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ABSTRACT 

This paper describes the initial experience and results from implementing a fission matrix 
capability into the MCNP Monte Carlo code. The fission matrix is obtained at essentially no cost 
during the normal simulation for criticality calculations. It can be used to provide estimates of the 
fundamental mode power distribution, the reactor dominance ratio, the eigenvalue spectrum, and 
higher mode spatial eigenfunctions. It can also be used to accelerate the convergence of the power 
method iterations. Past difficulties and limitations of the fission matrix approach are overcome 
with a new sparse representation of the matrix, permitting much larger and more accurate fission 
matrix representations. Numerous examples are presented. A companion paper (Part I – Theory) 
describes the theoretical basis for the fission matrix method.  
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1. INTRODUCTION 

Continuous-energy Monte Carlo codes such as MCNP [1] simulate neutron behavior using the 
best available nuclear data, accurate physics models, and detailed geometry models. Reactor 
criticality calculations for keff and the power distribution are carried out iteratively, using the 
power method, where batches of neutrons are simulated for a single generation. The fission 
matrix approach was proposed in the earliest works on Monte Carlo criticality calculations [2-4] 
and has been tried by many researchers over the years. The present work takes advantage of the 
very large computer memories available today and a new sparse matrix representation to 
overcome past difficulties. A companion paper (Part I - Theory [5]) describes the theoretical 
basis for this fission matrix capability. 

2. FISSION MATRIX METHOD 

2.1 Fission Matrix Equations 

As derived in [5], if the physical problem is segmented into N spatial regions, and the k-effective 
form of the integral transport equation is integrated over the volumes of each initial region J, 
with  

r0 ∈VJ , and final region I, with  
r ∈VI , then the following equations are obtained:  

SI = 1
K ⋅ FI,J ⋅SJ

J=1

N

∑     (1) 
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where 

 
FI,J = dr

r∈VI
∫ dr0

r0∈VJ
∫

S(r0 )
SJ

⋅H(r0 →
r ), SJ = S(′r )d′r


′r ∈VJ
∫        (2) 

SJ is the fission neutron source in region J, and H  is an energy- and angle-averaged Green’s 
function. The matrix element FI,J  is equal to the number of next-generation fission neutrons born 
in region I due to one average fission neutron starting in region J. The matrix F  is called the 
fission matrix. The fundamental mode eigenvalue of this matrix is formally identical to k-
effective, and the fundamental mode eigenfunction is the regionwise fission neutron source 
distribution. In matrix-vector form, Eq. (1) is 

 

S = 1

K ⋅F ⋅

S      (3) 

where  

S  is a vector of length N giving the single-generation production of neutrons in each 

region from fission, and F  is a full matrix of size NxN. Higher eigenmodes of Eq. (3) can be 
determined according to: 

 
 


Sn = 1

Kn ⋅F ⋅

Sn n = 0,1,...N

k0 > k1 > k2 > ...> kN
     (4) 

where the subscript n refers to the mode, with n=0 the fundamental mode. For a problem with N 
regions in the mesh for the fission matrix, F  is an NxN matrix with N discrete eigenvalues. 
Because F  is a nonsymmetric matrix, the eigenvalues and eigenvectors may be complex, 
although the fundamental mode must be strictly real and nonnegative. 

2.2 Monte Carlo Estimation of the Fission Matrix 
In this section, we describe the choices implemented in MCNP6 for the initial proof-of-principle 
testing of the fission matrix method, including the region shapes and size, the initial source 
guess, the tallying procedure, the iteration strategy, and parallel computing issues. 
2.2.1 Regions for fission matrix tallies 

The choice of region shapes and sizes for determining the fission matrix is arbitrary, as long as 
all fissionable regions in the physical problem are covered. For the initial testing in MCNP6, we 
have chosen to use a simple, uniform, 3D, Cartesian mesh, with different numbers of mesh 
intervals permitted in the x-, y-, and z-directions. The mesh overlays the detailed Monte Carlo 
geometry for the physical problem and must encompass all fissionable regions in the problem. 
The choice of mesh for tallying the fission matrix does not affect the ordinary Monte Carlo 
tracking in any manner. Using a uniform mesh permits determining the ijk spatial mesh indices 
for tallies of the source at x,y,z at only trivial computing cost. (Further development will extend 
the mesh choices to nonuniform Cartesian and cylindrical meshes.) 
2.2.2 Initial source guess 

While the initial guess for the fission neutron source distribution is arbitrary for criticality 
calculations, the use of a uniform volumetric source in fissionable regions of the problem is the 
most prudent choice. This ensures that tallies of fission matrix elements will be made for all 
fissionable regions in the initial stages of the power iteration process used in MCNP. (Future 
development will automate this and include stratified sampling techniques.)   
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2.2.3 Tallying the fission matrix elements  

The elements of the fission matrix can be estimated at essentially no extra cost during the normal 
Monte Carlo criticality simulation – simply remember the region a fission neutron was born in 
(J), determine the region a next-generation fission neutron is produced in (I), and tally the (I,J)-th 
element of the fission matrix. For Monte Carlo codes that use a fixed number of starting source 
neutrons for every cycle, the region tallies are simply incremented by 1 for each neutron; for 
MCNP with a varying number of neutrons starting each cycle, the tallies need to be incremented 
by M0/M, where M0 is the number of neutrons starting the initial cycle, and M is the number that 
started the current cycle. Before solving the fission matrix equations, the tallies need to be 
normalized by dividing each (I,J)-th element by the total number of starters in region J.  
Tallies for fission matrix elements can be made using only the locations of fission neutron 
sources at the start and end of each batch, without incurring any overhead during the random 
walk simulation of the neutrons. This approach eliminates any inter-process communications 
overhead during MPI parallel processing, since the entire fission matrix estimation can be 
performed on the master node, using only the existing “fission bank” information. (If fission 
matrix tallies were instead made during the neutron random walks, for instance using a path 
length estimator, then the entire set of fission matrix tallies would need to be stored on each 
parallel computing node. The entire set of fission matrix tallies would then need to be 
accumulated across all nodes, which could involve many GB of MPI message-passing at 
considerable overhead cost.) 
If a coarse mesh is used to define the spatial regions, then the fission matrix tallies cannot be 
made until after the fission source distribution has converged, since the spatial weighting 
functions in Eq. (2) correspond to the stationary source distribution. However, if a fine enough 
mesh is used such that  

 

S(r0 )
SJ VJ

≈1    for  r0 ∈VJ      (5) 

then Eq. (2) becomes independent of the spatial weighting functions, and valid tallies can be 
made even before the source distribution converges.  
2.2.4 Tally updates and iteration strategy 

During a standard k-effective calculation, at the end of each cycle the FI,J  estimators are updated 
by tallying the fission neutron weight using the starting and ending mesh region numbers for 
each point in fission bank. If the mesh is fine enough that Eq. (5) is valid, the tallies may be 
accumulated over cycles even during the inactive cycles, prior to convergence of the fission 
source distribution. In practice, we have chosen to begin the fission matrix tallies at the 4th 
iteration cycle, and to accumulate the tallies over all subsequent cycles. (Single-cycle estimates 
of the fission matrix are never used.)  
At any desired cycle, the FI,J  tallies may be normalized by dividing by the total accumulated 
source in the starting regions (i.e., J index) to form the normalized fission matrix. Then the 
eigenvalues and eigenvectors of the fission matrix may be found by simple power iteration. If 
higher modes are desired, then Hotelling deflation or direct solvers may be also be used. In 
practical application, the fission matrix tallies could be accumulated for all problem iterations, 
and then the fission matrix eigenvalues and eigenvectors could be determined only after the 
Monte Carlo calculation had completed. If it is desired to obtain the fission matrix solution 
during the Monte Carlo calculation, to potentially use it to accelerate the overall source 
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convergence, then the fundamental mode eigenvector could be determined at the end of any 
cycle. When using the fission matrix solution to accelerate source convergence, only the 
fundamental mode eigenvector is required. 

2.3 Sparse Fission Matrix Representation 

The principal limitation on the accuracy of the fission matrix approach is, and always has been, 
the size of the regions for each fission matrix element. Typically, a regular 3D spatial mesh with 
N = NI x NJ x NK elements is used, giving an NxN fission matrix, with N2 entries. A 
100x100x100 spatial mesh would give rise to a fission matrix with 1012 elements, which could 
not be stored even on today’s computers. 
To overcome this limitation, we investigated the use of a sparse fission matrix. Clearly, not every 
region in a large 3D problem is tightly coupled to every other region; fission neutrons induce 
most further fissions in neighboring regions, and few or none in distant regions. To investigate 
this, we incorporated tallies into MCNP to diagnose the fractions of induced fission neutrons in 
neighboring regions, and examined the structure of the fission matrix for a typical 2D PWR 
problem. Fig. 1 shows the structure of the fission matrix for the 15x15x1 mesh case, where each 
mesh element corresponds to an assembly-sized region. It is evident from the banded structure of 
the fission matrix that neutrons from one assembly cause nearly all of their fissions in that 
assembly and the nearest 2 neighboring assemblies in each direction. Only about 0.5% of the 
fission matrix tallies correspond to more distant fissions. Thus, storing a sparse, banded fission 
matrix (rather than the full matrix) offers a promising mechanism for mitigating the storage 
problem. Fig. 2 shows the sparse fission matrix structure obtained by limiting the coupling to 
only 2 nearest neighbor assemblies in each direction. Of course, as the spatial mesh is refined, 

more neighbor bands will need to be retained. For the testing described below, we have used the 
sparse fission matrix representation, with the number of bands in the matrix chosen to include 
spatial regions corresponding to the nearest 2 neighboring assemblies in each direction. That is, 

 
Fig. 2. Sparse fission matrix structure for a 
2D whole-core PWR model, for a 15 x 15 x 
1 spatial mesh. Spatial coupling limited to ± 
2 neighboring assemblies. 

 
Fig. 1. Fission matrix structure for a 2D 
whole-core PWR model, for a 15 x 15 x 1 
spatial mesh. Matrix dimensions are 225 x 
225. Points in blue are non-zero elements of 
the fission matrix. 
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for a 15x15x1 spatial mesh, the fission matrix sparse storage is 225x25 elements, rather than the 
full 225x225 elements. For the 30x30x1 mesh, the sparse matrix representation is 900x81; for the 
60x60x1 mesh, the matrix is 3600x289. Additionally, the very few tallies outside of the matrix 
bands were accumulated in the nearest banded fission matrix element in order to preserve overall 
neutron balance. 

3. EXAMPLES OF HIGHER MODE ANALYSIS USING THE FISSION MATRIX 

In this section we provide a several examples for 2D and 3D reactors where MCNP was used to 
compute a fission matrix, and then higher eigenvalues and eigenfunctions of the fission neutron 
source distribution are obtained from the fission matrix. All MCNP calculations were performed 
with continuous-energy collision physics using ENDF/B-VII.0 cross-section data [6]. 

3.1 2D Whole-core PWR 
A 2D whole-core PWR model is 
shown in Fig. 3 (previously used in 
[7], based on [8]). The fission matrix 
was accumulated during standard 
KCODE calculations with 500K 
neutrons/batch. Tallies for the fission 
matrix elements were made only for 
the 4th and successive batches. keff, the 
fundamental mode eigenfunction, and 
the dominance ratio  from the fission 
matrix were determined via an 
iterative method. Higher-mode 
eigenvalues and eigenfunctions for the 
fission matrix were determined by 
either a direct non-symmetric matrix 
routine or by using Matlab. 
Fig 4. shows the fundamental mode 
eigenfunction for various spatial 
resolutions used in tallying the fission matrix, corresponding to full, ¼, 1/16th, and 1/64th of the 
assembly size. As discussed in Part I [5], a convergence study of the eigenvalue spectrum with 
mesh refinement was used to determine that the 120x120 mesh provided sufficient resolution to 
produce accurate eigenvalues and eigenfunctions. 
Fig. 5 shows the fundamental eigenmode (i.e., the fission neutron source distribution) and 15 
higher eigenmodes for the 120x120x1 mesh case. These plots are especially interesting, since the 
higher eigenmodes cannot normally be obtained directly from a Monte Carlo calculation. For this 
calculation, the spatial mesh included 14,400 regions, and the fission matrix size was 
14,400x14,400. During the calculation, the dominance ratio k1/k0 was obtained every cycle, and 
all 14,400 eigenvalues and eigenfunctions were obtained after the MCNP calculation using 
Matlab. 

              
Fig. 3.  2D quarter-core PWR model, with detail 

shown for the center 1/4-assembly. For the 
current work, a whole-core model was used. 

2.1% Enrichment 
2.6% Enrichment 
3.1% Enrichment 
 



Carney, Brown, Kiedrowski, Martin 
 

International Conference on Mathematics and Computational Methods Applied to Nuclear Science & Engineering (M&C 2013). 
Sun Valley, Idaho, USA, May 5-9, 2013. 

6/12 

 

 

 

 
Fig. 5. 2D Whole-core PWR model: First 16 eigenfunctions and eigenvalues for fission 
neutron source distribution, obtained using a 120x120 tally mesh for the fission matrix 
(14,400 tally regions, 14,400x14,400 fission matrix). 5M neutrons/cycle, cycles 4-100. 

   
Fig. 4. 2D Whole-core PWR model: Fundamental mode eigenfunctions for fission neutron 
source distribution, obtained from the fission matrix for different spatial tally meshes. 500K 
neutrons/cycle, fission matrix tallies for cycles 4-55, sparse fission matrix limited to nearest 
neighbors within ±2 assembly pitch distances. 
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3.2 Kord Smith Challenge Problem 
This is a detailed 3D whole core reactor model developed for computer performance 
benchmarking [9]. The geometry is shown in Fig. 6. For normal MCNP criticality calculations, 
this problem takes about 55 cycles to converge the source distribution. The fission matrix tallies 
were performed during cycles 4-55, using 1M neutrons/cycle, a 42x42x20 tally mesh (1/4-
assembly, with 20 axial segments), and a 35280x4913 sparse fission matrix. Fig. 7 shows the 
fundamental and 14 higher modes for the fission neutron source distribution, and Table I shows 
the corresponding eigenvalues. 

 

 
Fig. 6. Kord Smith Model: geometry [9] 

 
Fig. 7. Kord Smith Model: First 15 eigenfunctions of the fission neutron source distribution, 
x-y slices through the core at 10 elevations. 
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Table I. Kord Smith Model: First 15 eigenvalues 

n kn  n kn 
0 0.99919  8 0.96043 
1 0.98483  9 0.95671 
2 0.98362  10 0.95178 
3 0.98469  11 0.95078 
4 0.96956  12 0.94524 
5 0.96950  13 0.94497 
6 0.96693  14 0.94472 
7 0.96591  - - 

 

3.3. Fuel Storage Vault  

This is Benchmark Problem 1 from the OECD/NEA Source Convergence Benchmarks [10]. The 
problem contains 36 large, loosely coupled spent fuel assemblies in water surrounded by 
concrete reflector.  A sole assembly has concrete reflector on two sides, as opposed to one or 
zero for the others.  Consequently, this single assembly is by far the most reactive, with a total 
fission rate over a factor of 10,000 greater than the least reactive assembly.  Conventional Monte 
Carlo requires around 2000 cycles for fission source convergence with a flat initial guess. 

Fig. 8 shows the convergence behavior of the standard MCNP and fission matrix results.  The 
fission matrix is tallied for cycles 3-200, with a batch size of 1 M.  The spatial mesh is 
96x12x10, corresponding in the x-y plane to sixteen mesh regions for every assembly.  By cycle 
30, the fission matrix gives a reasonably converged fundamental eigenvector.  Thus we see the 
potential for excellent source convergence acceleration with the fission matrix. 

 

Fig. 9 shows the first 16 eigenfunctions for the fuel storage vault problem, and Table II gives the 
corresponding eigenvalues. 

 
Fig. 8. Vault model: Shannon entropy to diagnose source convergence for standard MCNP 
(blue) and the fission matrix approach (green). 
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Table II.  First 16 eigenvalues for the fuel storage vault problem with a 96x12x10 spatial mesh. 

n kn  n kn 
0    0.88947  8    0.87785 
1    0.88653  9    0.87658 
2    0.88600  10    0.87536 
3    0.88533  11    0.87488 
4    0.88399  12    0.87363 
5    0.88275  13    0.87309 
6    0.88112  14    0.87279 
7    0.87945  15    0.87245 

 

3.4. Advanced Test Reactor 
The final problem examined is the Advance Test Reactor (ATR) at Idaho National Laboratory 
[11], shown in Fig. 10.  Used primarily for the study of radiation effects, this core has a complex 
serpentine-shape fuel arrangement that does not easily adhere to a Cartesian mesh.  There are 40 
curved fuel assemblies with 93% enriched uranium aluminide powder fuel; each wraps 45 
degrees.  Each assembly has 19 plates of thickness 0.2 cm; the actual thickness of the fuel within 
each plate is 0.05 cm. 

 
Fig. 9. Vault model: First 16 eigenmodes, with a 96x12x10 spatial mesh.  Fission matrix 
tallied cycles 4-200, batch size of 1 M. 



Carney, Brown, Kiedrowski, Martin 
 

International Conference on Mathematics and Computational Methods Applied to Nuclear Science & Engineering (M&C 2013). 
Sun Valley, Idaho, USA, May 5-9, 2013. 

10/12 

 

Fig. 11, the fission matrix structure for a 
50x50x1 spatial mesh, shows that all of 
the fissionable regions are highly-
coupled, giving a full, dense matrix. A 
sparse fission matrix representation is 
not suitable for this problem.   
Fig. 12 shows the first 16 eigenfunctions 
for the ATR model, using a 100x100x1 
spatial mesh for fission matrix tallies. 
The fission matrix tallies were made for 
cycles 2-200, with 1M neutrons/cycle. 

Table III gives the first 16 eigenvalues 
for the ATR problem. 

 
Table III.  First 16 eigenvalues for the ATR, with a 100x100x1 mesh. 

n kn  n kn 
0 0.99490  8 0.47004 
1 0.85630  9 0.46173 
2 0.84612  10 0.45794 
3 0.78265  11 0.41144 
4 0.64564  12 0.32865 
5 0.55461  13 0.29454 
6 0.55207  14 0.28401 
7 0.53659  15 0.28327 

 

 

  
Fig. 10. ATR model: geometry [11] 
 

 
Fig. 11. ATR model: Fission matrix structure 
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4. WORK IN PROGRESS 

We are also investigating the use of the fission matrix to accelerate the power method 
convergence of Monte Carlo criticality calculations. Because the fission matrix can be 
determined accurately with only a few batches during the inactive portion of the calculation, the 
fundamental eigenmode can be used to bias the fission neutron source, forcing the source 
distribution based on Monte Carlo histories to converge more quickly. Initial testing of this 
method is encouraging, and further study and development are in progress. 
 

 
 

 
 

 
Fig. 12. ATR model: First 16 eigenfunctions for the fission neutron source distribution, 
obtained from the fission matrix. 
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5. CONCLUSIONS AND FUTURE WORK 

We have described the initial experience and results from implementing a fission matrix 
capability into the MCNP Monte Carlo code. The fission matrix is obtained at essentially no cost 
during the normal simulation for criticality calculations. It can be used to provide estimates of 
the fundamental mode power distribution, the reactor dominance ratio, the eigenvalue spectrum, 
and higher mode spatial eigenfunctions. It can also be used to accelerate the convergence of the 
power method iterations. Past difficulties and limitations of the fission matrix approach are 
overcome for many problems with a new sparse representation of the matrix, permitting much 
larger and more accurate fission matrix representations. 
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