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INTRODUCTION

Within the last decade, diagnostics for Monte Carlo
criticality calculations such as the Shannon entropy have
been implemented into production-level software packages
[1]. Typical implementations of the diagnostic involve an
overlaid uniform, Cartesian mesh. The software uses this
mesh as a means to tally fission source locations for com-
puting the Shannon entropy.

While this mesh representation works very well for the
Shannon entropy, extending it to other types of diagnos-
tics, such as those for measuring whether or not the fission
source has been sufficiently sampled, has complications.
The issue, for this purpose, is that the mesh is entirely in-
dependent of the location of fissile material, and it becomes
ambiguous as to how many, if any, fission source neutrons
should lie within a particular mesh region.

To illustrate, the overlay may place the mesh such that
only a very small corner of fissionable material is included,
and, correspondingly, the amount of sampling in this re-
gion should be very small or might not even occur within
the time of the simulation. A different mesh spacing would
lead to this situation not occurring. Sampling statistics
done in both the cases with and without the “corner” would
be very different, yet, from the point of view of whether or
not the fission source is adequately sampled, should yield
the same conclusions. It is therefore difficult to create a ro-
bust, automatic process to assess fission source sampling.

It should, in principle, be possible to establish a con-
formal mesh over the fissionable material; however, Monte
Carlo software typically uses a combinatorial solid geome-
try representation that is excellent for robust ray tracing, but
creates practical difficulties for meshing. Alternatively, re-
cent work on continuous tallies, such as the kernel density
estimator [2], provides an alternative approach. Estimators
are placed randomly with some spacing with centers exclu-
sively within fissionable material, and fission source point
locations are used to score the estimators based on their
proximity.

With the appropriate choice of estimator spacing and
basis (with closed support) for scoring that cover all fis-
sionable material, the Shannon entropy is essentially equiv-
alent (within an additive offset) to that obtained from an
adequately spaced mesh representation. The advantage of
the continuous-estimator representation arises because the
estimators cover all fissionable material, and, unlike with
the mesh, it is unambiguous whether or not each estimator

should be sampled.

CONTINUOUS-ESTIMATOR REPRESENTATION

Estimator Placement

The cloud of estimators need to be placed throughout
the problem and spaced appropriately. The spacing should
be defined in such a way that it is based upon some physi-
cal quantity. Ideally, the spacing would be based upon re-
solving important regions and details of the fission source;
however, this requires knowing the answer a priori.

For a large class of criticality problems of interest,
a choice that produces a reasonable estimator spacing is
based on some representative average distance between
where a neutron is produced in an iteration to where it cre-
ates another fission neutron, which will be called the fis-
sion distance L. Ideally, L would be based on some robust
statistic such as the median or maximum-likelihood esti-
mator, but these pose practical difficulties in terms of algo-
rithmic complexity and memory storage. Simple means or
root-mean squares of distances are non-robust and tend to
be overly influenced by the few histories that traveled rela-
tively far. A compromise that is still simple to calculate and
works well empirically bases L on the square of the mean
square-roots of distances,

L =
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||rs − rf ||1/2

�2

, (1)

where L is the representative distance between fissions, M

is the total weight per iteration, rs is the position of a source
point, rf is a corresponding fission termination point, and
|| · || is the distance (L2 norm) operator. This type of aver-
aging reduces the effect of far traveling histories, and pro-
duces values that are more representative of actual fission
distances.

For most problems and source guesses tested, L ap-
pears to converge to within about ten percent of its station-
ary value within about five iterations. For that reason, the
estimators are placed based upon the value of L computed
in the fifth iteration, although this can be changed by the
user. Practically speaking, it is only necessary to get an
approximate value for this quantity.

To place the estimators, a bounding box covering the
domain of fissionable material is required. For now this
is either defined by the user or based on the range of fis-



sion source neutrons in the first few iterations, which is not
an entirely satisfactory solution – further development will
need to be performed to answer this question. The bound-
ing box is subdivided into uniform regions with a spacing
of approximately 2L. This mesh serves as a “scaffolding”
to provide a data structure to increase the efficiency of plac-
ing the estimators and searching for which estimators are
scored by each fission source point, and is not a necessary
feature of the algorithm. The “scaffolding” elements are
defined as the set S containing an enumerated list of its el-
ements with index s. The set E starts as empty and will
contain the placed estimators. The algorithm for placement
of the estimators is as follows:

while S not empty do

S ← random permutation of S, S
� ← empty

for all elements s in S do

k ← 1, K ← T , flag← false
while k ≤ K do

randomly sample r = x, y, z in s

if r not in fissionable material then

k ← k + 1, cycle
end if

if flag is false then

flag← true, K ← 2K

end if

if distance between r and any estimator in E <

L then

k ← k + 1, cycle
end if

add r to E, add s to S
�, break

end while

end for

S ← S
�

end while

A few additional comments: While random sampling
cannot guarantee it, and still may miss some elements, the
probability of missing regions of space is quite low should
T be high enough. Generally speaking, a choice for T that
guarantees high probability is found empirically to be 100
plus 100 times the ratio of the volume of the scaffolding
mesh element to L

3. When fissionable material is found,
the value of K is doubled, and this improves the number
of estimators found in regions where fissionable material is
known, while not wasting too much time sampling regions
with no material. Once the cloud of estimators is estab-
lished, it is fixed for the duration of the simulation, except
when a region is found during the transport simulation such
that no estimator is within a distance hL (see next section
for explanation of h); a new estimator is then placed at that
point.

Tallying the Estimators

A tally of fission source distribution neutron produc-
tion is made each cycle following the creation. If each es-
timator is given an index j, and each fission source point is
given an index i, then wji is the score (or weight) imparted
to estimator j from fission source neutron i. These scores
are related to the distance between estimator j and source
point i defined by some basis function.

Almost unlimited possibilities exist for basis functions
for the estimators. Since information about sampling is de-
sirable, choosing the basis function to have closed support
is a useful property. Closed support means that once the
distance (a radius of influence) exceeds a certain value (call
it hL), the score to wij is zero, meaning that source neu-
trons contribute nothing to faraway estimators. A radius
of influence that appears to work empirically is h = 2.
Other values of h are possible, so long as they are greater
than one. There is a trade off such that h = 1 will lead
to every small gap between the estimator spheres having a
new estimator (the rejection distance is L), and, for h very
large, having all estimators score may not lead to meaning-
ful sampling estimates.

The basis function selected decreases linearly with dis-
tance until zero is reached, or a 3-D tent function:

τji = 1− ||ri − rj || /2L (2)

If the distance is less than 2L, the weight wij is calculated
by cycling through all fission source neutrons i, finding all
estimators j with a positive τji by

wji =
τji�

j;τji>0

τji

, (3)

otherwise it is zero. The total score in each estimator wj is
found by taking the sum over i of all wji.

Computing Diagnostics

Once the estimator scores are known, various diagnos-
tics may be computed. The Shannon entropy of fission
source can be calculated using the estimator scores as op-
posed to the mesh. Define pj as the wj divided by M (the
sum of all pj should sum to unity) and take

H = −
�

j

pj log2 (pj) , (4)

where H is the Shannon entropy of the fission source. This
statistic computed with the continuous estimators matches,
within an additive offset, the mesh computed value if the
mesh is well spaced.

In addition to the Shannon entropy, an assessment of
sampling may be made by computing means and standard



deviations of the estimator scores during the active cycles.
Some crude, but easily automatable, global checks can be
performed such as searching for any estimators with no
scores, or determining if large regions of the fission source
have a relative standard deviation in excess of ten percent.
The point cloud with means and relative standard devia-
tions can also be written to a text file and plotted using
freely available graphics software such as gnuplot to visu-
alize any regions that may be suspicious.

TEST PROBLEM RESULTS

The method is implemented in a research version of
MCNP [3]. Four problems are used to test the estimator-
based approach: the Godiva sphere [4], the Hoogenboom-
Martin performance benchmark – a 3-D full core pressur-
ized water reactor (PWR) – [5], the “k-Effective of the
World Problem” [6, 7], and the fuel pool source conver-
gence test problem [8]. For each calculation a batch size of
20,000 neutrons per cycle is used.

Results of the fission distance L, the number of esti-
mators J , and the ratio of the volume covered by the esti-
mators Vr is given. The Shannon entropy computed with
both mesh- and estimator-based approaches is shown to
have matching trends. Finally, sampling statistics of the es-
timators with zero scores and those relative uncertainty of
greater than ten percent are given for each of the problems.

Estimator Placement Results

Table I gives a list of results for L, J , and Vr. The
volume ratio is the volume of all the spheres with a radius
L, that are guaranteed to be a distance of at least L apart to
the problem volume – for Godiva and “k-Effective of the
World” the total volume of fissile material is used; for the
3-D PWR and fuel storage vault, the volume of the assem-
blies (including all fuel, clad, and coolant) are used because
L is much larger than the pin radius.

The value of J for “k-Effective of the World”, which
is a 9 × 9 × 9 array of interacting plutonium spheres, has
exactly 729 elements, indicating that there is one for each
sphere. All of the volume ratios are greater than one, as

Table I. Estimator Placement Information.
Problem L (cm) J Vr

Godiva 3.10 88 3.9

PWR 13.66 10762 2.8

k-Eff World 12.10 729 14.2

Fuel Pool 8.81 8153 2.5
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Fig. 1. PWR Mid-Plane Slice of the Estimator Spheres.

expected, since there are edge effects where the spheres
formed by the estimators extend outside the fissionable ma-
terial.

The volume ratio does not prove coverage of the
spheres. To show coverage, a top-down view of the 3-D
PWR is given in Fig. 1 where both the width of the slice in
the axial direction and the radius of the spheres are set to
be approximately to 2L. There are no gaps from this top-
down view, and other views of thin slices in this and other
directions confirm this. While this still does not prove all
fissionable material is covered, it does give a bit of evidence
as such.

Shannon Entropy Agreement

Table II shows the Pearson correlation coefficient ρ

comparing the mesh- and estimator-based computed Shan-
non entropies, along with the resolution of the entropy
mesh used. All problems except Godiva have a correla-
tion coefficient > 0.95, meaning strong agreement in the
trends. Godiva shows a larger disagreement because the
mesh-based Shannon entropy has significantly more noise
than the estimator-based entropy, but after a least-squares
fit additive offset has been applied, the means agree within
0.01%. As verification, the Shannon entropies of the “k-
Effective of the World” agree exactly (ρ = 1), since both
mesh and the estimators have a one-to-one correspondence
to each sphere.

Table II. Shannon Entropy Comparison.

Problem H Mesh ρ

Godiva 4 × 4 × 4 0.702

PWR 4 × 4 × 4 0.980

k-Eff World 9 × 9 × 9 1.000

Fuel Pool 24 × 3 × 6 0.999



Sampling Statistics

Table III gives the approximate number of histories
required to sample at least 99.9% of the mesh elements
(Z < 0.001) and also to ensure that at least 99% of the
elements have less than ten percent relative uncertainty
(N0.10 < 0.01).

For Godiva, slightly less than 1 million neutrons are
necessary to sample its fission source to within ten percent
relative uncertainty. For the 3-D full core (PWR) model,
over 8 million histories are required to resolve the at least
99% of the fission source to a standard deviation of ten
percent. Additionally, the fuel storage vault requires much
more than 100 million histories to sample all the regions.
After this many, about one-third of the problem remains
unsampled and about 45% of the elements have relative
uncertainties of greater than ten percent. It may be that
for this problem a source size of 20,000 is too small for a
meaningful Monte Carlo sampling.

Table III. Number of Histories Required to Satisfy Sam-
pling Thresholds.

Problem Z < 0.001 N0.10 < 0.01

Godiva < 20k 960k

PWR 440k 8.8M

k-Eff World < 20k 6.6M

Fuel Pool >> 100M >> 100M

CONCLUSIONS

A method of placing continuous estimators for com-
puting convergence and sampling statistics for Monte Carlo
criticality calculations has been developed. The method
has been tested for four different criticality problems and
the random sampling scheme based on a fission distance
L is shown to offer a representative spacing and cover the
fissionable material of the problem. The continuous es-
timators are able to reproduce the trends of the Shannon
entropy computed with a well-spaced mesh. Additionally,
sampling statistics of the fission source on the continuous
estimators are readily performed because all estimators lie
in fissionable material, and therefore unambiguously must
be sampled.
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