LA-UR-12-25144

Approved for public release; distribution is unlimited.

Title:	Nuclear Data Sensitivities in Fast Critical Assemblies	
Author(s):	Kiedrowski, Brian C. Brown, Forrest B.	
Intended for:	NECDC 2012, 2012-10-22/2012-10-26 (Livermore, California, United States)	

Disclaimer: Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for the National NuclearSecurity Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Departmentof Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Nuclear Data Sensitivities in Selected Fast Critical Assemblies

Brian C. Kiedrowski, Forrest B. Brown

Los Alamos National Laboratory

NECDC 2012

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA UNCLASSIFIED

MCNP6 has the capability to compute *k*-eigenvalue sensitivity coefficients using continuous-energy physics. Sensitivity profiles are generated for Jezebel, Flattop, and Copper-Reflected Zeus.

Introduction

- Motivation
- Method
- Results
- Outlook

- Nuclear data (e.g., cross sections, fission χ) are uncertain.
- Neutronics uncertainties are typically dominated by uncertainties in nuclear data.
- Questions:
 - 1. How well can our codes and data predict criticality of a particular system?
 - 2. Which nuclear data drive the criticality of that system?
 - 3. Which nuclear data contribute the most to its uncertainty?

Motivation

- Knowing what drives the uncertainty in a particular system tells us where to allocate limited resources.
- Particle accelerators conduct differential measurements, but are expensive.
- New integral experiments can also help narrow uncertainties.
 - Specific experiments can be designed that are particularly sensitive to data of interest.
 - Observing biases in multiple experiments can inform us about biases in data.
- All of these require sensitivity analysis!

Perturbation Theory in Neutronics

• Perturbation theory gives the following result:

$$\frac{dk}{k} = -\frac{\left\langle \psi^{\dagger}, (d\Sigma_t - dS - k^{-1}d\mathcal{F})\psi \right\rangle}{\left\langle \psi^{\dagger}, k^{-1}\mathcal{F}\psi \right\rangle}.$$

- k =multiplication factor.
- $\psi = \text{neutron (angular) flux.}$
- $\psi^{\dagger} = adjoint function.$
- Σ_t = total interaction cross section.
- S =scattering source.
- $\mathcal{F} = fission source.$

Connection to Uncertainty Quantification

• The uncertainty in k because of uncertain parameters x_i is estimated by:

$$(\Delta k)^2 = \sum_{i=1}^{N} (\Delta x_i)^2 \left(\frac{\partial k}{\partial x_i}\right)^2$$

- Uncertainties in nuclear are typically given as $\Delta x/x$.
- Define a useful quantity called a sensitivity coefficient:

$$\mathcal{S}_{k,x} = rac{dk}{k}rac{\chi}{dx} = -rac{\left\langle \psi^{\dagger}, (\Sigma_{X} - \mathcal{S}_{X} - k^{-1}\mathcal{F}_{X})\psi
ight
angle}{\left\langle \psi^{\dagger}, k^{-1}\mathcal{F}\psi
ight
angle}.$$

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Solution Technique

$$\mathcal{S}_{k,x} = -rac{\left\langle \psi^{\dagger}, (\Sigma_{x} - \mathcal{S}_{x} - k^{-1}\mathcal{F}_{x})\psi
ight
angle}{\left\langle \psi^{\dagger}, k^{-1}\mathcal{F}\psi
ight
angle}$$

- Accurate solutions to this equation for can readily be obtained by continuous-energy Monte Carlo.
- Can get energy-resolved sensitivity profiles for cross sections, fission ν , fission χ , and scattering distributions.
- New capability in MCNP6!

Iterated Fission Probability Method

- Divide active cycles of eigenvalue calculation into "blocks" of some size (default 10).
- First cycle: accumulate scores and tag neutrons.
- Follow neutrons through generations, preserving tags.
- Last cycle: multiply scores by neutron production of corresponding progeny.

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED

Constraining Sensitivities

- Fission χ and scattering laws are normalized in outgoing energies E and angles $\mu.$
- An increase somewhere must result in decrease(s) elsewhere to preserve normalization.
- Common technique is to increase the distribution in some energy interval and renormalize.
- The sensitivity is constrained by the following relation:

$$\hat{S}_{k,x}(E,\mu|E_i) = S_{k,x}(E,\mu|E_i) - x(E,\mu|E_i)S_{k,x}(E_i).$$

• Note: Because of normalization, the sensitivity integrated over all outgoing energies and angles is zero.

- Three fast-critical experiments were analyzed:
 - 1. Jezebel
 - 2. Flattop
 - 3. Copper-Reflected Zeus

Jezebel

• Plutonium critical experiment at LASL in 1950's:

Jezebel

• Detailed MCNP model by R. Brewer and J. Favorite:

Slide 13

Jezebel: Top Sensitivities

Isotope	Data	$S_{k,x}$
Pu-239	ν	$+9.662\text{E-01}\pm0.00\%$
Pu-239	Fission	$+7.274$ E-01 \pm 0.02%
Pu-239	Elastic	$+6.200E-02 \pm 0.20\%$
Pu-240	Fission	$+2.291$ E-02 \pm 0.03%
Pu-239	n,n' Continuum	$+1.008$ E-02 \pm 0.34%
Pu-239	n,n' Level 2	$+9.487$ E-03 \pm 0.31%
Pu-239	n,n' Level 1	$+8.906\text{E-03}\pm0.32\%$
Pu-239	n, γ	-7.673 E-03 \pm 0.08%
Pu-240	Elastic	$+3.268$ E-03 \pm 0.55%
Pu-241	ν	$+2.905\text{E-03}\pm0.02\%$
Ni-58	Elastic	$+2.435\text{E-03}\pm0.48\%$
Pu-241	Fission	$+2.185\text{E-03}\pm0.03\%$
Pu-239	n,n' Level 3	$+1.829\text{E-03}\pm0.54\%$

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Pu-239 Uncertainties 1 MeV

- Fission ν: 0.2%
- Fission: 1%
- Elastic: 4%
- Inelastic: 10-20%
- Capture: 10%

Jezebel: Pu-239 Fission-v Sensitivity

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Jezebel: Pu-239 Elastic Cross-Section Sensitivity

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Jezebel: Pu-239 Inelastic Cross-Section Sensitivity

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Jezebel: Pu-239 Fission- χ Sensitivity

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Jezebel: Pu-239 Scattering Law Sensitivity

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Flattop

• HEU sphere reflected by natural uranium:

Flattop: Top Sensitivities

Isotope	Data	$S_{k,x}$
U-235	ν	$+9.149E-01\pm0.01\%$
U-235	Fission	$+5.937$ E-01 \pm 0.02%
U-238	Elastic	$+1.430$ E-01 \pm 0.12%
U-238	ν	$+7.857$ E-02 \pm 0.05%
U-238	Fission	$+5.567 \text{E-02} \pm 0.06\%$
U-235	n, γ	-4.810 E-02 \pm 0.03%
U-238	n, γ	-4.806 E-02 \pm 0.05%
U-238	n,n' Level 1	$+3.560 \text{E-}02 \pm 0.15\%$
U-235	Elastic	$+3.261$ E-02 \pm 0.26%
U-235	n,n' Continuum	$+1.144$ E-02 \pm 0.25%
U-238	n,n' Level 2	$+8.036E-03 \pm 0.21\%$
U-238	n,n' Continuum	$+7.793$ E-03 \pm 0.25%
U-234	ν	$+6.579\text{E-03}\pm0.02\%$

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Flattop: U-235 Fission-v Sensitivity

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Flattop: U-238 Fission Cross-Section Sensitivity

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Flattop: U-238 Elastic Cross-Section Sensitivity

Flattop: U-235 Capture Cross-Section Sensitivity

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Flattop: U-238 Capture Cross-Section Sensitivity

Flattop: U-235 Fission- χ Sensitivity

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

OS.

Flattop: Elastic Scattering Law Sensitivity

Copper-Reflected Zeus

• HEU plates surrounded by a copper reflector:

4-GA50001-183

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA UNCLASSIFIED

Copper-Reflected Zeus: Top Sensitivities

Isotope	Data	$S_{k,x}$
U-235	ν	$+9.874$ E-01 \pm 0.00%
U-235	Fission	$+5.771$ E-01 \pm 0.03%
Cu-63	Elastic	$+1.937$ E-01 \pm 0.22%
Cu-65	Elastic	$+9.576E-02\pm0.28\%$
U-235	n, γ	-6.734 E-02 \pm 0.05%
Cu-63	n, γ	-3.555 E-02 \pm 0.07%
Cu-63	n,n' Level 2	$+1.012\text{E-}02\pm0.32\%$
Cu-65	n, γ	$+9.767$ E-03 \pm 0.08%
Al-27	Elastic	$+8.951$ E-03 \pm 0.43%
Cu-63	n,n' Level 1	$+8.021$ E-03 \pm 0.36%
U-235	n,n' Continuum	$+6.713\text{E-03}\pm0.57\%$
Cu-63	n,n' Continuum	$+6.221E-03 \pm 0.31\%$
U-234	ν	$+6.044$ E-03 \pm 0.04%

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Zeus: U-235 Fission Cross-Section Sensitivity

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Zeus: U-235 Capture Cross-Section Sensitivity

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Zeus: Cu-63 Capture Cross-Section Sensitivity

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Zeus: Cu-63 Elastic Cross-Section Sensitivity

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED

Zeus: Cu-63 Inelastic Cross-Section Sensitivity

Zeus: Cu Elastic Scattering Law Sensitivity

Zeus: U-235 Elastic Scattering Law Sensitivity

Status & Future Work

- MCNP6 can find what nuclear data most determines criticality.
- This is useful for interpreting neutronics code discrepancies and to design new experiments to address them.
- Uncertainty quantification of criticality with MCNP6 is just starting.
- Future hope is to extend to other responses: foil activation, leakage, α eigenvalue, etc.

• Funding provided by the U.S. DOE/NNSA Nuclear Criticality Safety Program.

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA UNCLASSIFIED

Questions?

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED

