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ABSTRACT

A continuous-energy sensitivity coefficient capability has been introduced into MCNP6. The methods
for generating energy-resolved and energy-integrated sensitivity profiles are discussed. Results from the
verification exercises that were performed are given, and these show that MCNP6 compares favorably
with analytic solutions, direct density perturbations, and comparisons to TSUNAMI-3D and MONK.
Run-time and memory requirements are assessed for typical applications, and these are shown to be
reasonable with modern computing resources.
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1. INTRODUCTION

For the previous decade, the U.S. DOE/NNSA Nuclear Criticality Safety Program has funded the
development of sensitivity and uncertainty analysis tools for critical experiments and benchmark analysis.
The primary analysis tool for this purpose is TSUNAMI-3D, which is part of the SCALE package [1,2]. In
recent years, other similar capabilities throughout the world have been developed, and the first production
release of MCNP6 includes such a capability [3].

The iterated fission probability (IFP) method [4] is used to compute the adjoint-weighted tallies needed for
sensitivity coefficients. This method has been previously shown to generalize to continuous energy because
only a forward simulation is required to perform the adjoint weighting. This same method is currently used
in MCNP6 to estimate point-kinetics parameters or estimating reactivity changes from material
substitutions. An overview of the IFP method is given, along with details of the adjoint-weighted tallies.

Before releasing this capability, verification was performed in three ways: (1) comparisons to analytic
solutions, (2) direct density perturbations, and (3) comparisons with other software. Each of these
verification methods is discussed, results are given, and they show that the routines in MCNP6 are capable
of correctly estimating sensitivity coefficients. The run-time and memory requirements are measured for
typical applications. Neither of these is prohibitive on modern computing platforms, demonstrating that the
method as implemented is a practical tool.

Note that this paper specifically focuses on sensitivities for cross sections and fission ν. Little attention is
given to fission-χ and scattering distribution sensitivities here, and this is covered more extensively in a
companion paper [5].
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2. METHODOLOGY

The sensitivity coefficient of k to nuclear data x of isotope j, xj , is defined as the ratio of the resulting
relative differential change in k to the relative differential change in xj . This can be found from
perturbation theory as a ratio of adjoint-weighted integrals:

Sj
k,x =

xj

k

dk

dxj
= −

〈
ψ†, (Σj

x − Sx − λFx)ψ
〉

〈ψ†, λFψ〉
. (1)

Here ψ is the angular (forward) flux and ψ† is its adjoint function. Σj
x is the cross section corresponding to

xj if xj is a cross section, and zero otherwise (e.g., fission χ). Sx is the integral scattering operator for xj if
xj is a scattering cross section or law [includes elastic, inelastic, (n,2n), etc.], and zero otherwise. Fx is the
integral fission operator for xj if xj is a fission cross section, fission ν, or fission χ and zero otherwise. The
quantity λ = 1/k and the brackets denote integration over all phase space.

2.1. The Adjoint Weighting

Sans the adjoint function, these terms can be estimated with continuous-energy Monte Carlo with standard
techniques using reaction-rate estimators. Because this integral is adjoint-weighted, as a neutron traverses
through space and undergoes reactions, it must not only be weighted by reaction cross sections, but the
local value of the importance function as well, which is usually not known.

Physically, the adjoint function is proportional to its (and that of any progeny it may have) expected future
performance toward contributing to a particular response [6]. In the eigenvalue problem, the adjoint
function specifically is proportional to the expected number of neutrons that would be in a system infinitely
many iterations into the future as a result of the current neutron [7] – Note that the consideration of sub-
and super-criticality is irrelevant as the eigenvalue problem imposes a balance on the overall population.
While it is impossible to directly simulate neutrons for infinitely many generations, it has been shown that
for quantities estimated by system-wide or global integrals, 5-10 generations is effectively infinite [4].

This leads to the IFP method. First, the eigenvalue iterations are separated into “blocks” of fixed size
(typcially 5-10). In the first generation of the block, the simulated neutrons are tagged and non-adjoint
weighted tally contributions are recorded and linked to each tag. The neutron tags are passed onto any
progeny and kept until the last cycle in the block. During this last cycle, estimates of neutron production
are made (MCNP6 uses a track-length estimator of fission neutron production), which, when summed over
all neutrons sharing the same tag is a random sample of its adjoint function. This estimate is multiplied by
the original, non-adjoint weighted estimate, to get an estimate of the adjoint-weighted tally.

The tagging scheme must be set up to account for branches in the neutron history within the individual
iteration within the block, which may arise from (n,2n) reactions, particle splitting, etc. Many of the details
and theory behind the IFP have been omitted here for space, but these are discussed elsewhere in the
literature [4].

Note that the IFP method is one of many methods that have been developed in recent years. For instance,
the differential operator method for perturbation theory may be used with a fission source correction to
produce the same results [8,9]. Other proposals involve using discrete approximations to the adjoint
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functions using a Green’s function approach [10] , or precomputing approximate adjoint functions with
deterministic codes.

2.2. The Forward Tallies

Correctly tallying the quantities on the right side of the integrals has, in itself, some subtleties. First, to be
more explicit, there are three terms that must be estimated. The first is the loss of neutrons from
interactions because of data x. This can be done with a standard estimators (e.g., track length, collision),
and MCNP6 uses the (unweighted) track-length estimator:

Σj
x`δg. (2)

Here Σx is the macroscopic cross section for data xj (this is zero in the case of fission ν, for example), ` is
the length of track, and δg is one if the particle energy is within energy band g and zero otherwise. The
tally contribution is not multiplied by the statistical weight of the particle because it is built into the adjoint
weighting factor; this is because the fission neutron production in the current (first) generation is multiplied
by the particle weight at the time of collision.

Estimating the gains from scattering and fission sources because of xj requires the adjoint function be
taken for the exiting energy and direction weighted by the relative probability of the interaction from data
xj . The options for this are analog or expected-value estimators. For the scattering source, all but a few of
the nonelastic scattering reactions involve Dirac-delta functions in their probability density functions (e.g.,
for elastic scattering, knowing the exiting direction uniquely determines the exiting energy). For this
reason, the analog and expected-value estimators are often identical, and therefore the analog estimator is
used in MCNP6:

δs,xδg. (3)

Namely, one is added to the tally if scattering reaction xj occurs within energy band g.

The fission source term does not have this type of behavior, having a continuum of energies independent of
direction, and therefore an expected-value estimate is most appropriate. This is

χjνjΣj
f

χνΣf
δf,xδg. (4)

Here the numerator is for fission reaction xj and the denominator is for the sum of all fissionable isotopes.
Like with the others, the δ terms ensure the tally is only scored if it is an appropriate reaction (i.e., elastic
scattering is not scored) and within the energy band g.

The forward tally in the denominator is straightforward as it is just the total number of fission neutrons
produced each iteration. This serves only as a normalization, and is independent of which data xj

sensitivities are desired.

3. VERIFICATION

Verification is performed using analytic solutions, direct density perturbations, and comparisons to other
codes. For the analytic solution, a multigroup, infinite medium problem is used. Direct density
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Table I. Nuclear Data for the Analytic Test Problem

g σt σc σf ν χ σsg1 σsg2 σsg3

1 2 1/2 0 – 5/8 1 1/2 0
2 4 1 0 – 1/4 0 1 2
3 4 1/2 3/2 8/3 1/8 0 0 2

perturbations are obtained in continuous-energy calculations with spheres containing homogeneous
mixtures of uranium-tetrafluoride and polyethylene. Code comparisons are performed with published
results [11] of TSUNAMI-3D and MONK [12]. Note that the MOX lattice and polyethylene spheres are
part of a code comparison exercise by OECD/NEA Expert Group on Uncertainty Analysis for Criticality
Safety Assessment (EG UACSA). This exercise is Phase III of a series of work by the Expert Group. The
MOX lattice is the first case, and the polyethylene spheres are the third case of Phase III.

3.1. Analytic Test Problem

The analytic test problem used is an infinite medium case with three energy groups. Because of the simple
nature of this problem, it is straightforward to obtained a solution for k algebraically. Reference solutions
may be obtained by differentiating the solution with respect to each of the data.

The features of the problem physics are as follows: fission may only occur in group 3 (the lowest energy
group), fission neutrons may appear, however, in all energy groups, downscattering is restricted to
subsequent groups (e.g., groups 1 to 2), and there is no upscattering. Given this, the analytic solution for k
is

k =
ν3σf3σs23

σR2σR3

[
σs12

σR1
χ1 + χ2 +

σR2

σs23
χ3

]
. (5)

Note that σRg is the microscopic removal cross section, which is the total cross section minus the
within-group scattering cross section. The nuclear data are chosen such that k = 1, and are given in Table
I. The sensitivity coefficients to the cross sections and fission ν are as follows:

Sk,σc1 = −σc1

k

ν3σf3σs23

σR2σR3

σs12

σR1
χ1 = − 5

24
, (6)

Sk,σc2 = − σc2

σR2

[
1− χ3

k

ν3σf3

σR3

]
= −1

4
, (7)

Sk,σc3 = − σc3

σR3
= −1

4
, (8)

Sk,σs12 =
σs12

k

ν3σf3σs23

σR1σR2σR3

[
1− σs12

σR1

]
χ1 =

5
24
, (9)

Sk,σs23 =
σs23

k

νσf3

σR2σR3

[
1− σs23

σR2

] [
σs12

σR1
χ1 + χ2

]
=

1
4
, (10)

Sk,σf3
= 1− σf3

σR3
=

1
4
, (11)

Sk,σν = 1. (12)
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Table II. Sensitivity Results for the Analytic Problem

x Exact Sk,x MCNP6 Sk,x C/E

σc1 −5/24 −0.20868 ± 0.10% 1.002

σc2 −1/4 −0.24993 ± 0.07% 0.999

σc3 −1/4 −0.24985 ± 0.05% 0.999

σs12 +5/24 +0.20810 ± 0.16% 0.999

σs23 +1/4 +0.25083 ± 0.15% 1.003

σf3 +1/4 +0.25045 ± 0.16% 1.002

ν3 +1 +1.00000 ± 0.00% 1.000

MCNP6 calculations of the sensitivity coefficients are made and the results are compared to the analytic
solutions in Table II. The C/E value is the calculated to the expected value, and measures the discrepancy
between the calculated and reference answer. The MCNP6 calculations all agree with their corresponding
analytic solutions within a few tenths of a percent.

Note that it is also possible to take derivatives with respect to the fission χ as well. Because the distribution
must be renormalized, there is an additional step involved. This is done specifically in the companion paper.

3.2. Direct Density Perturbations

The sensitivity to the total cross section can be approximated by increasing the density of a particular
nuclide by some small fractional amount f , finding the perturbed eigenvalue (call it k′ such that the
unperturbed eigenvalue is simply k) from a direct calculation (in this case with MCNP6), and taking

Sk,x ≈
1
f

∆k
k
, (13)

where ∆k = k′ − k. So long as f is sufficiently small such that k is an almost linear function of σj
t , the

approximation should be valid. Unfortunately, at times it can be difficult to directly resolve Sk,x with a
Monte Carlo calculation if that sensitivity is quite small. This is especially true when the reason for the
small sensitivity is because of large, but equally offsetting positive and negative effects. In order to resolve
the difference, a fairly large f must be chosen such that the linear assumption becomes questionable, as the
offsetting effects do not necessarily vary at the same rate.

The test case consists of two polyethylene spheres surrounded by vacuum boundaries. The first sphere
contains low-enriched uranium (LEU) at 2 atom percent 235U . The second sphere contains
intermediate-enriched uranium (IEU) at 50 atom percent 235U . The radii of the spheres are chosen such
that they are approximately critical.

Isotopic densities are increased by f as shown in Table III. The magnitudes of f are chosen such that ∆k
can be resolved statistically with a reasonable amount of computational effort.
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Table III. Comparison of Adjoint and Direct Methods for Computing Total Cross-Section Sensitivities with
MCNP6

Sphere Isotope f Adjoint Direct C/E

LEU

1H 0.01 +2.40 ×10−1 ± 0.4% +2.34 ×10−1 ± 1.3% 1.03
C 0.05 +2.74 ×10−2 ± 0.7% +2.74 ×10−2 ± 2.2% 1.00

19F 0.02 +4.38 ×10−2 ± 0.5% +4.17 ×10−2 ± 3.7% 1.05
235U 0.01 +2.53 ×10−1 ± 0.1% +2.55 ×10−1 ± 1.2% 0.99
238U 0.01 −2.01 ×10−1 ± 0.2% −2.03 ×10−1 ± 1.5% 0.99

IEU

1H 0.01 +4.54 ×10−1 ± 0.2% +4.57 ×10−1 ± 0.7% 0.99
C 0.05 +6.54 ×10−2 ± 0.3% +6.46 ×10−2 ± 1.0% 1.01

19F 0.02 +1.18 ×10−1 ± 0.2% +1.17 ×10−1 ± 1.3% 1.01
235U 0.01 +1.30 ×10−1 ± 0.2% +1.25 ×10−1 ± 2.5% 1.04
238U 0.20 −1.57 ×10−3 ± 5.4% −5.22 ×10−4 ± 20.3% 3.01

MCNP6 calculations of the sensitivities are made for each sphere using ENDF/B-VII.0 data. These are
given in Table III as well, and listed as “Adjoint”; the direct results are (intuitively) listed under “Direct”.
Except for the outlier 238U sensitivity in the IEU sphere, all of the adjoint-based sensitivities agree within
5% of the direct density perturbation results. The 1H sensitivity for the LEU sphere is slightly outside of
the 2-σ confidence band, but all the others (except the 238U outlier) are within.

The sensitivity of 238U in the IEU sphere is quite small relative to the those of the other isotopes, and it
required a 20% increase in the 238U density to get a statistically significant ∆k. The reason 238U is so
small is not because of a lack of abundance, but because the effect from elastic scattering and capture
almost exactly cancels. There is no expectation that these effects should both increase linearly at the same
rate for a 20% perturbation, and the results are expected to be anomalous.

3.3. Software Comparisons

Other software packages exist for calculating sensitivity coefficients, and some, like TSUNAMI-3D, have
been used regularly for about a decade using multigroup physics. The software package MONK has
recently released a continuous-energy coefficient capability based on the differential operator method with
a fission source correction. Both of TSUNAMI-3D and MONK participated in the EG UACSA Phase III
benchmark exercise for comparing codes. It therefore seems logical to see how MCNP6 results compare
with other software packages with similar capabilities. The results used for comparison are those generated
by Oak Ridge National Laboratory (ORNL) for TSUNAMI-3D with ENDF/B-VII.0 with and the Atomic
Weapons Establishment (AWE) for MONK with JEF-2.2.

The polyethylene spheres discussed in the last section are part of the Phase III benchmark exercise (third
problem, to be precise). The results of the total cross section sensitivities for MCNP6 versus
TSUNAMI-3D and MONK are given in Table IV. The statistical uncertainties of the MCNP6 results are
identical to those in Table III. Unfortunately, no statistical uncertainties for either TSUNAMI-3D or
MONK are provided. The C/E values in Table IV are MCNP6 with respect to the code in the column
immediately to the left.
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Table IV. Software Comparisons for Total Cross-Section Sensitivities of the Polyethylene Spheres

Sphere Isotope MCNP6 TSUNAMI-3D C/E MONK C/E

LEU

1H +2.40 ×10−1 +2.41 ×10−1 1.00 +2.45 ×10−1 0.98
C +2.74 ×10−2 +2.77 ×10−2 0.99 +2.77 ×10−2 0.99

19F +4.38 ×10−2 +4.56 ×10−2 0.96 +4.20 ×10−2 1.04
235U +2.53 ×10−1 +2.53 ×10−1 1.00 +2.58 ×10−1 0.98
238U −2.01 ×10−1 −1.95 ×10−1 1.03 −2.01 ×10−1 1.00

IEU

1H +4.54 ×10−1 +4.55 ×10−1 1.00 +4.52 ×10−1 1.00
C +6.54 ×10−2 +6.60 ×10−2 0.99 +6.61 ×10−2 0.99

19F +1.18 ×10−1 +1.19 ×10−1 0.99 +1.15 ×10−1 1.03
235U +1.30 ×10−1 +1.26 ×10−1 1.03 +1.36 ×10−1 0.96
238U −1.57 ×10−3 +1.35 ×10−3 -1.16 −1.30 ×10−3 1.21

Aside from the outlier 238U IEU sensitivity, all codes agree within 5%. There does not appear to be any
trend in terms of one code being consistently high or consistently low, although this sample size is too
small to make a statistically significant determination on such.

The continuous-energy results shown so far are energy-integrated and only for total cross sections. MCNP6
can, however, generate energy-resolved sensitivities for any reaction on an arbitrary, user-defined energy
grid.

Energy-resolved results for comparison are available for both TSUNAMI-3D and MONK for the MOX
lattice benchmark – problem 1 of the EG UACSA Phase III benchmark exercise. The problem is a lattice of
MOX fuel pins, with a pitch of 0.9525 cm, submerged in water. The lattice is 28 × 22, except for the top
row, which has only 17 pins, for a total of 605 pins. The fuel pins have a diameter of 0.5842 cm and a
height of 91.44 cm. The areas axially above and below are buffers that are treated as homogenized
mixtures of water and pin materials.

The energy-resolved sensitivities are computed by MCNP6 and MONK on a 238-group energy grid that
aligns with the standard SCALE multigroup library. MCNP6, TSUNAMI-3D, and MONK results for the
238U total cross-section sensitivities are given in Fig. 1, and the results for 1H elastic scattering
cross-section sensitivities are given in Fig. 2. The results mostly agree in shape and magnitude, indicating
all three codes are calculating energy-resolved sensitivities consistently.

4. CODE PERFORMANCE

Even the most accurate method is worthless to an end user if it cannot obtain results in a reasonable amount
of time or its memory requirements are prohibitively large. An assessment of the wall-clock time
requirements is made using the polyethylene spheres. Then, a problem with a very large number of
sensitivity coefficients (about 1.6 million) is obtained in the MOX lattice benchmark and the memory
requirements are given. Both the run-time and memory requirements are shown to be reasonable by
modern standards.
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Figure 1. Code comparison of energy-resolved 238U total cross-section sensitivities for the MOX lattice.
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Figure 2. Code comparison of energy-resolved 1H elastic scattering cross-section sensitivities for the MOX
lattice.
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4.1. Run-Time Performance and Computational Efficiency

The goal of a Monte Carlo calculation is to achieve the lowest statistical uncertainties for the least amount
of computational time – depending on the situation this can be either wall-clock or computer (clock-cycle)
time. The polyethylene spheres are used with batch size of 50,000 neutrons, 50 skip cycles, 1000 active
cycles, and a block size of 10 generations for the adjoint-weighted sensitivity tallies are used. The
calculations were performed on Intel Xeon E5-2670 processors at 2.6 GHz with 32 GB RAM. The adjoint
methods work both with Message Passing Interface (MPI) and Open Multi-Processing (OMP) threading
forms of parallelism in MCNP6, and all calculations are run with 16 OMP threads. The energy-resolved
and energy-integrated sensitivities for 53 different reactions – total, total elastic, total inelastic, all 40
individual inelastic levels in ENDF, inelastic continuum, (n,2n), fission, fission ν, total capture, (n,γ), (n,d),
(n,t), (n,3He ), and (n,α) – are calculated for each of the five isotopes on the standard 238-energy group
structure in TSUNAMI-3D (total of 63,335 sensitivities).

First a calculation is performed for both the LEU and IEU spheres with and without the adjoint-weighted
tallies, and the increase in wall-clock time from the additional overhead is measured (using the
Linux/UNIX “time” utility). Second, the percent uncertainties of the energy-integrated total, elastic, and
capture cross-section sensitivities for each isotope are given along with the figure of merit (FOM) – the
FOM is the inverse of the product of the computation time and the square of the relative uncertainty, where
the computational time used here is the wall-clock time multiplied by the number of threads (in this case,
16). These results are shown in Table V.

The increased overhead for employing the adjoint methods for this problem leads to increases in wall-clock
time by factor of 4.2 for the LEU sphere and 3.4 for the IEU sphere. Computing a relatively large number
sensitivities is not a trivial task for MCNP6, and calculations may take significantly longer than a
traditional eigenvalue calculation. Obtaining just the 15 sensitivities displayed in Table V increases
computational run times by 5-10%. Exactly how much extra time is needed depends on the number and
type of sensitivities required and the physics of the problem – it tends to scale with the expected number of
collisions per history.

Table V. MCNP6 Run-Time Performance Data

Time (min) Total Elastic Capture
Base Adjoint % Unc FOM % Unc FOM % Unc FOM

LEU 9.9 41.5

1H 5.7 4.7× 10−1 2.8 1.9× 100 0.2 3.1× 102

C 10.9 1.3× 10−1 10.8 1.3× 10−1 0.9 1.9× 101

19F 9.2 1.8× 10−1 12.4 9.9× 10−2 0.5 6.5× 101

235U 0.7 3.6× 101 75.4 2.6× 10−3 0.2 3.8× 102

238U 1.9 4.1× 100 12.7 9.3× 10−2 0.2 2.8× 102

IEU 4.3 14.7

1H 1.3 2.5× 101 1.3 2.4× 101 0.4 3.1× 102

C 4.0 2.7× 100 4.0 2.6× 100 2.7 5.9× 100

19F 2.8 5.6× 100 3.7 3.1× 100 0.8 7.2× 101

235U 2.3 8.3× 100 11.7 3.1× 10−1 0.3 5.8× 102

238U 111.4 3.4× 10−3 8.8 5.5× 10−1 0.6 1.1× 102
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As for the figure of merit values, the absolute magnitudes are not all that relevant since they are system
dependent. The trend, however, is for capture cross-section sensitivities to be easier to calculate than the
others, as indicated by their higher figures of merit. This is because the term is purely negative, and such
quantities are far easier to estimate than those that may be either positive or negative. While not given here,
the same trend applies to fission-ν sensitivities, which is a purely positive quantity. Scattering cross-section
sensitivities tend to be more difficult to compute, and usually have significantly lower figures of merit.
Fission cross-section sensitivities (not shown here) tend to be easier than those for scattering cross sections,
but more difficult than capture or fission-ν sensitivities. Total cross-section sensitivities are completely
problem dependent, as evidenced by the large spread in figures of merit, with the pathological 238U total
cross-section sensitivity in the IEU subcase being particularly notable. Whenever positive and negative
effects almost exactly balance, that corresponding sensitivity tends to be very difficult to estimate. As a
general trend, isotopes with greater abundance tend to have higher figures of merit, as expected.

4.2. Memory Requirements

To illustrate memory requirements, consider the MOX lattice problem where a large number of sensitivity
coefficients are desired. The problem specification includes 36 isotopes, 9 of which are fissionable.
Suppose for each of these 36 isotopes, 53 different reactions (same as the run-time performance
calculations) are desired using the standard 238-energy group structure in TSUNAMI-3D. Additionally,
fission-χ sensitivities are desired for the 9 fissionable isotopes as a function of both incident and outgoing
energy on a 238 × 238 energy grid (same group structure). Finally, total, elastic, and inelastic scattering
law energy transfer distributions are desired for 1H , 16O , 56Fe , and 238U on the same 2-D energy grid.
This leads to a total of about 1.64 million sensitivity coefficients. Note that many of these will not be used
because many of the reactions have thresholds or, for the case of the scattering energy transfer
distributions, are kinematically impossible.

Just multiplying the number of sensitivity coefficients by a reasonable batch size of 50,000 neutrons would
lead to a base memory requirement of about 615 GB. This presumes one 8-byte real number for each
sensitivity and source neutron, neglecting overhead. Because the arrays for each original neutron tend to be
very sparse, special handling for such sparse data is employed that only stores which data are needed. A
test of the present sparse data handling scheme currently implemented in MCNP6 performed on the Turing
cluster at LANL (Quad-Core AMD Opteron model 8354 at 2.2 GHz or model 8356 at 2.3 GHz) using one
node having 16 CPUs and using all 16 OMP threads shows that the memory requirements, as determined
by the UNIX/Linux “top” utility, are only about 10 GB (including all of the normal overhead, of which
storing the original contributions for the sensitivity coefficients are the vast majority), or a savings of over
98% relative to the theoretically required 615 GB. This shows that even for a over a million sensitivities,
the implementation in MCNP6 is such that while the memory requirements can be large, they are likely not
prohibitive.

5. CONCLUSIONS & FUTURE WORK

MCNP6 has a new capability for computing sensitivity coefficients to nuclear data using
continuous-energy Monte Carlo methods. Specifically, the IFP method is used to account for the adjoint
weighting. The method works by recording contributions to tallies and later weighting them by their
respective importance functions. Verification on the method is performed by comparisons to analytic
solutions, direct density perturbations, and to other software. Results of comparisons to analytic solutions
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show agreement within 2-σ confidence bands, which are within a few tenths of a percent. Comparisons
with direct density perturbations and other software usually agree within 5%, except for cases that are
known to be problematic. Code performance of run-time and memory requirements are assessed and found
to be reasonable.

In this paper, specific focus is given to only cross-section and fission-ν sensitivities. MCNP6, however, has
the capability to compute sensitivities to fission χ and scattering distributions, and this is covered in a
companion paper.

Future efforts will be devoted to developing a capability within MCNP6 to use sensitivity profiles in
conjunction with covariance data to perform estimates on the uncertainties of k. Further research will also
go into improving the efficiency of these methods, and extending their capability.
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