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Abstract

Three different eigenvalues of the transport equations, and their
advantages and disadvantages are discussed. A method for computing the
collision or c eigenvalue is explained. Computing c rather than k generally
takes longer to converge, but also has a higher figure of merit during
active cycles, suggesting an advantage for use in criticality or α-eigenvalue
searches.
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Roadmap

A Chat on Eigenvalues

c-Eigenvalue Power Iteration

Results & Efficiency Studies

Outstanding Issues
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Why Pose as an Eigenvalue Problem?

Typically want static or asymptotic behavior.

Understand subcritical versus critical versus supercritical.

Eigenvalues function as a “knob” to balance sources and losses.

Infinitely many possible for this purpose.

All identical at criticality.
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Why k? A Difficult Question...

Lψ + Tψ = Sψ +
1

k
Fψ
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What About α?

Lψ + Tψ +
α

v
ψ = Sψ + Fψ
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How About the Collisional or c-Eigenvalue?

Lψ + Tψ =
1

c
(S + F )ψ
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Monte Carlo – The Power Iteration for k

One equations and two unknowns (k, ψ); must solve iteratively.

Guess k0 and Fψ0.

1. Simulate one fission generation of neutrons from Fψn.

2. At each collision, estimate kn+1 by w νΣf
Σt

,

3. and new Fψn+1 by banking
⌊

w
kn

νΣf
Σt

+ ξ
⌋

neutrons.

4. Renormalize Fψn+1.

Repeat 1-4 until convergence.
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The Power Iteration for c

Define the total secondary production rate:

ΣP = νΣf +
∞∑

x=1

xΣn,xn
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The Power Iteration for c

One equations and two unknowns (c , ψ); must solve iteratively.

Guess c0 and (S + F )ψ0.

1. Simulate one fission generation of neutrons from (S + F )ψn.

2. At each collision, estimate cn+1 by w ΣP
Σt

,

3. and new (S + F )ψn+1 by banking
⌊

w
cn

ΣP
Σt

+ ξ
⌋

neutrons.

4. Renormalize (S + F )ψn+1.

Repeat 1-4 until convergence.
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Does it Work?

Two simple test problems:

One group Pu-239 sphere, α = 0.
Two group infinite medium, α = (7 +

√
145)/24 ≈ 0.79340.

Conclusion: Both agree within five digits of accuracy.
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What About Convergence?

3 × 2 array of cans of Pu-nitrate solution:

 0.98

 0.985

 0.99

 0.995

 1

 1.005

 1.01

 1.015

 1.02

 0  50  100  150  200  250  300  350  400

c

iteration

Takes longer to converge than k.
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Test Problem Without Fissionable Material

c eigenvalue defined for any system where scattering or fission
possible.

Test case: 5 cm diameter sphere of water.

Spectrum exhibits Maxwellian shape at thermal energies.

Free-gas treatment of hydrogen: c = 0.84430.

S(α, β) hydrogen scattering: c = 0.94568.
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Efficiency Measures

Longer convergence, faster cycles.

How to define measure of “goodness”.

Figure of Merit (active cycles only):

FOM =
1

R2τ

Define G as ratio of FOM for c to k.

Inactive cycle wall-clock time W for convergence (trend in k or c
used).
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Test Problems

1. Be-reflected sphere of HEU.

2. 3 × 2 array of cans of Pu-nitrate solution.

3. 3-D full-core PWR (Hoogenboom-Martin benchmark).

Batch size of 10,000.

Number of active cycles is 200.

Number of inactive based on trend in k or c .
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Efficiency Results

Table: Performance data for three test cases.

case k Wk c Wc G

1 0.9955(4) 0.3 0.9954(3) 0.1 30

2 0.9866(7) 0.8 0.9989(1) 0.6 60

3 0.9992(5) 3.4 0.9986(1) 1.9 200
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Efficiency Results (Full-Core PWR)
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Outstanding Issues

Are these efficiency gains real? Inter-cycle correlation effects.

Can convergence be accelerated?

Other issues: Bias? Spectral effects? ...?
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Future Prospects

In-line criticality search. May be more efficient with c .

Some evidence to suggest α-eigenvalue iterations are easier and more
efficient with c .
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Questions?
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