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Motivation: α eigenvalues 

 The time- or α-eigenvalue spectrum is necessary for calculating 
eigenfunction expansions for time-dependent problems 

 When the spectrum (and its eigenfunctions) is known, the flux 
response within the system may be calculated for any source 

 Some applications of this work are pulsed neutron experiments and 
accelerator-driven subcritical systems, where the flux varies spatially in 
time 

 Even critical systems have higher α eigenvalues and shape 
eigenfunctions that may be excited by a change in neutron population 

 Objective is to show the Transition Rate Matrix Method (TRMM) is able 
to calculate these eigenvalues and eigenfunctions during a Monte Carlo 
random walk 
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Methods: α eigenvalues 

 To formulate the  eigenvalue problem, separate the temporal dimension 
from position, energy, and direction: 

 

 

 The largest real eigenvalue (the fundamental) has the trend 

 

 

     and its corresponding eigenvector must be all one sign 

 All other eigenvalues and eigenvectors may be real or complex 
(complex eigenvalue must have a conjugate) 
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Methods: α eigenvalues 

 Introducing this separation into the time-dependent neutron transport 
equation yields the eigenvalue problem: 

 

 

 

 We desire the eigenvalues of the combination of the left hand matrices, 
but the elements of this matrix are unphysical (speed times a decay 
constant does not have real physical meaning and cannot be obtained 
during a Monte Carlo run) 

 Using the same work to formulate the time-dependent neutron 
importance (adjoint) equation yields a matrix of more physical 
quantities 
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Methods: α eigenvalues 

 The adjoint α-eigenvalue problem is 

 

 

 

 The matrix elements are now rates (decay rates or speeds multiplied by 
cross sections) and if we divide the state space (position, energy, and 
angle) we are left with a finite matrix composed of rates 

 These rates describe transitions among the divided state space, for 
example: (1) a precursor at a position decaying into a neutron traveling 
with a given energy and direction or (2) a neutron at a given energy and 
direction scattering to another energy and direction 

 The transition rate matrix is the left side of the adjoint problem 
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Methods: Transition rate matrix 

 This matrix is similar to a continuous-time Markov process where we 
describe a transition rate matrix 

 

 

 

 

 The diagonal elements q are rates of transitions out of that state 

 The off-diagonal elements are rates of transition between states 

 Note: Fission matrix formulation is a discrete-time Markov process 
where fission generations represent “time” 
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Methods: Eigenfunction expansion 

 The time-dependent flux solutions is described as a linear combination 
of the shape eigenfunctions multiplied by a time function 

 

 

 The time dependence of the initial source determines the function; for a 
pulsed neutron source, it is 

 

 The coefficients are calculated with the adjoint and forward shape 
eigenfunctions and the given initial source 
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Methods: Tallies and calculation 

 The entire transition rate matrix is calculated from tallies; no known 
quantities are used 

 Probabilities, times, and distances for given states are tallied during a 
k-eigenvalue Monte Carlo calculation 

 At the completion of the run, the transition rates are calculated from 
this tallied information and the transition rate matrix is formed 

 The velocity matrix is formed and forward matrix is obtained by 
swapping the speeds and transposing the matrix 

 Eigenvalues and eigenfunctions of the matrix are solved using LAPACK 
(direct Schur factorization) 
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Results: One-Speed Slabs 

 One-speed slabs problems are selected to reflect the simplified 
problems whose eigenvalues and eigenfunctions are obtained via the 
Green’s Function Method (GFM) 

 All dimensions are in mean free paths and the speed and total cross 
sections are set to unity 

 These problems have a few real eigenvalues that exist before the start 
of the continuum spectrum; because the TRMM calculates a finite 
number of eigenvalues, many fall within the continuum portion of the 
spectrum as a set of points dependent on the definition of the spatial 
and angular states 

 The simplest homogeneous scattering and multiplying slabs show 
good agreement to GFM calculations for calculated eigenvalues 
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Results: Spectrum 

Slide 10 

 This homogeneous slab with 
a thickness of five mfp has 
three real eigenvalues before 
the continuum portion of the 
spectrum (less than -1) 

 This calculation uses 50 
equal position states and 18 
equal angle states 

 Eigenvalues form along rings 
in the continuum 

       TRMM                       GFM  



Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA 

Results: Spectrum 

 The number of rings of eigenvalues in the continuum is half that of the 
number of angular states used in the TRMM formulations 

 The diameter of the “rings” increases with the number of position 
states; this is attributed to the position states being smaller, and thus, 
events (leakages from the position state) occurring faster 

 Some eigenvalues that are part of the continuum leak into the real 
portion of the spectrum (greater than -1), but this occurrence decreases 
as the number of angles and positions is increased 

 These behaviors with the point spectrum in the continuum is seen in 
previous work using an Sn-method for numerically solving for the 
eigenvalue spectrum 
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Results: Multi-Region Problem 

 This multi-region problem has alternating materials of equal thickness 

 Material 1 is purely scattering and material 2 has a small absorption 
cross section 

 For this problem the speed is effectively 10 so and continuum portion 
of the spectrum starts at -10 
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Results: Multi-Region Problem 

 All calculated eigenvalues match within 1% to GFM-calculated values 
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Results: Multi-Region Problem 

 The eigenfunction expansion solution matches that of the Time 
Dependent Monte Carlo (TDMC) for a rightward-directed incident pulse 
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Results: Five-Region Problem 

 For this five-region problem, the right fuel region thickness is either 1 
(symmetric) or 1.1 (asymmetric)  

 The fuel is varied to make subcritical and near critical configurations 

 All configurations have only two real eigenvalues 
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Results: Five-Region Problem 

 The calculated alpha eigenvalues from all configurations compare very 
well to those from the GFM 

 The second alpha eigenvalue of the asymmetric supercritical case 
shows the most relative difference due to its small value 
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Results: Five-Region Problem 

 The first two eigenfunctions 
for the symmetric, near 
critical case agree with the 
GFM results 

 The second shape 
eigenfunction has rotational 
symmetry 

 These eigenfunctions have 
the most difficulty 
converging due to the 
proximity of the first two 
alpha eigenvalues (-0.00615 
and -0.00644) 
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Results: Five-Region Problem 

 The asymmetric 
fundamental shape 
eigefunction increases 
nearly three orders of 
magnitude towards the 
thicker fuel region, where 
the second shape 
eigenfunction is nearly flat 

 These converge faster than 
the symmetric case 
because the first two 
eigenvalues differ greatly 
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Results: Five-Region Problem 

 Eigenfunction expansion for the far subcritical symmetric configuration 
with a constant source incident on the left face 
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Results: Five-Region Problem 

 Eigenfunction expansion for the asymmetric supercritical configuration 
with a pulse incident on the left face 
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Results: Five-Region Problem 

 Eigenfunction expansion for the near critical symmetric configuration 
with a pulse incident on the left face 
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Results: Five-Region Problem 

 The estimated detector 
response for the previous 
problem for a detector 
located in the right fuel 
region shows the ability of 
the TRMM to accurately 
predict the response in a 
given region of the problem 

 The higher modes are still 
present throughout a large 
portion of the response, due 
to the proximity of the first 
two eigenvalues 
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Results: Five-Region Problem 

 The TRMM eigenfunction expansion solutions compare well to TDMC 

 The eigenfunction expansions shown use all modes in the expansion, 
even those belonging to the eigenvalues calculated that fall within the 
continuum; these modes are necessary to model the earliest times 
where the flux is zero in much of the problem 

 The smoothness of the expanded solution is not able to accurately 
describe sharp variations in the flux shape 

 Differences at the front of the pulse shapes at early times are due to the 
differences in the angular dependence of the initial source and the 
source described to the eigenfunction expansion 
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Results: Continuous Energy Problem 

 This continuous energy problem is a subcritical hydrogenous medium 
set up with five homogenized fuel regions with an outer reflector 

 The total problem size is 280 centimeters 

 The detector response is a linear combination of the flux in each of the 
energy groups (mostly thermal) 
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Results: Continuous Energy Problem 

 The eigenfunction expansion for a pulse in the left side of the problem 
(no TDMC ran for this problem) 
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Results: Continuous Energy Problem 

 The estimated response for 
a detector located in the 
right fuel region for the 
pulse incident from the left 
side of the reactor 

 The prompt fundamental 
mode is plotted alongside 
the expected detector 
response 

 After 40ms, the delayed 
neutron modes begin to 
dominate the response 
shape 
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Summary and Future Work 

 Formulated the Transiton Rate Matrix Method  

 Tallied the continuous-time Markov process transition rate matrix with 
Monte Carlo 

 Verified one-speed results with Green’s Function Method 

 Investigated the spectrum behavior 

 Compared TRMM eigenfunction expansions to TDMC 

 

 Sparse matrix storage and eigenvalue routines 

 Continuous energy TDMC comparisions 

 Calculate three-dimensional alpha modes 

 Benchmark to experimental data 
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Methods: α eigenvalues 

 α-eigenvalue problem with precursors 
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Methods: Eigenfunction expansion 

 Flux expansion in the time-dependent transport and precursor 
equations 

 

 

 

 

 

 Resulting differential equation 

Slide 30 


	Calculating α Eigenvalues �and Eigenfunctions of �One-Dimensional Media
	Motivation: α eigenvalues
	Methods: α eigenvalues
	Methods: α eigenvalues
	Methods: α eigenvalues
	Methods: Transition rate matrix
	Methods: Eigenfunction expansion
	Methods: Tallies and calculation
	Results: One-Speed Slabs
	Results: Spectrum
	Results: Spectrum
	Results: Multi-Region Problem
	Results: Multi-Region Problem
	Results: Multi-Region Problem
	Results: Five-Region Problem
	Results: Five-Region Problem
	Results: Five-Region Problem
	Results: Five-Region Problem
	Results: Five-Region Problem
	Results: Five-Region Problem
	Results: Five-Region Problem
	Results: Five-Region Problem
	Results: Five-Region Problem
	Results: Continuous Energy Problem
	Results: Continuous Energy Problem
	Results: Continuous Energy Problem
	Summary and Future Work
	Calculating α Eigenvalues �and Eigenfunctions of �One-Dimensional Media
	Methods: α eigenvalues
	Methods: Eigenfunction expansion

