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Applications of Adjoint-Based Techniques in Continuous-Energy Monte Carlo
Criticality Calculations

Brian C. Kiedrowski1 and Forrest B. Brown1

1X-Computational Physics Division, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545

The method for performing adjoint-weighted tallies in MCNP is discussed along with the applications of point kinetics,
perturbation theory, and nuclear data sensitivities. Future applications and extensions such as localized adjoint-weighted
fluxes, more sophisticated kinetics models, higher-order perturbation theory, and temperature coefficients.
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I. Introduction

Many quantities in reactor physics and criticality safety are
expressible as ratios of integrals of adjoint-weighted quanti-
ties. Examples of these are point kinetics parameters, reactivity
changes from material substitutions, etc. The Monte Carlo code
MCNP(1) has recently implemented the Iterated Fission Proba-
bility (IFP) method for computing adjoint-weighted tallies,(2)

allowing for the calculation of many of these reactor physics
quantities. This paper gives overview of the theory of the ad-
joint function and the IFP method as implemented in MCNP.
The various applications and how the specific tallies are per-
formed are discussed, and results are given for benchmarks or
other systems. The current status of the research and near-term
future efforts are also discussed.

II. Theory &Method

The static, or k-eigenvalue form of the neutron transport equa-
tion is

Hψ =
1
k

Fψ, (1)

where ψ is the neutron flux, H is the operator containing the
physics for streaming, collisions, and scattering, F is the oper-
ator for fission, and k is the system eigenvalue. This equation
has, for a general system, infinitely many solutions k and ψ.
The solution corresponding to the highest value of k0 (called
the effective multiplication factor) is the fundamental mode ψ0
corresponding to the steady state neutron distribution in the
system.

Many representative quantities about a system may be de-
rived from the neutron transport equation, such as the point
kinetics parameters, that involve integrating over the problem
domain. The resulting expression can often be simplified by
finding a special weighting function ζ satisfying

〈ζ, A f 〉 = 〈 f , Bζ〉 , (2)

where f is an arbitary function and A and B are generic linear
operators and the brackets denote integration over all phase

space. This property can be satisfied if B is chosen such that
it is the adjoint of A, or A† and the weighting function ζ is the
solution to the adjoint form of the equation involving operator
A, or, in this case, ψ†. Such reactor physics quantities therefore
involve an integral of the form〈

ψ†, Aψ
〉

(3)

that is to be solved by Monte Carlo.
The adjoint function ψ† is obtained by solving the adjoint

neutron transport equation

H†ψ† =
1
k

F†ψ†. (4)

The adjoint of the operator H reverses the direction of streaming
and changes the scattering kernel such that the velocity transfers
“backwards” in collisions, and the adjoint operator of F reverses
the roles of the fission multiplicty νΣ f and emission spectrum
χ. Note that the eigenvalue k can be proven to be equivalent to
the adjoint eigenvalue k†.

The often given physical interpretation of the adjoint func-
tion is that it can be thought of as the equation for describing a
quantity that is transported “backwards” from normal transport.
This quantity can be shown to the expected response resulting
from a unit neutron injected into a system at that point in phase
space along with all its secondary particles. Therefore, the ad-
joint function is often called importance. For the k-eigenvalue
problem, the response can be thought of as the self sustain-
ing fission process, and the importance as the propensity of a
unit neutron at that point in phase space to sustain that chain
reaction.

A thought experiment to further explain the adjoint function
or importance is as follows: Consider a critical assembly—if
the assembly is not critical in the real word, a mathematical
factor 1/k0 is magically applied to make it so as it would be in
a simulation—devoid of neutrons. An experimentalist takes a
neutron and places it at some location in the assembly, points
it in a certain direction, and sets it along at a particular energy.
The experimentalist then leaves and returns after an effectively
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infinite time and records a count of the number of neutrons
in the assembly. She then flushes all the neutrons out of the
assembly and then proceeds to repeats the exact same process a
large number of times, always taking care to record the neutron
count, which will vary because neutron transport is an inher-
ently stochastic process subject to quantum mechanical effects.
The average of the recorded counts is then taken, and this count
(relative to those obtained at different phase space locations)
corresponds to the importance at that point.

This thought experiment forms the basis for the IFP method
implemented in MCNP. An iteration (often called a cycle or
batch depending on the parlance of a particular code) in the
power iteration process used to solve the k-eigenvalue neu-
tron transport equation typically corresponds to a single fission
generation—alternative definitions of an iteration involving
multiple fission generations are sometimes used, but are not of
concern here. Suppose the iterations are grouped into blocks
containing N consecutive iterations; the block physically corre-
sponds to a fission chain with the number of progeny adjusted
by a factor of 1/k0 each fission event. The number of iterations
per block N is chosen such that the fission chain is long enough
that effectively an infinite amount of time has passed and the
asymptotic neutron population has reached its stationary state;
exactly how large N should be is problem dependent, but a
choice of N = 10 seems to work well empirically.

With this model in mind, the algorithm to perform an adjoint-
weighted integral via Monte Carlo is as follows: In the first
iteration in the block, the quantity Aψ is tabulated at various
events in the simulation. The neutrons causing these events are
given a tag that is associated with the events where Aψ is tallied,
and these tags are inherited by subsequent progeny neutrons.
These tags persist throughout the fission chain until the final
generation in the block, at which point a “measurement” of the
neutron population caused by that chain is made by way of a
Monte Carlo tally. The value of this measurement is multiplied
by the corresponding Aψ contributions made many iterations
ago and this product is the score of the adjoint-weighted tally.
This process is repeated in subsequent blocks and the mean
value of the products of asymptotic population and Aψ contri-
butions is the Monte Carlo estimate of the adjoint-weighted
integral.

III. Current MCNP Applications

There are three applications of adjoint-weighted tallies in
MCNP6.1, the current version as of the time of this writing.
These are: point kinetics parameters,(3) perturbations from ma-
terial substitutions,(4) and nuclear data sensitivities.(5)

1. Point Kinetics

The point kinetics model is often used as a simple approxima-
tion of time behavior of the neutron population in a reactor.
This is done by assuming that the time behavior is separable
from the rest of the phase space,

ψ(r, v, t) = n(t)ϕ(r, v). (5)

Substituting this expression into the neutron transport equation,
multiplying by the adjoint function ψ†, and some rearrangement
yields the classic point kinetics equations:

dn
dt
=
ρ − βeff

Λ
n(t) +

M∑
i=1

λiCi(t), (6)

dCi

dt
=
βi,eff

Λ
n(t) − λiCi(t), (i = 1 . . . M). (7)

n(t) is the neutron population and Ci(t) is the delayed neutron
precursor concentration of species i at time t. The rest of the
terms are the kinetics parameters, which must be obtained via
simulation or measurement. ρ is the reactivity, which is usually
defined as (k − 1)/k, λi is the radioactive decay constant for
species i, which is usually a fission-weighted average of the
measured decay constants for each precursor species for each
isotope, and the other kinetic parameters are ratios of adjoint-
weighted integrals:

Λ =

〈
ψ†, v−1ψ

〉
〈
ψ†, Fψ

〉 , (8)

is the effective neutron reproduction time representing the time
a representative neutron driving the chain reaction takes to
replace itself (v is the neutron speed);

βeff =

〈
ψ†, Bψ

〉
〈
ψ†, Fψ

〉 , (9)

is the effective delayed neutron fraction, representing the frac-
tion of the neutrons that are delayed, regardless of species,
accounting for the relative effectiveness of delayed and prompt
neutrons toward driving the chain reaction (B is the operator
for fissions that eventually lead to delayed neutron emission);

βi,eff =

〈
ψ†, Biψ

〉
〈
ψ†, Fψ

〉 , (10)

is the effective delayed neutron fraction specifically for species
i (Bi is the operator for fissions that eventually lead to delayed
neutron emission of just species i), which is needed to account
for the fact different species emit delayed neutrons at slightly
different energies.

A quantity that is often measured in experiments is the de-
layed critical Rossi-α, which is approximately

αR ≈ −
βeff

Λ
= −

〈
ψ†, Bψ

〉
〈
ψ†, v−1ψ

〉 . (11)

Once the parameters are known, the point kinetics equations
can be solved (usually with some feedback model) to obtain
the neutron population as a function of time n(t).

To validate the method as implemented in MCNP6, calcu-
lation results of αR are compared with experimental measure-
ments in the International Criticality Safety Benchmark Evalu-
ation Project (ICSBEP) Handbook.(6) These comparisons are
shown in Table 1, and the calculations tend to overpredict this
set of benchmarks by a few percent, but overall the agreement
should be good enough considering the approximations of the
point kinetics model.



Joint International Conference on Supercomputing in Nuclear Applications and Monte Carlo 2013 (SNA + MC 2013)
La Cité des Sciences et de l’Industrie, Paris, France, October 27–31, 2013

Benchmark Measured Calculated C/E

Godiva -111(2) -113(2) 1.02
Flattop -38.2(2) -39.7(2) 1.04
Big-Ten -11.7(1) -11.8(1) 1.01
Jezebel -64(1) -65(1) 1.02
Thor -19(1) -20(1) 1.05

STACY-30 -0.0127(3) -0.0133(3) 1.05

Table 1: Comparison of delayed critical Rossi-α (104 s−1) mea-
surements and MCNP6.1 calculations.

2. First-Order Material Substitution Perturbations

As part of reactor design, it is often desirable to know the
change in reactivity ∆ρ, magnitude and sign, for various small
changes to a system. Many of these can be cast in the form of a
material substitution, e.g., enrichment or composition changes,
moderator density changes, control rod movement, etc.

The need for adjoint weighting arises for similar reasons to
the point kinetics equations. To see, first expand the terms in
the neutron transport equation as x→ x + ∆x,

(H + ∆H)(ψ + ∆ψ) =
[
1
k
+ ∆

(
1
k

)]
(F + ∆F)(ψ + ∆ψ). (12)

The desired unknown is ∆(1/k) = −∆ρ; however, the change
in the flux ∆ψ is unknown as well. By multiplying out the
terms and assume all higher-order terms are negligible (e.g.,
∆H∆ψ ≈ 0), the expression can be simplified, but still involves
∆ψ. If, however, the resulting equation is multiplied by ψ† and
integrated over all phase space, the adjoint property

〈
ψ†, Aψ

〉
=〈

ψ, A†ψ†
〉

can be employed to eliminate the ∆ψ terms. This
leads to a tractable form that does not require knowing the
change in the flux:

∆ρ = −

〈
ψ†,

(
∆Σt − ∆S − k−1∆F

)
ψ
〉

〈
ψ†, (F + ∆F)ψ

〉 , (13)

where Σt is the total interaction cross section, and S is the
integral operator for scattering. All the ∆ terms are assumed to
be known because they are defined by the perturbation, an input
to the calculation. Note that the because of the denominator,
this equation is a non-linear perturbation, even though it is
still technically first order. Often this expression is further
linearized where the denominator is written as the unperturbed
fission source.

To demonstrate the method’s capability, two perturbations
are shown: the buildup of 135Xe and control rod worth. In both
cases, the predicted perturbed eigenvalue k′ is found both with
perturbation theory and directly from an MCNP6 calculation
where the materials have been substituted.

For the xenon worth calculation, a detailed 2-D Pressurized
Water Reactor (PWR) model is used, where the base case has no
xenon. The perturbation involves adding some small amount of
135Xe to the fuel uniformly (not a terrible assumption because
the flux in this system is fairly flat across the core). Figure 1
shows the perturbed k for various concentrations of 135Xe (in
ppb). The results show good agreement for additions less than
20 ppb, but the results begin to diverge as the concentration
increases; there is about a 1.4% relative error for the 50 ppb
case.
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Figure 1: Perturbation theory and direct calculation estimates of
perturbed k for varying 135Xe concentration.

The second test examines control rod worth. A reflected,
homogeneous cylindrical reactor is used. The cylinder has
a height of 200 cm with an inner region of radius 100 cm
and an outer region with radius of 150 cm. The inner region
(atomic density of 9.02878 x 10−2 atoms per barn-cm) is a
homogeneous mixture of water, uranium oxide (UO2 at 4%
enrichment), and iron-56 in atomic fractions of 63.3%, 31.7%,
and 5.0% respectively. The outer region is simply a water
blanket surrounding the inner core region with atomic density
of 2.3024 x 10−2 atoms per barn-cm.

The inner region is subdivided axially into three zones. The
top zone contains a relative boron-10 concentration of 1.0 x
10−4 to simulate the addition of control rods from the top of the
core. The bottom zone is the area where no control material
has been inserted. The middle zone is 1 cm in length; it takes
the property of the bottom zone in the unperturbed case, and
has the material of the top zone in the perturbed case.

The differential rod worth, dρ/dz, is approximated by the
ratio of the change in reactivity ∆ρ to the change in rod height
∆z. The control rod bank height is given an unperturbed inser-
tion starting from z = 10 cm and going in 10 cm increments to
z = 190 cm. The perturbation is moving the entire control rod
bank (represented by a homogeneous axial zone) downward
by 1 cm. The differential rod worth estimates along with the
reference values (obtained from subtracting 1/k obtained from
two independent Monte Carlo calculations) are given in Fig.
2. Figure 3 displays k estimated from an integral worth curve
obtained from trapezoidal integration of the differential rod
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Figure 2: Perturbation theory and direct calculation estimates of
differential rod worth.
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k eff Estimated by Integral Worth Curve
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Figure 3: Perturbation theory and direct calculation estimates of
integral rod worth.

worth curve.
The first-order perturbation results produce curves represen-

tative of what is expected. However, as seen in Fig. 3, the
predicted values of k from the differential worths do not match
the corresponding directly computed values. This is especially
so when the control rods are deep into the core. This is likely
because a first-order approximation is inadequate; as the con-
trol rods near the bottom of the core, the flux becomes quite
peaked.

3. Nuclear Data Sensitivities

Closely related to material substitutions is the application of
nuclear data sensitivities. In this case, the motivation is to
understand which nuclear data are the most important driver
toward determining a system’s k. This is particularly important
in the area of validation and uncertainty analysis. Assessing the
predictive capability of a particular transport software package
and nuclear data library requires to see how well the calcula-
tions perform on similar established benchmarks. Establishing
commonality between a calculation model and benchmarks can
be done by comparing their sensitivity coefficients sk,x; two
systems that have similar sensitivities can be said to be alike
from a validation point of view.

The sensitivity coefficient of the eigenvalue k with respect to
nuclear data x (e.g., fission cross section, etc.) is defined as

sk,x =
dk/k
dx/x

, (14)

or the ratio of the relative differential change in k as a result
of a relative differential change in x. The derivation of the
sensitivity coefficient in terms of adjoint-weighted integrals is
very similar to that of perturbation theory. The final result is

sk,x = −

〈
ψ†,

(
Σx − S x − k−1Fx

)
ψ
〉

〈
ψ†, Fψ

〉 . (15)

The form is very similar to that of estimating ∆ρ from a material
substitution. Σx is the cross section for nuclear data x; or zero
if x is not a cross section (e.g., fission ν). S x is the scattering
operator for just nuclear data x; e.g., if x was elastic scattering
off 238U, S x would be the partition of the scattering integral
for just elastic scattering involving 238U. Likewise, Fx is the
fission operator for just nuclear data x.
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Figure 4: Code comparison of 238U total cross section sensitivity
in OECD/NEA UACSA Benchmark Phase III.1.

The sensitivity coefficients can be applied to estimate the
uncertainty in k. Given a covariance matrix C of the nuclear
data and a corresponding sensitivity vector S the uncertainty
in the eigenvalue δk may be found via the so-called sandwich
rule:

(δk)2 = SCST . (16)

To assess the applicability of the IFP method for computing
sensitivity coefficients, comparisons with other software pack-
ages, TSUNAMI-3D(7) and MONK,(8) are done. The problem
used for comparison is the OECD/NEA UACSA Benchmark
Phase III.1 benchmark,(9) which is an array of MOX fuel pins
immersed in light water, simulating a criticality accident where
a lattice of MOX fuel in a storage or shipping cask is flooded.
This is based on the benchmark within the ICSBEP Handbook
having the identifier MIX-COMP-THERM-001-001. The de-
tailed 3-D model is a square lattice with a pitch of 0.9525 cm.
The lattice is 28 × 22, except for the top row, which has only
17 pins, for a total of 605 pins. The fuel pins have a diame-
ter of 0.5842 cm and a height of 91.44 cm. The areas axially
above and below are buffers that are treated as homogenized
mixtures of water and pin materials. A light-water scattering
kernel is used for thermal scattering with hydrogen in the water.
ENDF/B-VII.0 data is used for the calculations.

Energy-resolved sensitivities to the 238U total cross section
computed by MCNP6, TSUNAMI-3D, and MONK (using JEF-
2.2 nuclear data) are shown in Fig. 4. All results mostly agree,
with some small discrepancies between TSUNAMI-3D and the
results from either MONK or MCNP6.

Reaction Reaction δk

elastic elastic 462.1
elastic inelastic -867.5
elastic n,2n -3.4
elastic fission -82.2
elastic n,gamma 36.0

inelastic inelastic 859.0
inelastic fission 1.3

n,2n n,2n 11.1
fission fission 331.0
fission n,gamma 0.3

n,gamma n,gamma 72.4
total nu total nu 81.6

fission chi fission chi 174.1

587.6

Table 2: Uncertainties of k from 239Pu in Jezebel.
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These sensitivity results are also used to compute the uncer-
tainty of k for the Jezebel benchmark (PU-MET-FAST-001 in
the ICSBEP Handbook) using ENDF/B-VII.1 covariance data.
Table 2 shows the uncertainties in k (in pcm = 1 × 10−5) by
reaction from 239Pu, the dominant isotope toward determining
k. The total predicted uncertainty is 587.6 pcm, which can
be obtained by taking the signed sum squared of each of the
individual components—the factor of two on the off-diagonal
terms (e.g., elastic correlated with inelastic) is included in those
values. The results show that most of the uncertainty arises
from the scattering and fission cross section, with fission χ
providing a significant amount as well.

IV. Potential Future Applications & Extensions

The applications of point kinetics, perturbations from material
substitutions, and nuclear data sensitivities are the ones cur-
rently implemented in MCNP6.1. There are certainly ways that
these can be extended, and new capabilities demanding adjoint
weighting can be added as well should the need arise. Some of
these possible extensions and future applications are discussed.

1. Localized Adjoint-Weighted Flux & Reaction Rates

The adjoint-weighted flux (sometimes called the contribu-
ton(10)) gives an estimate of the flow of radiation from source to
response. In some respects, these can be thought of as neutron
field lines analogous to those of magnetic fields. Most of the
utility of such a capability is in fixed-source problems involving
source and a localized detector or response to understand the
most important paths neutrons take to reach a response zone.
As such, these are often useful in shield design or detector
placement analysis.

The usefulness of an adjoint-weighted flux (or reaction rate)
is less clear in eigenvalue problems as the source and response
(the fission distribution) are spatially the same. Nonetheless,
there is still information to be had in systems where neutrons
thermalize to cause a significant portion of the fissions driving
the chain reaction. The energy-dependent adjoint-weighted flux
can give information about exactly where the neutrons that most
drive the chain reaction are undergoing thermalization. This
information can be helpful in placement of control or poison
elements to regulate reactivity in, for instance, a criticality
safety application.

MCNP currently allows space- and energy-dependent flux
and reaction rate tallies on structured (by way of a superim-
posed mesh) and unstructured meshes (by way of coupling
with Computer-Aided Engineering software such as Abaqus).
The quantities calculated on these meshes could be weighted
by the importance function to estimate the adjoint-weighted
equivalents.

2. Extensions to Kinetics

The point kinetics model represents the simplest of the kinetic
models to represent dynamic behavior in nuclear systems. Two
possible improvements are the multi-point kinetics model and
modal kinetics.

The multi-point model is useful when the fissionable sys-
tem involves multiple, not-too-tightly interacting units, such as
those systems found in criticality safety analyses or some exper-
iments. The model treats the kinetics of each unit separately and
the units are connected via coupling coefficients. The kinetic
parameters and coupling coefficients form a matrix equation
that can be solved to better approximate the dynamic behavior
of such systems. In principle, these should be calculable via
Monte Carlo using existing methods.

Studying transients where an event occurs that causes a sig-
nificant deviation in the flux shape requires modal kinetics.
Recall that the k-eigenvalue neutron transport equation has in-
finitely many solutions, and thus far, the only solution that has
been utilized is the fundamental mode. These higher modes or
eigenfunctions can be used to calculate kinetics parameters for
higher modes, and the transient can be described by a linear
combination thereof. It is possible to compute higher eigen-
functions, adjoint-weighted higher modes, of the k-eigenvalue
neutron transport equation using a hybrid of the IFP and fission
matrix methods.(11–13) Such work is currently under develop-
ment.

3. Higher-Order Perturbation Theory

In a similar vein, higher eigenfunctions can be used to better
approximate perturbation theory. As seen in the integral worth
curve in 3 first-order perturbation theory cannot capture pertur-
bations where the flux shift is too large; i.e., the second-order
terms ∆H∆ψ and ∆F∆ψ are no longer approximately zero. This
can be remedied if an estimate of ∆ψ can be made, and this can
be done if adjoint-weighted higher modes are used similarly
to how they would for modal kinetics. Research is currently
ongoing in this area.

4. Temperature Coefficients

The temperature coefficient of reactivity determines the stabil-
ity of the system in the presence of increases in temperature
(related to reactor power). The change in the reactivity from
temperature effects arises from changes in density and Doppler
broadening of the nuclear resonances. In many designs, it is
vital to demonstrate that the temperature coefficient is nega-
tive in all operating and off-normal conditions. The reactivity
temperature coefficient is

αT =
dρ
dT

. (17)

This can be cast into the form of adjoint-weighted integrals by
way of perturbation theory:

αT = −

〈
ψ†,

(
dΣt
dT −

dS
dT − k−1 dF

dT

)
ψ
〉

〈
ψ†, Fψ

〉 . (18)

If a representation can be found for the temperature derivatives
of the total cross section, scattering integral, and fission integral,
an estimate of αT can be made with the adjoint weighting
techniques.

Preliminary results have been obtained that suggest this is
possible for the Doppler coefficient.(14) The temperature deriva-
tives have been obtained based on the “On-The-Fly” (OTF)
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Doppler broadening method(15) implemented in MCNP6; the
OTF method represents the temperature dependence of the
cross sections by way of a polynomial fit in ± powers of the√

T . Results show that the method can estimate the Doppler
coefficient to within a few percent (reference αT from a central
difference of two calculations) for a simple problem of an infi-
nite lattice of low-enriched uranium metal pins surrounded by
hydrogen.

5. Extensions to Sensitivities

The current method in MCNP6.1 only computes sensitivities
to nuclear data, and only for the response of k. This can be
extended in both dimensions.

Any quantity that is uncertainty would ideally need a sen-
sitivity to perform overall uncertainty quantification. Such
quantities are, for example, geometric tolerances, locations of
components, material compositions, densities, and tempera-
tures. The latter three can probably be covered with existing
methods discussed in this paper. The area of sensitivity and
uncertainty analysis for geometry is an active area of research.

The expressions of perturbation theory can be extended be-
yond k to cover other responses such as leakages and reaction
rate ratios as well. This is also an active area of development.

V. Conclusions

The IFP method allows for the computation of integrals of
adjoint-weighted quantities in a continuous-energy Monte
Carlo simulation. These quantities can then be used in re-
actor analysis. Currently, MCNP6.1 supports adjoint-weighted
calculations for point kinetics, first-order perturbation theory
for material substitutions, and nuclear data sensitivities. Fu-
ture applications are currently being researched including the
calculation of localized adjoint-weighted fluxes, higher-order
kinetics and perturbation models, temperature coefficients, and
various extensions to sensitivities.

Acknowledgments

Funding for this work was provided by the U.S. Department of
Energy/National Nuclear Security Agency Nuclear Criticality
Safety Program.

References

1) MCNP6 Development Team: J.T. Goorley, M.R James, T.E.
Booth, F.B. Brown, J.S. Bull, L.J. Cox, J.W. Durkee, J.S. Elson,
M.L. Fensin, R.A. Forster, J.S. Hendricks, H.G. Hughes, R.D.
Johns, B.C. Kiedrowski, R.L. Martz, S.G. Mashnik, G.W. McK-
inney, D.B. Pelowitz, R.E. Prael, J.E. Sweezy, L.S. Waters, T.
Wilcox, T.J. Zukaitis, “Initial MCNP6 Release Overview”, Nucl.
Technol., 180, pp. 298-315 (2012).

2) B.C. Kiedrowski, F.B. Brown, P.P.H. Wilson, “Adjoint-Weighted
Tallies for k-Eigenvalue Calculations with Continuous-Energy
Monte Carlo,” Nucl. Sci. Eng., 168, pp. 226-241 (2011).

3) B.C. Kiedrowski, F.B. Brown, “Adjoint-Weighted Kinetics Pa-
rameters with Continuous Energy Monte Carlo,” Trans. Am.
Nucl. Soc., 100, pp. 297 - 299 (2009).

4) B.C. Kiedrowski, F.B. Brown, “Estimating Reactivity Changes
from Material Substitutions with Continuous Energy Monte
Carlo,” Trans. Am. Nucl. Soc., 101, pp. 427 - 429 (2009).

5) B.C. Kiedrowski, F.B. Brown, “Adjoint-Based k-Eigenvalue Sen-
sitivity Coefficients to Nuclear Data Using Continuous-Energy
Monte Carlo,” Nucl. Sci. Eng., 174, pp.227 - 244 (2013).

6) J.B. Briggs (Ed.), “International Handbook of Evaluated Criti-
cality Safety Benchmark Experiments”, Nuclear Energy Agency,
NEA/NSC/DOC(95)03/I, Paris, France (2012).

7) B.T. Rearden, “TSUNAMI-3D: Control Module for Three-
Dimensional Cross-Section Sensitivity and Uncertainty Analysis
for Criticality,” ORNL/TM-2005/39 Version 6, Oak Ridge Na-
tional Laboratory (2009).

8) “MONK9: A Monte Carlo Program for Nuclear Criticality
Safety and Reactor Physics Analyses,” ANSWERS (2008).

9) T. Ivanova, et. al., “OECD/NEA Expert Group on Uncertainty
Analysis for Criticality Safety Assessment: Results of Bench-
mark on Sensitivity Calculation (Phase III),” Proc. PHYSOR
2012 – Advances in Reactor Physics, Knoxville, TN, USA, Apr.
15-20 (2012).

10) M.L. Williams, “Generalized Contributon Response Theory,”
Nucl. Sci. Eng., 108, 355 (1991).

11) F.B. Brown, S.E. Carney, B.C. Kiedrowski, W.R. Martin, “Fis-
sion Matrix Capability for MCNP, Part I - Theory,” Proc. M&C
2013, Sun Valley, ID, USA, May 5-9 (2013).

12) S.E. Carney, F.B. Brown, B.C. Kiedrowski, W.R. Martin, “Fis-
sion Matrix Capability for MCNP, Part II - Applications,” Proc.
M&C 2013, Sun Valley, ID, USA, May 5-9 (2013).

13) S.E. Carney, F.B. Brown, B.C. Kiedrowski, W.R. Martin,
“Higher-Mode Applications of Fission Matrix Capability for
MCNP,” LA-UR-13-26615, Los Alamos National Laboratory
Report, Los Alamos, NM, USA (2013).

14) M.A. Gonzales, B.C. Kiedrowski, F.B. Brown, A.K. Prinja,
“Monte Carlo Doppler Temperature Coefficients with Perturba-
tion Theory,” Trans. Am. Nucl. Soc., 109, pp.

15) G. Yesilyurt, W.R. Martin, F.B. Brown, “On-the-Fly Doppler
Broadening for Monte Carlo Codes,” Nucl. Sci. Eng., 171, pp.
239-257 (2012).


	Introduction
	Theory & Method
	Current MCNP Applications
	Point Kinetics
	First-Order Material Substitution Perturbations
	Nuclear Data Sensitivities

	Potential Future Applications & Extensions
	Localized Adjoint-Weighted Flux & Reaction Rates
	Extensions to Kinetics
	Higher-Order Perturbation Theory
	Temperature Coefficients
	Extensions to Sensitivities

	Conclusions

