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ABSTRACT

MCNP6 has the capability to produce energy-resolved sensitivity profiles for secondary distributions
(fission χ and scattering laws). Computing both unconstrained and constrained profiles are possible.
Verification is performed with analytic test problems and a comparison to TSUNAMI-3D, and the
comparisons show MCNP6 calculates correct or consistent results. Continuous-energy calculations are
performed for three fast critical experiments: Jezebel, Flattop, and copper-reflected Zeus. The
sensitivities to the secondary distributions (integrated over chosen energy ranges) are of similar
magnitude to those of many of the cross sections, demonstrating the possibility that integral
experiments are useful for assessing the fidelity of these data as well.
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1. INTRODUCTION

The U.S. DOE/NNSA Nuclear Criticality Safety Program sponsors efforts to do critical (integral)
experiments to provide measurements for code and nuclear data validation. Multigroup Monte Carlo
methods (such as those found in TSUNAMI-3D [1]) have been able to compute sensitivity coefficients for
several years [2], and MCNP6 [3] has a new continuous-energy capability for this purpose as well [4,5].
Recently, at Los Alamos National Laboratory (LANL), the “Chi-Nu Experiments” at the LANSCE particle
accelerator have been initiated to focus on performing high-fidelity differential measurements of fission
emission distributions (fission χ) [6]. Also at LANL, covariance data libraries to fission χ of the major
actinides [7] have been released in ENDF/B-VII.1 [8], offering the possibility of uncertainty quantification.
Finally, operations at the National Critical Experiments Research Center (NCERC) in Nevada have begun,
and new integral experiments are being performed [9]. This convergence of experimental, codes, and data
efforts offers opportunities to address the need for assessing the impact of secondary distributions such as
fission χ on nuclear criticality.

This paper specifically focuses on MCNP6 capabilities for generating sensitivity coefficients to secondary
distributions. While some details of the method are given herein, readers are encouraged to see a
companion paper [10], which goes much more in depth, and focuses on verification and code performance.
This paper specifically focuses on computing sensitivity coefficients arising from the normalization
requirements of secondary distributions (i.e., unconstrained versus constrained sensitivities). Two
multigroup, infinite-medium test problems are defined, analytic solutions for unconstrained and constrained
fission-χ and scattering law sensitivities are obtained, and results are compared with MCNP6. A
comparison is also made of an energy-resolved constrained fission-χ sensitivity obtained by TSUNAMI-3D
for a published benchmark exercise [11]. The results of both agree within a few percent or better.
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Continuous-energy secondary distribution sensitivities are then obtained for three fast critical assemblies in
the International Handbook of Criticality Safety Benchmark Experiments (ICSBEP) [12]: Jezebel, Flattop,
and copper-reflected Zeus. Comparisons are made with cross-section sensitivities, and, when integrated
over energy ranges of interest, the magnitudes of the secondary distribution are comparable. This indicates
that measurements of integral experiments may be useful for helping determine the fidelity of these data,
much the same as is done today for cross sections or fission ν.

2. BACKGROUND

The sensitivity coefficient of k to nuclear data x of isotope j is

Sj
k,x =

xj

k

dk

dxj
= −

〈
ψ†, (Σj

x − Sx − λFx)ψ
〉

〈ψ†, λFψ〉
. (1)

Here ψ is the angular (forward) flux and ψ† is its adjoint function. Σj
x is the cross section corresponding to

xj if x is a cross section, and zero otherwise (e.g., fission χ). Sx is the integral scattering operator for xj if
xj is a scattering cross section or law [includes elastic, inelastic, (n,2n), etc.], and zero otherwise. Fx is the
integral fission operator for xj if xj is a fission cross section, fission ν, or fission χ, and zero otherwise.
The quantity λ = 1/k and the brackets denote integration over all phase space.

This is a ratio of two adjoint-weighted integrals. The tallies needed to estimate these integrals are given in
the companion paper [10]. The adjoint weighting is done with the Iterated Fission Probability method [13].

For this paper, the sensitivities of interest are for the secondary distributions, so Σj
x is zero, leaving either

the scattering or fission term. The secondary distribution is f(E′ → E,µ) where E′ is the incident energy,
E is the exiting energy, and µ = Ω̂′ · Ω̂ and is the cosine of the scattering angle; Ω̂′ and Ω̂ are entering and
exiting directions respectively. In MCNP6, the exiting energies and scattering cosines used are those that
are in the processed data files. The convention used is that all scattering laws except the correlated
energy-angle scatter law (ENDF law 67) have E and µ specified in the center-of-mass frame.

The secondary distribution is normalized such that∫ ∞

0
dE

∫ 1

−1
dµ f(E′ → E,µ) = 1, (2)

which provides a constraint upon the sensitivity coefficient. An increase in some energy or cosine range
must be offset by decreases elsewhere to preserve the normalization. Correspondingly, the sensitivity
coefficient integrated over all E and µ must be zero.

There are infinitely many ways one could enforce the normalization. A standard approach (also used in
TSUNAMI-3D) involves two steps. First, the distribution is increased in some energy range g spanning
Eg−1 to Eg and some angle range n spanning µn−1 to µn by some small multiplicative factor c. Second,
the distribution is renormalized everywhere by decreasing the amount of emission by a uniform
multiplicative factor of c times the probabilty of emission in the energy-angle range. The sensitivity
coefficient is where the multiplicative factor c approaches zero in the limit.

The standard approach leads to a constrained sensitivity coefficient denoted by Ŝj
k,x. This can be found

from knowing the unconstrained sensitivity coefficient from Eq. (1) and the value of the secondary
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distribution f by

Ŝj
k,f (µ,E,E′) = Sj

k,f (µ,E,E′)− f(E′ → E,µ)
∫ ∞

0
dE

∫ 1

−1
dµ Sj

k,f (µ,E,E′). (3)

Note that this constrained sensitivity is the result that MCNP6 normally reports, and is also now the default
in the newer versions of TSUNAMI-3D. In reality, MCNP6 must integrate this over a bin for tallying. The
bin-integrated value reported by MCNP6 is defined by

Ŝj
k,f,g,g′,n = Sj

k,f,g,g′,n − f j
g,g′,nS

j
k,f,g′ . (4)

The bin-integrated unconstrained sensitivity is

Sj
k,f,g,g′,n =

∫ Eg′

Eg′−1

dE′
∫ Eg

Eg−1

dE

∫ µn

µn−1

dµ Sj
k,f (µ,E,E′). (5)

The term on the right is integrated over all outgoing energies and angles of direction change µ, but is only
integrated over a specific incident energy bin.

The term f j
g,g′,n is the bin averaged transfer distribution. An important point is that this one number may

fail to capture needed detail if the incident energy grid is too coarse. In the limit where the incident energy
grid is infinitely fine, the sum of Ŝj

k,x (calculated in each incident energy range) over all incident energies

approaches a steady value. Conversely, different estimates of Ŝj
k,x on varying incident energy grids that are

too coarse do not sum to the same value. This is in contrast to either the unconstrained sensitivity
coefficients or the constrained ones in the exiting energy or cosine dimensions; these are always additive
regardless of the energy or cosine grid selected.

The necessary spacing of the incident energy grid depends on the amount variation of the secondary
distribution with incident energy. For fission χ, the dependence upon incident energy is relatively weak for
neutron energies typical in fast critical assemblies, and therefore this is a minor consideration. This
difference does, however, become quite evident for scattering laws, which have outgoing energy and
angular dependence that tend to be strong functions of incident energy, and care must be taken to choose an
appropriate incident energy grid. For now, this is left up to the user, but future research will be done to
automate this.

MCNP6 computes a secondary-production weighted averaged distribution for the transfer function f in Eq.
(4). This is done by

f j
g,g′,n =

∫ µn
µn−1

dµ
∫ Eg

Eg−1
dE

∫ E′
g′

E′
g′−1

dE′ f(E′ → E,µ)m(E′)N jσj
x(E′)∫ 1

−1 dµ
∫∞
0 dE

∫ E′
g′

E′
g′−1

dE′ f(E′ → E,µ)m(E′)N jσj
x(E′)

, (6)

where N j is the atomic density of isotope j, and m is the multiplicity of the reaction [e.g., (n,2n) has
m = 2, fission has m = ν(E′), etc.], and σx is the corresponding reaction cross section.

3. VERIFICATION

Demonstrating that MCNP6 is calculating these sensitivities correctly is done in three different ways:
comparisons to (1) analytic solutions, (2) direct perturbations, and (3) results from other software.
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Table I. Nuclear Data for the First Analytic Problem

g σt σc σf ν χ σsg1 σsg2 σsg3

1 2 1/2 0 – 5/8 1 1/2 0
2 4 1 0 – 1/4 0 1 2
3 4 1/2 3/2 8/3 1/8 0 0 2

Table II. Fission-χ Sensitivity Results for the First Analytic Problem

Sk,x Ŝk,x

x Exact MCNP6 Adjoint C/E Exact MCNP6 Adjoint C/E

χ1 +5/12 +0.4169 ± 0.09% 1.001 −5/24 −0.2080 ± 0.12% 0.999
χ2 +1/3 +0.3334 ± 0.07% 1.000 −5/24 −0.2080 ± 0.12% 0.999
χ3 +1/4 +0.2497 ± 0.06% 0.999 +1/8 +0.1246 ± 0.17% 0.997

The first analytic test problem is an infinite medium case with three energy groups. The features of the
problem physics are as follows: fission may only occur in group 3 (the lowest energy group), fission
neutrons may appear, however, in all energy groups, downscattering is restricted to subsequent groups (e.g.,
groups 1 to 2), and there is no upscattering. This is the same problem given in the companion paper, except
that now sensitivities to fission χ (both constrained and unconstrained) are estimated. The data is also
identical (see Table I), and is chosen to give k = 1.

The analytic solution for k is

k =
ν3σf3σs23

σR2σR3

[
σs12

σR1
χ1 + χ2 +

σR2

σs23
χ3

]
. (7)

Differentiating this equation with respect to χ1, χ2, and χ3 give the unconstrained sensitivity coefficients.
The constrained sensitivity coefficients are found by applying Eq. (4).

MCNP6 is also used to obtain estimates of these. The calculated (labeled “MCNP6 Adjoint”) and analytic
reference values are given in Table II. Also given is the C/E, which is the ratio of the MCNP6 calculated
value with respect to the “expected” or reference value. The results show that MCNP6 can accurately
calculate these quantities to within a few tenths of a percent.

A second analytic problem is done that looks at sensitivities to scattering laws. The problem is also an
infinite medium, but contains four groups and the data are given in Table III (which again are chosen to
make k = 1). This problem is somewhat unphysical in that neutrons in group 1 can downscatter into any of
the three other groups, but downscattering in groups 2 and 3 can only occur into the subsequent group.
There is no upscattering, fission neutrons are only produced in group 1, and fission can only occur in group
4.

The analytic solution for k is

k =
(

ν4σf4σs1

σR1σR2σR3σR4

)
[f14σR2σR3 + f34σs3 (f13σR2 + f12f23σs2)] . (8)
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Table III. Nuclear Data for the Second Analytic Problem

g σt σc σf ν χ σsg1 σsg2 σsg3 σsg4

1 3 1 0 – 1 1 1/2 1/4 1/4
2 4 1 0 – 0 0 2 1 0
3 4 2 0 – 0 0 0 1 1
4 6 3 2 12 0 0 0 0 1

Table IV. Group-1 Scattering Law Sensitivity Results for the Second Analytic Problem

Sk,x Ŝk,x

MCNP6 MCNP6
x Exact Adjoint C/E Exact Direct Adjoint C/E

f11 +1/2 +0.504 ± 1.5% 0.995 −1/4 −0.257 −0.250 ± 0.1% 1.001
f12 +1/5 +0.199 ± 1.1% 1.015 −7/40 −0.180 −0.175 ± 0.1% 0.999
f13 +1/5 +0.203 ± 1.1% 1.015 +1/80 +0.013 +0.012 ± 1.4% 0.994
f14 +3/5 +0.598 ± 0.4% 0.997 +33/80 +0.405 +0.413 ± 0.1% 1.000

Here fij is the probability of scattering from group i to j, and σsij = fijσsi.

Sensitivity results (constrained and unconstrained) are specifically obtained for scattering with incident
neutrons in group 1. Direct perturbation results are obtained by increasing the group-to-group scattering
cross section by some small amount (in this case 1%), calculating a new k to find a ∆k, and then
approximating the (constrained) sensitivity from the definition. MCNP6 results are also given, along with
C/E values. These are shown in Table IV, where the sensitivity coefficients computed by the adjoint
methods are labeled “Adjoint” and those computed directly are labeled “Direct” and the C/E values are
Adjoint to Exact. The MCNP6 Adjoint calculations agree to within a few percent of the Direct results
(uncertainties of about 5%) confirming the consistency between the calculations. The adjoint-based
sensitivity coefficients agree with the analytic solutions within the 2-σ statistical uncertainties, which are
all under 2%.

Of course, these calculations are multigroup, and MCNP6 is capable of computing sensitivity coefficients
with continuous energy. A comparison can be made with TSUNAMI-3D. While the TSUNAMI-3D
method is multigroup, there is special handling to correct for the self-shielding induced by the group
collapse, so the results should match.

Figure 1 gives constrained fission-χ sensitivities for an established benchmark, which is a mixed-oxide
lattice of fuel pins with specifications found in Ref. [11], from MCNP6 and TSUNAMI-3D. As seen from
the curves, the two curves agree well with differences usually being on the order of a few percent – where
the sensitivity is near zero, the agreement is still good, even though, strictly speaking, the percent
difference is high. This demonstrates that MCNP6 is computing constrained fission-χ sensitivities
consistently with TSUNAMI-3D.
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Figure 1. Comparison of constrained 239Pu fission-χ sensitivities for a MOX lattice benchmark.

4. FAST BENCHMARK RESULTS

Fission-χ and scattering distribution sensitivities are computed for three fast critical assembly benchmarks,
which may all be found in the ICSBEP. The incident energy grid used contains 100 keV intervals from 0 to
20 MeV. The results are then summed over all incident energy grids to obtain the final result. A parametric
study of the grid resolution shows consistency of results when the incident energy grid is refined, indicating
that it is sufficiently fine. The results for fission-χ sensitivities are presented with 100 uniform lethargy
bins each decade from 0.1 keV to 10 MeV, with 100 keV bins from 10 to 20 MeV. The scattering
distributions are given with respect to outgoing direction cosines in 1 degree intervals.

4.1. Jezebel

Jezebel was a nearly-spherical mass of plutonium. The experiments were performed at Los Alamos
Scientific Laboratory in the 1950s. The benchmark evaluation in the ICSBEP is PU-MET-FAST-001, and
approximates the experiment with a bare sphere. A revision is underway to provide a more detailed
specification. For these calculations, the revised, detailed model was used [14], and preliminary results
show only small deviation in sensitivities from the simplified sphere model.

The constrained fission-χ sensitivity of 239Pu is displayed in Fig. 2. Notice that the sensitivity profile is
negative below the mean emission energy and positive above. This indicates that faster neutrons are more
effective at driving a chain reaction relative to slower ones. This result is a consequence of ν increasing for
faster neutron energies. There is also a sudden peak starting at about 6 MeV. This corresponds to where the
fission cross section increases because of second-chance fission.
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Figure 2. Constrained fission-χ sensitivity profile for 239Pu in Jezebel.
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Figure 3. Constrained scattering law sensitivity profiles for 239Pu in Jezebel.

The elastic and inelastic scattering distribution (constrained) sensitivities for 239Pu are given in Fig. 3.
Forward-peaked elastic scattering has a relatively strong negative effect on the reactivity of the system,
whereas neutrons exiting collisions not going as forward tend to have less of a positive effect. This is
expected as this system is fast and the main loss mechanism is through leakage. Increasing the amount of
elastic scattering going forward relative to those going backward would increase loss through leakage,
therefore decreasing k. Inelastic scattering shows a much smaller, linear variation with outgoing direction.

As for significance, the integral of the above 6 MeV fission-χ sensitivity peak and the elastic scattering
from 0-30 degrees have about the same magnitude of 0.02, which is a similar effect of 240Pu fission or
239Pu inelastic scattering. While this is not a dominant effect, it cannot be neglected either.
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Figure 4. Constrained fission-χ sensitivity profile for 235U in Flattop.
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Figure 5. Constrained elastic scattering law sensitivity profiles for 235/238U in Flattop.

4.2. Flattop

Flattop is a subcritical sphere of highly-enriched uranium (HEU) brought to criticality by a natural uranium
spherical reflector shell. The ICSBEP evaluation for this is HEU-MET-FAST-028, and the benchmark
model contained therein is used for the calculations.

The 235U fission-χ sensitivity is given in Fig. 4. It is similar in shape to that seen for 239Pu in Jezebel,
except that the above 6 MeV peak is relatively higher than the peak from about 1.5-6 MeV. The reason for
this is because of fission in the 238U reflector, which produces neutrons that would have leaked from a bare
configuration. This suggests that reflected fast critical assemblies may be more sensitive to high-energy
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Figure 6. Constrained elastic scattering law sensitivity profiles for 63/65Cu in Copper-Reflected Zeus.

fission emission.

The elastic scattering distribution sensitivities for 235U and 238U are given in Fig. 5. As expected, forward
scattering in both produce a negative effect on k, with 238U being more important as a consequence of
having a large amount of it near the edge of the assembly where it would control leakage. These have
similar magnitudes to those seen for Jezebel.

4.3. Copper-Reflected Zeus

The previous two benchmarks are quite simple geometrically, or can at least be approximated by simple
sphere models. A more complicated experiment is Zeus, which has 3-D detail. The Zeus experiments use
thin plates of HEU, and are done bare and with reflectors in various configurations to achieve criticality.
Recently, the copper-reflected Zeus experiment was redone at NCERC [15] (a previous run of the
experiment was done about a decade earlier at Los Alamos), and this motivates the choice of using it as a
test problem. Note that the model used was from the ICSBEP (identifier HEU-MET-FAST-072), which is
the Los Alamos experiment, and is slightly different than the NCERC experiment because of differences
between the two facilities.

The purpose of this experiment is to look at the fast copper cross sections, which are suspected to be the
cause of poor predictions in k [16]. Elastic scattering in copper is a dominant component of the k, having
an energy-integrated sensitivity of just under 0.3 (both isotopes). The sensitivities of elastic scattering
distributions of both isotopes of copper are given in Fig. 6. Again, similar behavior to what is seen for the
uranium isotopes in Flattop is seen, and their relative magnitudes appear to be mostly driven by their
natural abundance, suggesting the two isotopes have similar fast neutron scattering properties. Note that
scattering in 235U is not significant, so it is not presented here.
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5. CONCLUSIONS

The ability to compute sensitivity coefficients to secondary distributions using both multigroup and
continuous-energy data has been implemented into MCNP6. Verification has been performed using
multigroup calculations in MCNP6, and comparing answers to analytic solutions yields favorable results.
Comparison of continuous-energy results to those from multigroup TSUNAMI-3D also show favorable
agreement. Calculations of sensitivity coefficients of secondary distributions are performed on three fast
critical assemblies, and all show similar trends.
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