$	0.0077	0.0004	10.0	10
4096000	$8.2978 \mathrm{E}+04$	0.0072	0.0003	10.0	10
4608000	$8.4691 \mathrm{E}+04$	0.0070	0.0003	10.0	$9.7 \mathrm{E}+00$
5120000	$8.8871 \mathrm{E}+04$	0.0070	0.0004	10.0	$8.3 \mathrm{E}+00$
5632000	$8.7596 \mathrm{E}+04$	0.0066	0.0004	10.0	$8.6 \mathrm{E}+00$
6144000	$9.1585 \mathrm{E}+04$	0.0070	0.0006	10.0	$6.7 \mathrm{E}+00$
6656000	$9.2033 \mathrm{E}+04$	0.0066	0.0005	10.0	$6.8 \mathrm{E}+00$
7168000	$9.2145 \mathrm{E}+04$	0.0064	0.0005	10.0	$6.8 \mathrm{E}+00$
7680000	$9.2184 \mathrm{E}+04$	0.0061	0.0004	10.0	$7.0 \mathrm{E}+00$
8192000	$9.3000 \mathrm{E}+04$	0.0059	0.0004	10.0	$6.9 \mathrm{E}+00$
8704000	$9.3956 \mathrm{E}+04$	0.0057	0.0003	10.0	$7.1 \mathrm{E}+00$
9216000	$9.4758 \mathrm{E}+04$	0.0055	0.0003	10.0	$7.2 \mathrm{E}+00$
9728000	$1.0208 \mathrm{E}+05$	0.0058	0.0004	2.6	$6.1 \mathrm{E}+00$
10000000	$1.0179 \mathrm{E}+05$	0.0057	0.0004	2.6	$6.2 \mathrm{E}+00$

Table 3: Early times on 10 million particle runs

	time		time	time stride	$1.0000 \mathrm{E}+04$	$1.0000 \mathrm{E}+05$

Table 4: Late times on 10 million particle runs

	time	time	time	time	times stride
stride	$1.0000 \mathrm{E}+08$	$1.0000 \mathrm{E}+09$	$2.0000 \mathrm{E}+09$	total	exceeded
4	$8.94582 \mathrm{E}+030.0069$	$3.65851 \mathrm{E}+040.0062$	$3.75593 \mathrm{E}+040.0062$	$1.10173 \mathrm{E}+050.0043$	10000000
8	$6.15031 \mathrm{E}+030.0075$	$2.94001 \mathrm{E}+040.0060$	$2.28253 \mathrm{E}+040.0075$	$8.38698 \mathrm{E}+040.0043$	9948877
16	$4.71375 \mathrm{E}+030.0079$	$2.27866 \mathrm{E}+040.0061$	$1.36935 \mathrm{E}+040.0090$	$6.51806 \mathrm{E}+040.0043$	9897673
32	$6.90231 \mathrm{E}+030.0079$	$3.02711 \mathrm{E}+040.0061$	$1.55182 \mathrm{E}+040.0082$	$8.04492 \mathrm{E}+040.0044$	9756833
64	$6.50453 \mathrm{E}+030.0078$	$3.15383 \mathrm{E}+040.0062$	$1.49857 \mathrm{E}+040.0091$	$8.01119 \mathrm{E}+040.0045$	9359642
128	$7.63931 \mathrm{E}+030.0078$	$3.48216 \mathrm{E}+040.0068$	$1.71896 \mathrm{E}+040.0101$	$8.86312 \mathrm{E}+040.0050$	8246198
256	$7.78633 \mathrm{E}+030.0076$	$3.92528 \mathrm{E}+040.0069$	$2.43567 \mathrm{E}+040.0106$	$1.01791 \mathrm{E}+050.0057$	5845470
512	$8.15965 \mathrm{E}+030.0083$	$3.96555 \mathrm{E}+040.0070$	$2.62217 \mathrm{E}+040.0099$	$1.04709 \mathrm{E}+050.0055$	3941714
1000	$8.48283 \mathrm{E}+030.0083$	$4.13028 \mathrm{E}+040.0073$	$2.68425 \mathrm{E}+040.0098$	$1.07112 \mathrm{E}+050.0056$	2840818
2000	$8.57010 \mathrm{E}+030.0084$	$4.30759 \mathrm{E}+040.0072$	$2.82495 \mathrm{E}+040.0097$	$1.10965 \mathrm{E}+050.0056$	1994426
5000	$8.73097 \mathrm{E}+030.0084$	$4.29361 \mathrm{E}+040.0074$	$2.89770 \mathrm{E}+040.0102$	$1.11426 \mathrm{E}+050.0058$	1248496
10000	$8.76775 \mathrm{E}+030.0084$	$4.38078 \mathrm{E}+040.0074$	$2.91971 \mathrm{E}+040.0100$	$1.12655 \mathrm{E}+050.0058$	877926
20000	$8.67877 \mathrm{E}+030.0082$	$4.36380 \mathrm{E}+040.0072$	$2.93541 \mathrm{E}+040.0099$	$1.12478 \mathrm{E}+050.0057$	615692
50000	$8.67245 \mathrm{E}+030.0083$	$4.30747 \mathrm{E}+040.0072$	$2.92431 \mathrm{E}+040.0100$	$1.11911 \mathrm{E}+050.0057$	383460
111152917	$8.77685 \mathrm{E}+030.0083$	$4.28879 \mathrm{E}+040.0072$	$2.92135 \mathrm{E}+040.0099$	$1.11749 \mathrm{E}+050.0057$	0

5 Summary

This note has shown that bad MCNP estimates are sometimes obtained when the random number stride is exceeded. Five things are worth noting

1. Erroneous results were obtained for strides smaller than a few thousand.
2. Very early versions of MCNP had a default stride in the range of 4000 .
3. The bad estimates were apparent only in runs for which the stride was exceeded on a significant fraction of the particles. Preumably an MCNP user would increase the stride if the stride were being so routinely exceeded. In this sense, the tests reported here would hopefully be unrealistic in practice.
4. Although not the main point of this study, note the second and higher score moments estimates are even more problematic than the mean score estimates, as often indicated by the failure to pass MCNP's statistical tests. A look at the two FOM tables presented herein shows erratic behavior.
5. The author believes that is probably possible to construct examples of bad mean estimates when the random number stride is exceeded relatively rarely, say only 1% of the time.

References

[1] Communication from Brian Kiedrowski to the MCNP forum on January 9, 2014.

