
LA-UR-13-24765
Approved for public release; distribution is unlimited.

Title: Monte Carlo Criticality Calculations - History &
Recent Progress

Author(s): Brown, Forrest B.
Carney, Sean E.
Kiedrowski, Brian C.
Martin, William R.

Intended for: 2013 ANS Winter Meeting, 2013-11-10/2013-11-14 (Washington, District
Of Columbia, United States)
MCNP general information
Report
Web

Issued: 2013-06-27

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer,is operated by the Los Alamos National 
Security, LLC for the National NuclearSecurity Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396.  
By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to 
publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. 
Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the 
U.S. Departmentof Energy.  Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; 
as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.



Monte Carlo Criticality Calculations – History & Recent Progress 
 

Forrest Brown1, Sean Carney2, Brian Kiedrowski1, William Martin2 
 

1Monte Carlo Codes Group, LANL, Los Alamos, NM, fbrown@lanl.gov 
2Dept. Nuclear Engineering & Radiological Science, Univ. of Michigan, Ann Arbor, MI 

 

 

INTRODUCTION 

Monte Carlo (MC) methods are used routinely today 
for the detailed analysis of critical experiments and 
reactors. In this paper, we provide an overview of the 
historical progression of MC capabilities for criticality 
calculations. Then, recent progress in MC criticality 
capabilities and current R&D efforts are noted. As an 
example of current R&D efforts, we provide some 
perspective on the fission matrix method as applied to 
MC criticality calculations. This example serves to 
illustrate the close connections and synergy among MC 
methods, computer capabilities, and theoretical work from 
the 1940-50s on the fundamental theory and mathematics 
that support today’s computational methods. Researchers, 
especially students, should note that to take full advantage 
of today’s large computers, it is often useful or necessary 
to delve back into the pioneering work in reactor theory. 
Often an older method that went largely unused due to 
computer limitations may be practical and effective in 
today’s computing environment. In addition, new MC 
capabilities can help to investigate and clarify some of the 
original theoretical work.  

HISTORY OF MONTE CARLO CRITICALITY 
CALCULATIONS 

The history of Monte Carlo (MC) methods for 
criticality problems is closely linked to that of computers. 
John von Neumann developed the first computer program 
for MC calculations of particle transport in 1947 [1] for 
the ENIAC. In the 1950s [2-5] MC criticality calculations 
were limited by computer speed and capacity to small 
critical experiments or simplified systems. The first fully-
detailed calculations of reactors began in the 1960s [5,6], 
and by the 1970s fully-detailed, 3D whole-core MC 
reactor calculations were routine. The progression in MC 
capabilities matched the growth in computer speed and 
capacity. In the pre-2000s, supercomputers were found 
primarily at national laboratories; today large Linux 
clusters are widely available, so that universities and 
industry have access to comparable systems. Due to the 
cpu-intensive nature of MC codes, they were often some 
of the first codes to be converted to new computers.  

Over the past 60+ years of methods and code 
development for Monte Carlo, there has been steady 
progress in all areas:  Geometry modeling capabilities 

began with a dozen or fewer regions, then grew to a few 
1000s in the 1970s, 10-100K in the 1990s, and now to 
millions or more in some codes. The introduction of 
hierarchical geometry (i.e., embedded geometry, “holes”, 
“universes”, etc.) has enabled large models with reusable 
geometry parts. Physics interaction data as provided by 
libraries of nuclear cross-sections has likewise grown 
from nonexistent to the current ENDF/B-VII libraries that 
can require gigabytes of storage. 

Today’s supercomputer clusters have a billion or 
more times the performance and capacity of computers 40 
years ago for MC criticality calculations, resulting in: 
much larger, more detailed calculation models are used; 
many more calculations are run; and more neutron 
histories are run in each calculation. As codes and 
computers evolved, so did the typical results obtained 
from MC: MC calculations of reactors usually produced 
only keff in the 1960s; keff and detailed assembly power 
distributions in the 1970s; keff, detailed 2D whole-core 
power, and assembly depletion in the 1980s; keff, detailed 
3D whole-core power, 2D core depletion in the 1990s; 
and keff, detailed 3D whole-core power, 3D depletion, and 
reactor design parameters in the 2000s. Going forward in 
the 2010s, capabilities for total uncertainty quantification 
are maturing, to analyze the impact of uncertainties in 
cross-sections, manufacturing tolerances, methodology, 
etc. 

RECENT PROGRESS AND R&D EFFORTS 

The most significant recent and current R&D efforts 
for MC criticality calculations worldwide are focused on: 
multigroup sensitivity/uncertainty analysis of cross-
section uncertainties; hybrid MC and deterministic 
methods; source convergence diagnostics (e.g., Shannon 
entropy); adjoint-weighted continuous-energy MC tallies 
using the iterated fission probability; quantification of 
bias and uncertainty; depletion methods, including 
equilibrium Xenon and control searches; stochastic 
geometry for modeling the random locations of fuel 
particles in newer reactor fuel systems; multiphysics 
calculations to provide feedback in MC due to fluid flow, 
thermal, and mechanical effects; on-the-fly neutron 
Doppler broadening with temperature; continuous-energy 
sensitivity/uncertainty analysis; application of the fission 
matrix for determining higher eigenmodes and 



accelerating convergence; and new algorithms to take 
advantage of the probable heterogeneity and massive 
multilevel parallelism of computers expected to appear 
over the next decade. 

AN EXAMPLE – THE FISSION MATRIX METHOD 

As an example of recent R&D work, we provide 
some perspective on the fission matrix method as applied 
to MC criticality calculations. This method is among the 
oldest methods for MC criticality calculations [2,3], and 
has been proposed and tried by many researchers over the 
past 60 years. The past efforts were successful only for 
very small problems due to computer memory limitations 
and the N2 nature of the method. To tally fission matrix 
components for every fuel pin in a reactor over 100 axial 
segments would involve N ~ 8M regions, with a matrix of 
size N2 requiring 512 TB of memory. 

Computational Methods 

References [7] and [8] provide detailed descriptions 

of the theory, MC computational techniques, and results 
obtained in the initial implementation and testing of the 
fission matrix method in MCNP. The key computational 
advance is the use of a sparse, compressed-row storage 
scheme for the fission matrix tallies. With this scheme, no 
approximations are made; the sparsity is general, not 
banded, and all tallies are rigorously recorded. The use of 
a sparse storage scheme, however, has required the 
development of numerous new MC computational 
algorithms, such as performing efficient tallies into the 
sparse matrix, eigensolvers for both the left and right 
eigenvectors of a general sparse matrix based on power 
iteration, Hotelling deflation of the solution space for the 
sparse power iteration to compute higher-mode left and 
right eigenvectors, etc. The example problems presented 
in [8] involve realistic, detailed models using continuous-
energy physics, e.g., a 2D whole-core PWR, a large fuel 
assembly storage vault, the ATR reactor, and the 3D 
“Kord Smith Challenge” problem. Fig. 1 [8] gives an 
example of the first 16 eigenfunctions for the 2D whole-
core PWR model.  

 
Fig. 1.  2D Whole-core PWR model: First 16 eigenfunctions and eigenvalues for fission neutron source 
distribution, obtained using a 120x120 tally mesh for the fission matrix (14,400 tally regions, 14,400x14,400 
fission matrix). 5M neutrons/cycle, cycles 4-100.  Taken from Reference [8]. 



Applications 

The fission matrix is obtained at essentially no cost 
during the normal simulation for criticality calculations. It 
can be used to provide estimates of the fundamental mode 
power distribution, the reactor dominance ratio, the 
eigenvalue spectrum, and higher mode spatial 
eigenfunctions. Accurate higher mode eigenfunctions for 
both the fission source and adjoint fission source have 
many potential uses in convergence analysis, correction of 
statistics, reactor stability analysis, perturbation theory, 
etc. The fundamental mode obtained from the fission 
matrix can be accurately computed before the actual 
neutron distribution has converged; it can therefore be 
used to accelerate the convergence of the power method 
iterations for the actual neutron distribution.  

Relation to Fundamental Reactor Theory 

Some of the most interesting aspects of the fission 
matrix method pertain to the understanding and resolution 
of unanswered questions on the fundamental theoretical 
basis for continuous-energy MC criticality calculations. 
This is discussed in detail in [7], and summarized here.  

Past theoretical work on the fundamental 
mathematical basis for k-effective criticality calculations 
has shown that: 

• The transport equation for energy-dependent 
problems [9] is not self-adjoint; due to neutron 
slowing down, the kernel for the integral form is not 
symmetric. Accordingly, eigenfunctions of the keff 
form of the transport equation need not form a 
complete, real, orthogonal set of basis functions. For 
the energy-dependent keff form of the transport 
equation, however, the forward and adjoint fission 
sources are biorthogonal, and forward and adjoint 
fluxes are biorthogonal when fission operator 
weighting is used. 

• The fundamental mode eigenvalues and 
eigenfunctions of the transport equation have been 
proven to exist, even for the continuous-energy form 
of the transport equation [10]. The fundamental mode 
eigenvalue is real and positive, and the fundamental 
mode eigenfunction is real and non-negative. 

• For the 1-speed integral transport equation for the 
scalar flux assuming isotropic scattering, it has been 
proven [11] that all of the higher modes exist, with 
discrete real eigenvalues and real eigenfunctions. The 
1-speed integral equation for the scalar flux is self-
adjoint due to the symmetry of the kernel in the 
integral equations. This proof was later extended to 
include anisotropic scattering [12]. 

• For the multigroup transport equation and the 
continuous-energy transport equation, it is 

conventional practice [9] to assume that higher 
modes exist, with real eigenvalues and 
eigenfunctions, even though that has not been proven.  

In [7], very fine spatial resolution was used in 
computing the fission matrix for several realistic 
problems. The fission matrix is not symmetric (due to the 
energy dependence in the transport equation). It was 
shown that, for fine enough spatial resolution, the adjoint 
fission matrix is simply the transpose of the forward 
fission matrix. Thus the fission source distribution and its 
higher modes are right eigenvectors of the fission matrix; 
the adjoint fission source and its higher modes are left 
eigenvectors of the fission matrix. The fission source and 
its adjoint were proven to be biorthogonal. Numerical 
evidence for every problem analyzed to date indicates 
that: 

• As the spatial resolution is refined, the eigenvalue 
spectrum of the fission matrix converges smoothly. 
For N spatial regions and an NxN fission matrix, there 
are N eigenvalues. As N is increased, the lowest 
modes converge smoothly. This convergence in 
spectrum can be used to verify that the resolution is 
fine-enough to provide accurate solutions. 

• The eigenvalues are discrete and real. (This is 
debatable, since some complex eigenvalues appear 
for some of the highest modes. However, as N is 
increased and statistical noise is decreased by using 
more neutrons/cycle, the complex parts become 
smaller and shift to even higher modes. Such 
behavior suggests a numerical artifact from the 
statistical noise in fission matrix tallies.) 

• The forward eigenfunctions form a very-nearly 
othogonal set. Theory dictates that the forward and 
adjoint solutions are biorthogonal, and that the 
forward modes alone need not be orthogonal to each 
other. The numerical evidence in [7] for several 
realistic problems shows the near-orthogonality of 
the forward modes. (This is significant, because that 
is a common assumption in reactor theory.)  It is 
known [13] that even for biorthogonal systems of 
eigenproblems, the individual sets of forward and 
adjoint eigenfunctions may also be orthogonal among 
themselves, even though that is not required. 

This numerical evidence is highly suggestive, but is 
not mathematical proof. Further study is ongoing into the 
above and additional aspects of the fundamental 
theoretical basis of the keff  form of the transport equation. 
The accuracy of the fission matrix method using 
continuous-energy and very fine spatial resolution – made 
possible by the new sparse storage algorithms – provides 
a valuable new tool for both theoretical and practical 
studies of critical systems. 

 



SUMMARY & CONCLUSIONS 

We have summarized the history and recent progress 
in MC criticality calculations. As an example, especially 
for student researchers, recent work on development of 
fission matrix capabilities was summarized. The intent 
was to illustrate the synergy among large-scale computer 
capabilities, advanced numerical schemes, and 
fundamental theory. Much of the early literature on 
nuclear engineering is rich in ideas for advanced 
computation and analysis methods. Many of those ideas 
could not be realized at the time due to computing 
limitations, but may be feasible and useful today with 
advanced computers and improved numerical methods. 
Understanding the history of theory, mathematics, 
computer evolution, and code development is a key to 
making full use of today’s large-scale computers. 
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