LA-UR-14-21786

Approved for public release; distribution is unlimited.

Title:	MCNP Progress & Performance Improvements
Author(s):	Brown, Forrest B. Kiedrowski, Brian C. Bull, Jeffrey S.
Intended for:	DOE/NNSA Nuclear Criticality Safety Program - Technical Program Review, 2014-03-26/2014-03-27 (Los Alamos, New Mexico, United States)

Issued: 2014-03-17

Disclaimer:

Disclaimer: Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for the National NuclearSecurity Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Departmentof Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Nuclear Criticality Safety Program Technical Program Review 26-27 March 2014

LA-UR-14-xxxxx

MCNP Progress & Performance Improvements

Forrest Brown, Brian Kiedrowski, Jeffrey Bull

Monte Carlo Codes, XCP-3 Los Alamos National Laboratory

US DOE/NNSA Nuclear Criticality Safety Program –

What have we done for you lately ?

- MCNP6.1 Release, with ENDF/B-VII.1
- Verification / Validation
- User Support & Training
- Performance Improvements
- Work in Progress

• MCNP release by RSICC, July 2013

MCNP6.1 MCNP5-1.60, MCNPX-2.70 Nuclear Data Libraries MCNP Reference Collection

- production version
- old versions, no changes
- including ENDF/B-VII.1 data
- 600+ technical reports

12,000+ copies of MCNP distributed 2001-2012 2,000+ copies of MCNP6 distributed 2013

- MCNP6.1.1 beta release, planned for June 2014
 - Primarily for DHS users, no effect on crit-safety
 - Next production release targeted for 2015
- MCNP5 & MCNPX are frozen all new development & fixes are in MCNP6
- Criticality safety community needs to transition to MCNP6

mcnp6 – 500 K lines of code

We do a lot of verification/validation work - all the time, especially for MCNP6:

MCNP Verification-Validation, 100+ reports on MCNP Website

Verification of MCNP6.1 for Criticality Safety Applications, LA-UR-14-xxxxx, in progress (2014).

Verification of MCNP5-1.60 and MCNP6.1 for Criticality Safety Applications, LA-UR-13-22196 (2013).

Verification of MCNP5-1.60 and MCNP6-Beta-2 for Criticality Safety Applications, LA-UR-12-210 (2012).

MCNP5-1.60 Release & Verification, Trans Am Nuc Soc 104, June 2011, LA-UR-11-00230 (2011).

ENDF/B-VII.1 Neutron Cross Section Data Testing with Critical Assembly Benchmarks & Reactor Experiments, Nuclear Data Sheets, Vol 112, No. 12, 2997-3036 [LA-UR-11-11271] (2011).

An Expanded Criticality Validation Suite for MCNP, ICNC-2011, LA-UR-11-04170 (2011).

Verification of MCNP5-1.60, LA-UR-10-05611 (2010).

Nuclear Data

Listing of Available ACE Data Tables, LA-UR-13-21822 (2013)

Continuous Energy Neutron Cross Section Data ... ENDF/B-VII.1, LA-UR-13-20137 (2013).

LANL Data Testing Support for ENDF/B-VII.1, LA-UR-12-20002 (2012).

ENDF/B-VII.1 Nuclear Data....., Nuclear Data Sheets, Vol 112, No. 12, 2887-2996 (2011).

ENDF/B-VII.0: ... Nuclear Data ..., Nuclear Data Sheets, Vol. 107, Number 12 (2006)

New ACE-Formatted Neutron and Proton Libraries Based on ENDF/B-VII.0, LA-UR-08-1999 (2008).

Release of New MCNP S(α,β) Library ... ENDF/B-VII.0, LA-UR-08-3628 (2008).

Table I. MCNP6.1 Results for Analytic Keff Benchmarks				
Case	Name	Analytic Exact keff	MCNP_Ro keff	esults std
prob11	Ua-1-0-IN	2.25000	2.25000	0.00000
prob14	Ua-1-0-SP	1.00000	1.00006	0.00010
prob18	Uc-H2O(2)-1-0-SP	1.00000	1.00005	0.00011
prob23	UD20-1-0-CY	1.00000	1.00000	0.00006
prob32	PUa-1-1-SL	1.00000	0.99995	0.00011
prob41	UD2Ob-1-1-SP	1.00000	1.00003	0.00007
prob44	PU-2-0-IN	2.68377	2.68377	0.00003
prob54	URRa-2-0-SL	1.00000	1.00007	0.00013
prob63	URRd-H2Ob(1)-2-0-ISLC	1.00000	0.99993	0.00006
prob75	URR-6-0-IN	1.60000	1.59999	0.00001

MCNP6.1, Intel-12 F90 - All results correct

Verification & Validation (3)

mcnp5-1.60 + ENDF/B-VII.0		mcnp5+Int-10	mcnp5_Int-11	mcnp5_Int-12	mcnp6_Int-12
		deltak std	keff std	deltak std	deltak std
U233 Benchmarks	JEZ233	0.0000 (8)	0.9989 (5)	0.0000 (8)	0.0000 (8)
	FLAT23	0.0000 (9)	0.9990 (7)	0.0000 (9)	0.0000 (9)
	UMF5C2	0.0000 (8)	0.9931 (5)	0.0000 (8)	0.0000 (8)
	FLSTF1	0.0000 (15)	0.9830 (11)	0.0000 (15)	0.0000 (15)
	SB25	0.0000 (14)	1.0053 (10)	0.0000 (14)	0.0000 (14)
	ORNL11	0.0000 (5)	1.0018 (4)	0.0000 (5)	0.0000 (5)
HEU Benchmarks	GODIVA	0.0000 (8)	0.9995 (5)	0.0000 (8)	0.0000 (8)
	TT2C11	0.0010 (10)	1.0008 (7)	0.0000 (9)	0.0000 (9)
	FLAT25	0.0000 (9)	1.0034 (7)	0.0000 (9)	0.0000 (9)
	GODIVR	0.0000 (9)	0.9990 (7)	0.0000 (9)	0.0000 (9)
	UH3C6	0.0000 (11)	0.9950 (8)	0.0000 (11)	0.0000 (11)
	ZEUS2	0.0002 (9)	0.9972 (7)	0.0000 (9)	0.0000 (9)
	SB5RN3	0.0000 (18)	0.9985 (13)	0.0000 (18)	0.0000 (18)
	ORNL10	0.0000 (5)	0.9993 (4)	0.0000 (5)	0.0000 (5)
IEU Benchmarks	IMF03	0.0000 (8)	1.0029 (5)	0.0000 (8)	0.0000 (8)
	BIGTEN	0.0000 (7)	0.9945 (5)	0.0000 (7)	0.0000 (7)
	IMF04	0.0000 (8)	1.0067 (5)	0.0000 (8)	0.0000 (8)
	ZEBR8H	-0.0001 (7)	1.0196 (5)	0.0000 (7)	0.0000 (7)
	ICT2C3	0.0000 (9)	1.0037 (7)	0.0000 (9)	0.0000 (9)
	STACY36	0.0000 (8)	0.9994 (5)	0.0000 (8)	0.0000 (8)
LEU Benchmarks	BAWXI2	0.0000 (9)	1.0013 (7)	0.0000 (9)	0.0000 (9)
	LST2C2	0.0000 (8)	0.9940 (5)	0.0000 (8)	0.0000 (8)
Pu Benchmarks	JEZPU	0.0000 (8)	1.0002 (5)	0.0000 (8)	0.0000 (8)
	JEZ240	0.0000 (8)	1.0002 (5)	0.0000 (8)	0.0000 (8)
	PUBTNS	0.0000 (8)	0.9996 (5)	0.0000 (8)	0.0000 (8)
	FLATPU	0.0000 (9)	1.0005 (7)	0.0000 (9)	0.0000 (9)
	THOR	0.0000 (9)	0.9980 (7)	0.0000 (9)	0.0000 (9)
	PUSH2O	0.0000 (9)	1.0012 (7)	0.0000 (9)	0.0000 (9)
	HISHPG	0.0004 (7)	1.0118 (5)	0.0000 (8)	0.0000 (8)
	PNL2	0.0000 (12)	1.0046 (9)	0.0000 (12)	0.0000 (12)
	PNL33	0.0000 (9)	1.0065 (7)	0.0000 (9)	0.0000 (9)
Wall-clo	ck:	34.7 min	34.0 min	30.5 min	38.5 min
Rel. Spe	ed:	0.98	1.00	1.11	0.88

7

VERIFICATION_KEFF Suite – 10 analytical problems with exact K_{eff} results

- MCNP6.1, Intel-12 F90

All results match

VALIDATION_CRITICALITY Suite – 31 ICSBEP Cases, ENDF/B-VII.0

- MCNP5 Intel-10 vs Intel-12: 4 diffs, within statistics
- MCNP5 & MCNP6, Intel-12: All results match

VALIDATION_CRIT_EXPANDED Suite – 119 ICSBEP Cases, ENDF/B-VII.0

Shortened Problems

- MCNP5 Intel-10 vs Intel-12: 1 diff, within statistics
 MCNP5 & MCNP6, Intel-12: All results match
 Standard Problems
- MCNP5 & MCNP6, Intel-12: 4 diffs, within statistics

CRIT_LANL_SBCS Suite – 194 ICSBEP Cases, ENDF/B-VI MCNP5 vs MCNP6, Intel-10.1: 187 match, 4 diffs < 1σ,</td> MCNP5 (2013, Intel-12) vs MCNP5 (2003, Intel-9) 142 match, 42 match, 42 diffs < 1σ,</td>

 Very thorough testing of MCNP6.1 on many computer platforms: Brown, Kiedrowski, Bull, "Verification of MCNP5-1.60 and MCNP6.1 for Criticality Safety Applications", LA-UR-13-22196 (2013).

Conclusion: MCNP6.1 is solid & reliable for crit-safety calculations

- MCNP6.1 impact on criticality calculation results -> none
 - All MCNP5 KCODE criticality features preserved, + new features
 - Matches results with MCNP5 for criticality suites
- Current MCNP6.1.1 beta exactly matches MCNP6.1 for crit-safety
- MCNP6.1 is 20-30% slower than MCNP5
 - Performance improvements address this, later in this talk
 - MCNP6.1.1 speed is comparable to or faster than MCNP5

12,000+ copies of MCNP distributed 2001-2012 ٠ 2,000+ copies of MCNP6 distributed 2013

MCNP Forum - User-group, beginners & experts, >1000 members

- Classes •
 - Theory & Practice of Criticality Calculations with MCNP
 - FY13: 3 classes (including special class for LANL NCS group certification)
 - FY14: 2 classes (both with some LANL NCS staff)
 - Introduction to MCNP
 - Advanced Variance Reduction 1 class each FY
 - Intro + Variance Reduction Kirtland AFB 2014
- 5 classes FY13, 5 classes FY14

- **Conferences & Journals** ٠
 - M&C 2013, NCSD 2013, SNA+MC 2013, PHYSOR 2014
 - ANS Washington, Reno, Anaheim
- Other: website, reference collection, summer students ٠

Performance Improvements (1)

MCNP6.1 •

- Preserves all criticality features
- ENDF/B-VII.1 data libraries
- **RSICC release July 2013**

MCNP6 Status •

- Many new capabilities
- Last few years focus on features, merger, testing, release
- Needs upgrade of core software

Path forward – MCNP 2020 •

- Concerted effort to modernize the codebase, upgrade foundations
- Goals: modular, flexible, faster
- **Necessary for MCNP to survive** into the 2020's

MCNP 2020

- **Improve performance** ٠
 - 30-50% slowdown for MCNP6.1
 - Goal: 2X speedup within 2 years
- Upgrade core MCNP6 software ٠
 - Restructure, clean up coding
 - **Reorganize data structures**
 - **Evolution**, not revolution
 - **Reduce future costs for new** development & maintenance
 - Goal: sustainable code

Prepare for future ٠

- New computers massive parallel but less memory per core
- Improve MPI & thread parallelism
- Goal: flexible, adaptable code

MGU

- Stress different portions of MCNP coding
- Helps determine effect of specific code optimizations
- Initial performance improvements
 - Eliminate strided f90 vector ops
 - Inline binary search, for neutron xsec routines
 - IF-guards, to avoid calling accessor functions
 - Inline code some other sections of coding
 - Eliminate unnecessary clearing of certain scratch arrays
 - Hash-based xsec energy lookups (algorithm change)
 - no work yet on tracking & geometry, or photon/electron routines
 - no work planned for any high energy physics

Intel compiler options

- Higher Fortran optimization levels do <u>not provide improvements</u>
- Using –O2 instead of –O1 provides only ~ 0-5% speedup, but some test problems segfault

Monte Carlo Codes

2013-09-11

Tests run on Mac Pro, 3.0 GHz Xeon, 2 quad-cores, with 8 threads. ENDF/B-VII.1, discrete S(a,b)

CRITICALITY PROBLEMS

ks1.txt	3D PWR, OECD perf. bench., Kord Smith, 60 isotopes, no tallies
ks2.txt	ks1.txt, 10 isotopes, no tallies
ks3.txt	ks1.txt, 10 isotopes, fmesh tallies
ks4.txt	ks1.txt, 60 isotopes, fmesh tallies
baw1.txt	BAWXI2 ICSBEP problem, 31 isotopes, no tallies
baw2.txt	BAWXI2 ICSBEP problem, 31 isotopes, fmesh tallies
fvf.txt	fuel storage vault, from OECD convergence bencharks, 9 isotopes
g1.txt	Godiva problem, 3 isotopes
g2.txt	Godiva problem, 423 isotopes
pin.txt	AECL pin cell, with FPs, 147 isotopes

FIXED-SOURCE PROBLEMS

void1.txt	ks1.txt, with VOID card & no tallies
void2.txt	baw1.txt, with VOID card & no tallies
void3.txt	fvf.txt, with VOID card & no tallies
det1.txt	3D porosity tool, Reg. problem 12, neutrons, weight windows, F4 tallies
med1.txta	medical physics, modified 3D Zubal head, photons
pht1.txt	PHTVR cylindrical test problem, photons

		Performance Improvements	(4)	ſ	ncnp	Monte Carlo Codes XCP-3, LANL
•	Speedups from recent performance improvements		Problem	6/5	Speedups NEW/5	NEW/6
			Criticali	.ty		
	6/5	menp6.1 vs menp5	ks1	0.88	1.54	1.76
			ks2	0.40	0.85	2.13
	NEW/5	mcnp6.1.1 vs mcnp5	ks3	0.63	0.85	1.35
		mcnp6.1.1 vs mcnp6.1	ks4	0.72	0.98	1.36
	NEW/6		baw1	0.44	0.97	2.19
			baw2	0.58	0.93	1.59
			fvf	0.38	0.77	2.04
5	5:	mcnp5-1.60	g1	0.93	1.05	1.14
	6:	mcnp6.1, released	g 2	0.82	1.80	2.20
	NEW:	mcnp6.1,	<mark>pin</mark> Other	0.79	1.36	1.73
	+ no strides	+ no strides	void1	0.24	0.72	3.03
		+ inlining	void2	0.14	0.59	4.11
		+ if guards	void3	0.26	0.71	2.72
		+ thrd-priv. common	det1	0.45	0.75	1.67
		+ etc.	med1	0.57	0.65	1.15
		+ hash-based xs lookup	pnti	0.58	0.71	1.22

- Timing results for the standard VALIDATION_CRITICALITY
 test suite with ENDF-B/VII data
 - Mac Pro (3 GHz, 8 cores), Intel 12.0 f90, run with 8 threads
 - Measured wall-clock times, including data I/O:

mcnp5	release	34.7 min
mcnp6.1	release	43.9 min
mcnp6	NEW	27.9 min

- → 1.57 X speedup over mcnp6.1
- → 1.24 X speedup over mcnp5

Performance Improvements (6)

Speedups – NEW vs mcnp6.1

measured by Jeff Bull for mcnp performance test problems

	MCNP6 1.0	MCNP6	
Test	Release (min)	NEW (min)	Ratio
BAWXI2	63.58	14.55	4.37
mode p e in air	12.88	12.73	1.01
GODIVA	22.50	21.40	1.05
100M lattice cells in void	58.48	11.32	5.17
mode n p e in air	9.70	9.27	1.05
mode p in air	7.29	6.06	1.20
Pulse height tally	27.41	22.79	1.20
Radiography	33.30	31.06	1.07
Mode n in air with			
750,000 tally bins	19.25	16.26	1.18
Well log (problem 12			
from Regression suite)	57.89	30.27	1.91

16

- Prepare for future
 - New computers massive parallel but less memory per core
 - Improve MPI & thread parallelism
 - Goal: flexible, adaptable code

- Replace private thread-safe storage for certain large arrays by OpenMP critical sections
- Use OpenMP atomic operations with shared tally arrays

 Investigate coupling MCNP into multiphysics calculations

Continuous-energy Sensitivity/Uncertainty Analysis

- Uses adjoint-weighted perturbations
- Computes sensitivity coefficients for cross sections, fission, & scattering laws
- Can directly compare to TSUNAMI multigroup s/u results
- See Kiedrowski presentation

Support for LANL PF-4 Nuclear Criticality Safety

- High priority
- See Kiedrowski presentation

- MCNP6.1 & ENDF/B-VII.1 released
- Impact on Criticality Calculations -> none
 - All KCODE criticality features same as for MCNP5
 - Matches results with MCNP5 for criticality suites
- Monte Carlo team will support MCNP6, no new features or releases of MCNP5 or MCNPX
- MCNP6 speed improved by 1.2 4 X for crit-safety
- More performance improvements in progress
- Criticality-safety community needs to plan for MCNP5 → MCNP6 transition over the next few years