LA-UR-11-04562

Approved for public release;
distribution is unlimited.

——EST. 1943 —

Abstract

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Los Alamos
 NATIONAL LABORATORY

research note
Computation Physics Division
Transport Applications
Group XCP-7, MS F663
Los Alamos, New Mexico 87545

To/MS:	Distribution
From/MS:	John D. Zumbro / XCP-7, MS F663
Phone/Email:	$5-1009$ / zumbro@lanl.gov
Thru/MS:	Avneet Sood / XCP-7, MS F663
Phone/Email:	$7-2119$ / sooda@lanl.gov
Symbol:	XCP-7:11-011 [LA-UR-11-04562]
Date:	2 August 2011

Fax: 505-665-2879

SUBJECT: MCNP6 calculations of secondary particle production in a thick Line C exit window for proton radiography (U)

Abstract

In a recent JOWOG 32P talk (2011 May 20) results were presented for MCNP6 calculations of the production of secondary particles in an exit window used for dynamic proton radiography experiments. In this note the quantitative numbers from those calculations are presented along with a description of the model.

I. Introduction with a bit of history

The Clinton P. Anderson Meson Physics Facility at Los Alamos (LAMPF) [the facility is now call LANSCE, Los Alamos Neutron Scattering CEnter] was built over four decades ago to, among other things, make beams of secondary particle (specifically beams of mesons, i.e. pions and muons). This was accomplished by running the high-intensity $800-\mathrm{MeV}$ proton beam from the accelerator through 'pion' production targets. Beams at forward angles (at 35° for EPICS [Energetic PIon Channel and Spectrometer], at 45° for LEP [Low Energy Pion], at 20° for P^{3} [Pion Particle Physics] and at 60° for SMC [Stopped Muon Channel]; not all that forward) were directed to secondary target area for experiments. The first two beam channels (EPICS and LEP) viewed a common $3-\mathrm{cm}$ thick graphite target and the latter two channels (P^{3} and SMC) were designed to view a 6-cm thick graphite target.

In proton radiography the image is generated by focusing particle trajectories from an object onto an image plane with a magnetic lens at forward angles (i.e. in the range from 0 degrees to ~ 1 degree). The detector at the image plane, while not necessarily, has generally been an ionizing radiation-to-light converter (i.e. a fast scintillator) and a camera system is arranged to take optical pictures of this scintillator.

Because the transport of the protons through the magnetic lens is in vacuum there is a window immediately upstream of the scintillator. In the case of dynamic experiments (i.e. experiments involving the detonation of high explosives) this typical window might be $1 / 8^{\prime \prime}$ of glass followed by $1 / 8^{\prime \prime}$ of aluminum. The bottom line is that this window (1.27 cm of material) could be a particle production target at 0 degrees, and in this note the results of MCNP6 calculations looking at the production on secondary particles are presented.

MCNP6 is a developmental version ${ }^{1}$ of MCNP which, in addition to neutrons, photons, and electrons, can transport twenty-four (24) additional particles. Particle production on nuclear targets is currently accomplished using the CEM (Cascade Exciton Model). ${ }^{2}$ While trying to do transport runs (for protons, muons, pions, deuterons, tritons, ${ }^{3} \mathrm{He}$, and alphas) through the whole Line C proton radiography system (diffuser to image plane) it was noticed that the object to diffuser times for all particles, regardless of particle energy, was highly correlated. This indicated that the protons were producing secondary particles near the image plane, hence the study reported here.

II.The MCNP6 Model \# 1

The MCNP6 model, for which results will be presented, was quite simple and a sample input is presented in Appendix I. Simply a line beam of mono-energetic protons along the z-axis (starting at -100 cm) was incident on a window as described above ($1 / 8^{\prime \prime}$ of
glass followed by $1 / 8^{\prime \prime}$ of aluminum). The window extended from $-0.3175-\mathrm{cm}$ to $0.0-\mathrm{cm}\left(\mathrm{SiO}_{2}\right.$ with density 2.65 grams per cc) and from $0.0-\mathrm{cm}$ to $+0.3175-\mathrm{cm}$ (Al with density 2.70 grams per cc); this was followed by a drift from 0.3175 cm to 100 cm in void (i.e. vacuum); from 100 cm to 100.2 cm there was $\mathrm{LSO}\left(\mathrm{Lu}_{2} \mathrm{SiO}_{5}\right.$ with density 7.36 gram per cc).

Results for various particles were tallied in fmesh (track length) tallies that were from -7 cm to +7 cm in both dimensions transverse to the z -axis and from 100.0 cm to 100.2 cm along the z -axis. There were separate fmesh tallies for protons, π^{+}, π^{-}(charged pions), deuterons, tritons, helions $\left({ }^{3} \mathrm{He}\right)$ and alphas. There is the possibility of other particles or recoiling nuclei but in this study we present results for only these particles.

In addition to the results for the fmesh tallies, results are also presented for a different set of fmesh tallies where an energy dependent multiplier is used for the various particle tallies. In this case the multiplier for a given particle is the dE/dx in LSO at a given energy divided by the value of $\mathrm{dE} / \mathrm{dx}$ in LSO for a $1-\mathrm{GeV}$ proton. It is thought that this should account for differences in a given particles ionization energy in the LSO scintillator the tallies are overlaid on. The MCNP input for these multipliers can be found in the sample input deck in Appendix I.

III. Results for Model \#1

The results of the MCNP6 fmesh tallies are given in Table I as a ration to the proton fmesh tally. These results are also plotted in Figure 1a. Table II gives (plotted in Figure 1b) the results when an energy dependent multiplier (that is different for each particle) is applied. The protons are also multiplied by an energy dependent multiplier.

Energy	π^{+}		π^{-}		d		t		${ }^{3} \mathrm{He}$		α	
(MeV)		Error										
800	$\begin{array}{r} 1.73 \mathrm{E}- \\ 03 \end{array}$	$\begin{array}{r} 1.85 \mathrm{E}- \\ 05 \end{array}$	$\begin{array}{r} 1.34 \mathrm{E}- \\ 03 \end{array}$	$\begin{array}{r} 1.63 \mathrm{E}- \\ 05 \end{array}$	$\begin{array}{r} 3.76 \mathrm{E}- \\ 03 \end{array}$	$\begin{array}{r} 2.73 \mathrm{E}- \\ 05 \end{array}$	$\begin{array}{r} 8.56 \mathrm{E}- \\ 04 \end{array}$	$\begin{array}{r} 1.30 \mathrm{E}- \\ 05 \end{array}$	$\begin{array}{r} 2.11 \mathrm{E}- \\ 04 \end{array}$	$\begin{gathered} 6.46 \mathrm{E}- \\ 06 \end{gathered}$	$\begin{array}{r} 2.88 \mathrm{E}- \\ 04 \end{array}$	$\begin{array}{r} 7.56 \mathrm{E}- \\ 06 \end{array}$
750	$\begin{array}{r} 1.55 \mathrm{E}- \\ 03 \end{array}$	$\begin{array}{r} 1.75 \mathrm{E}-\mathrm{-} \\ 05 \end{array}$	$\begin{array}{r} 1.16 \mathrm{E}-\mathrm{O} \\ \hline 0 \end{array}$	$\begin{array}{r} 1.52 \mathrm{E}- \\ 05 \end{array}$	$\begin{array}{r} 3.46 \mathrm{E}-\mathrm{-} \\ 03 \end{array}$	$\begin{array}{r} 2.62 \mathrm{E}-\mathrm{-} \\ \hline 05 \end{array}$	$\begin{array}{r} 7.74 \mathrm{E}- \\ 04 \end{array}$	$\begin{array}{r} 1.24 \mathrm{E}- \\ 05 \end{array}$	$\begin{array}{r} 1.90 \mathrm{E}- \\ 04 \end{array}$	$\begin{array}{r} 6.13 \mathrm{E}-\mathrm{-} \\ 06 \end{array}$	$\begin{array}{r} 2.58 \mathrm{E}-\mathrm{e} \\ \hline 24 \end{array}$	$\begin{array}{r} 8.35 \mathrm{E}-\mathrm{e} \\ 06 \end{array}$
700	$\begin{array}{r} \hline 1.35 \mathrm{E}- \\ 03 \\ \hline \end{array}$	$\begin{array}{r} \hline 1.63 \mathrm{E}- \\ 05 \\ \hline \end{array}$	$\begin{array}{r} \hline 9.82 \mathrm{E}- \\ 04 \\ \hline \end{array}$	$\begin{array}{r} 1.40 \mathrm{E}- \\ 05 \end{array}$	$\begin{array}{r} \hline 3.17 \mathrm{E}- \\ 03 \\ \hline \end{array}$	$\begin{array}{r} \hline 2.51 \mathrm{E}- \\ 05 \\ \hline \end{array}$	$\begin{array}{r} \hline 6.93 \mathrm{E}- \\ 04 \\ \hline \end{array}$	$\begin{array}{r} \hline 1.17 \mathrm{E}- \\ 05 \\ \hline \end{array}$	$\begin{array}{r} 1.69 \mathrm{E}- \\ 04 \end{array}$	$\begin{array}{r} 5.79 \mathrm{E}- \\ 06 \end{array}$	$\begin{array}{r} \hline 2.28 \mathrm{E}- \\ 04 \\ \hline \end{array}$	$\begin{array}{r} \hline 6.73 \mathrm{E}- \\ 06 \\ \hline \end{array}$
650	$\begin{array}{r} 1.13 \mathrm{E}- \\ 03 \end{array}$	$\begin{array}{r} 1.50 \mathrm{E}- \\ 05 \end{array}$	$\begin{array}{r} 8.06 \mathrm{E}- \\ 04 \end{array}$	$\begin{array}{r} 1.26 \mathrm{E}- \\ 05 \end{array}$	$\begin{array}{r} 2.87 \mathrm{E}- \\ 03 \end{array}$	$\begin{array}{r} 2.38 \mathrm{E}- \\ 05 \end{array}$	$\begin{array}{r} 6.12 \mathrm{E}- \\ 04 \end{array}$	$\begin{array}{r} 1.10 \mathrm{E}- \\ 05 \end{array}$	$\begin{array}{r} 1.48 \mathrm{E}- \\ 04 \end{array}$	$\begin{array}{r} 5.40 \mathrm{E}- \\ 06 \\ \hline \end{array}$	$\begin{array}{r} 1.99 \mathrm{E}- \\ 04 \end{array}$	$\begin{array}{r} 6.3 \mathrm{E}- \\ 06 \end{array}$
600	$\begin{array}{r} 8.96 \mathrm{E}- \\ 04 \\ \hline \end{array}$	$\begin{array}{r} 1.33 \mathrm{E}- \\ 05 \\ \hline \end{array}$	$\begin{array}{r} 6.47 \mathrm{E}- \\ 04 \\ \hline \end{array}$	$\begin{array}{r} 1.13 \mathrm{E}- \\ 05 \\ \hline \end{array}$	$\begin{array}{r} 2.56 \mathrm{E}- \\ 03 \\ \hline \end{array}$	$\begin{array}{r} 2.30 \mathrm{E}- \\ 05 \\ \hline \end{array}$	$\begin{array}{r} 5.33 \mathrm{E}- \\ 04 \\ \hline \end{array}$	$\begin{array}{r} 1.00 \mathrm{E}- \\ 05 \\ \hline \end{array}$	$\begin{array}{r} 1.29 \mathrm{E}- \\ 04 \\ \hline \end{array}$	$\begin{array}{r} 5.10 \mathrm{E}- \\ 06 \end{array}$	$\begin{array}{r} 1.71 \mathrm{E}- \\ 04 \\ \hline \end{array}$	$\begin{array}{r} 5.8 \mathrm{E}- \\ 06 \end{array}$
550	$\begin{array}{r} 6.71 \mathrm{E}- \\ 04 \end{array}$	$\begin{array}{r} 1.15 \mathrm{E}- \\ 05 \end{array}$	$\begin{array}{r} 4.91 \mathrm{E}- \\ 04 \end{array}$	$\begin{array}{r} 9.88 \mathrm{E}- \\ 06 \end{array}$	$\begin{array}{r} 2.28 \mathrm{E}- \\ 03 \end{array}$	$\begin{array}{r} 2.10 \mathrm{E}- \\ 05 \end{array}$	$\begin{array}{r} 4.64 \mathrm{E}- \\ 04 \end{array}$	$\begin{array}{r} 9.59 \mathrm{E}- \\ 06 \\ \hline \end{array}$	$\begin{array}{r} 1.10 \mathrm{E}- \\ 04 \end{array}$	$\begin{array}{r} 4.68 \mathrm{E}-\mathrm{-} \\ 06 \end{array}$	$\begin{array}{r} 1.45 \mathrm{E}- \\ 04 \end{array}$	$\begin{array}{r} 5.4 \mathrm{E}- \\ 06 \end{array}$
500	$\begin{array}{r} 4.62 \mathrm{E}- \\ 04 \end{array}$	$\begin{array}{r} 9.58 \mathrm{E}-\mathrm{-} \\ 06 \end{array}$	$\begin{array}{r} 3.49 \mathrm{E}- \\ 04 \end{array}$	$\begin{array}{r} 8.33 \mathrm{E}-\mathrm{e} \\ 06 \end{array}$	$\begin{array}{r} 1.99 \mathrm{E}- \\ 03 \end{array}$	$\begin{array}{r} 1.99 \mathrm{E}-\mathrm{e} \\ 05 \end{array}$	$\begin{array}{r} 3.94 \mathrm{E}- \\ \hline 04 \\ \hline \end{array}$	$\begin{array}{r} 8.85 \mathrm{E}-\mathrm{-} \\ 06 \end{array}$	$\begin{array}{r} 9.31 \mathrm{E}- \\ 05 \\ \hline \end{array}$	$\begin{array}{r} 4.30 \mathrm{E}-\mathrm{-} \\ 06 \end{array}$	$\begin{array}{r} 1.21 \mathrm{E}- \\ 04 \\ \hline \end{array}$	$\begin{array}{r} 4.91 \mathrm{E}- \\ 06 \end{array}$

Table I - The values of the fmesh for the indicated particle as a ratio to the value for protons is given.

Energy	π^{+}		π^{-}		d		t		${ }^{3} \mathrm{He}$		α	
(MeV)		Error										
800	$\begin{array}{r} 2.54 \mathrm{E}- \\ 03 \end{array}$	$\begin{array}{r} 2.11 \mathrm{E}- \\ 05 \\ \hline \end{array}$	$\begin{array}{r} 2.03 \mathrm{E}- \\ 03 \end{array}$	$\begin{array}{r} 1.89 \mathrm{E}- \\ 05 \\ \hline \end{array}$	$\begin{array}{r} 4.55 \mathrm{E}- \\ 02 \end{array}$	$\begin{array}{r} 8.93 \mathrm{E}- \\ 05 \end{array}$	$\begin{array}{r} 1.57 \mathrm{E}- \\ 02 \end{array}$	$\begin{array}{r} 5.24 \mathrm{E}- \\ 05 \end{array}$	$\begin{array}{r} 1.28 \mathrm{E}- \\ 02 \end{array}$	$\begin{array}{r} 4.74 \mathrm{E}- \\ 05 \end{array}$	$\begin{array}{r} 3.15 \mathrm{E}- \\ 02 \end{array}$	$\begin{array}{r} 7.43 \mathrm{E}- \\ 05 \end{array}$
750	$\begin{array}{r} 2.27 \mathrm{E}- \\ 03 \end{array}$	$\begin{array}{r} 1.97 \mathrm{E}- \\ 05 \end{array}$	$\begin{array}{r} 1.74 \mathrm{E}- \\ 03 \end{array}$	$\begin{array}{r} 1.73 \mathrm{E}- \\ 05 \end{array}$	$\begin{array}{r} 4.11 \mathrm{E}- \\ 02 \end{array}$	$\begin{array}{r} 8.40 \mathrm{E}- \\ 05 \end{array}$	$\begin{array}{r} 1.39 \mathrm{E}- \\ 02 \end{array}$	$\begin{array}{r} 4.89 \mathrm{E}-\mathrm{-} \\ 05 \end{array}$	$\begin{array}{r} 1.14 \mathrm{E}- \\ 02 \end{array}$	$\begin{array}{r} 4.42 \mathrm{E}-\mathrm{-} \\ 05 \end{array}$	$\begin{array}{r} 2.78 \mathrm{E}-\mathrm{E} \\ 02 \end{array}$	$\begin{array}{r} 1.08 \mathrm{E}- \\ 04 \end{array}$
700	$\begin{array}{r} 1.97 \mathrm{E}- \\ 03 \\ \hline \end{array}$	$\begin{array}{r} 1.82 \mathrm{E}- \\ 05 \\ \hline \end{array}$	$\begin{array}{r} 1.45 \mathrm{E}- \\ 03 \\ \hline \end{array}$	$\begin{array}{r} 1.56 \mathrm{E}- \\ 05 \\ \hline \end{array}$	$\begin{array}{r} 3.67 \mathrm{E}- \\ 02 \\ \hline \end{array}$	$\begin{array}{r} 7.84 \mathrm{E}- \\ 05 \\ \hline \end{array}$	$\begin{array}{r} 1.22 \mathrm{E}- \\ 02 \\ \hline \end{array}$	$\begin{array}{r} 4.53 \mathrm{E}- \\ 05 \\ \hline \end{array}$	$\begin{array}{r} 9.95 \mathrm{E}- \\ 03 \\ \hline \end{array}$	$\begin{array}{r} 4.09 \mathrm{E}- \\ 05 \\ \hline \end{array}$	$\begin{array}{r} 2.42 \mathrm{E}- \\ 02 \\ \hline \end{array}$	$\begin{array}{r} 6.38 \mathrm{E}- \\ 05 \\ \hline \end{array}$
650	$\begin{array}{r} 1.71 \mathrm{E}- \\ 03 \\ \hline \end{array}$	$\begin{array}{r} 1.70 \mathrm{E}- \\ 05 \\ \hline \end{array}$	$\begin{array}{r} 1.21 \mathrm{E}- \\ 03 \\ \hline \end{array}$	$\begin{array}{r} 1.43 \mathrm{E}- \\ 05 \\ \hline \end{array}$	$\begin{array}{r} \hline 3.33 \mathrm{E}- \\ 02 \\ \hline \end{array}$	$\begin{array}{r} 7.48 \mathrm{E}- \\ 05 \\ \hline \end{array}$	$\begin{array}{r} 1.09 \mathrm{E}- \\ 02 \\ \hline \end{array}$	$\begin{array}{r} \hline 4.3 \mathrm{E}- \\ 05 \\ \hline \end{array}$	$\begin{array}{r} \hline 8.82 \mathrm{E}- \\ 03 \\ \hline \end{array}$	$\begin{array}{r} 3.85 \mathrm{E}- \\ 05 \\ \hline \end{array}$	$\begin{array}{r} \hline 2.14 \mathrm{E}- \\ 02 \\ \hline \end{array}$	$\begin{array}{r} \hline 6.00 \mathrm{E}- \\ 05 \\ \hline \end{array}$
600	$\begin{array}{r} 1.38 \mathrm{E}- \\ 03 \end{array}$	$\begin{array}{r} 1.51 \mathrm{E}- \\ 05 \end{array}$	$\begin{array}{r} 9.70 \mathrm{E}- \\ 04 \end{array}$	$\begin{array}{r} 1.26 \mathrm{E}- \\ 05 \\ \hline \end{array}$	$\begin{array}{r} 2.93 \mathrm{E}- \\ 02 \end{array}$	$\begin{array}{r} 6.9 \mathrm{E}- \\ 05 \end{array}$	$\begin{array}{r} 9.34 \mathrm{E}- \\ 03 \end{array}$	$\begin{array}{r} 3.9 \mathrm{E}- \\ 05 \end{array}$	$\begin{array}{r} 7.55 \mathrm{E}- \\ 03 \end{array}$	$\begin{array}{r} 3.5 \mathrm{E}- \\ 05 \end{array}$	$\begin{array}{r} 1.82 \mathrm{E}- \\ 02 \end{array}$	$\begin{array}{r} 5.5 \mathrm{E}- \\ 05 \end{array}$
550	$\begin{array}{r} 1.04 \mathrm{E}- \\ 03 \\ \hline \end{array}$	$\begin{array}{r} 1.30 \mathrm{E}- \\ 05 \\ \hline \end{array}$	$\begin{array}{r} 7.35 \mathrm{E}- \\ 04 \\ \hline \end{array}$	$\begin{array}{r} 1.09 \mathrm{E}- \\ 05 \\ \hline \end{array}$	$\begin{array}{r} 2.54 \mathrm{E}- \\ 02 \\ \hline \end{array}$	$\begin{array}{r} 6.4 \mathrm{E}- \\ 05 \\ \hline \end{array}$	$\begin{array}{r} 7.96 \mathrm{E}- \\ 03 \\ \hline \end{array}$	$\begin{array}{r} 3.6 \mathrm{E}- \\ 05 \\ \hline \end{array}$	$\begin{array}{r} 6.35 \mathrm{E}- \\ 03 \\ \hline \end{array}$	$\begin{array}{r} 3.20 \mathrm{E}- \\ 05 \\ \hline \end{array}$	$\begin{array}{r} 1.52 \mathrm{E}- \\ 02 \\ \hline \end{array}$	$\begin{array}{r} 4.9 \mathrm{E}- \\ 05 \\ \hline \end{array}$
500	$\begin{array}{r} 7.30 \mathrm{E}- \\ 04 \end{array}$	$\begin{array}{r} 1.07 \mathrm{E}- \\ 05 \end{array}$	$\begin{array}{r} 5.21 \mathrm{E}- \\ 04 \end{array}$	$\begin{array}{r} 9.02 \mathrm{E}- \\ 06 \\ \hline \end{array}$	$\begin{array}{r} 2.18 \mathrm{E}- \\ 02 \end{array}$	$\begin{array}{r} 5.83 \mathrm{E}- \\ 05 \end{array}$	$\begin{array}{r} 6.61 \mathrm{E}- \\ 03 \end{array}$	$\begin{array}{r} 3.21 \mathrm{E}- \\ 05 \end{array}$	$\begin{array}{r} 5.26 \mathrm{E}- \\ 03 \end{array}$	$\begin{array}{r} 2.86 \mathrm{E}- \\ 05 \\ \hline \end{array}$	$\begin{array}{r} 1.25 \mathrm{E}- \\ 02 \end{array}$	$\begin{array}{r} 4.41 \mathrm{E}- \\ 05 \\ \hline \end{array}$

Table II - The values of the fmesh for the indicated particle as a ratio to the value for protons is given. This is for the case where each tally has an energy dependent multiplier that is $\mathrm{dE} / \mathrm{dx}$ over $\mathrm{dE} / \mathrm{dx}$ of a $1-\mathrm{GeV}$ proton. Note that these tally multipliers are different for each particle type.

One sees by comparing Figures 1 and 2 that there is other an order of magnitude increase in this signal for the case of the energy dependent multiplier. The ratios of the sums are given in Table III, and these figures are those that were presented at the recent JOWOG32P.

Figure 1a (left) - Ratio of the raw produced particle count (track length) to the proton count (track length) in an fmesh tally that overlays the LSO "detector". This "detector" is one pixel that is $14-\mathrm{cm} \times 14-\mathrm{cm} \times 0.2-\mathrm{mm}$ thick in beam direction located at 100 cm from the center of the window (Mode \# 1). The particle type is indicated in the legend and sum is the sum of all particles excluding the protons. Figure 1b (right) is the same as 1a but the signal (track length) is multiplied by an energy dependent term. This term is the particles $\mathrm{dE} / \mathrm{dx}$ as a function of energy divided by $\mathrm{dE} / \mathrm{dx}$ for $1-\mathrm{GeV}(1000-\mathrm{MeV})$ protons. The particle type is indicated in the legend and sum is the sum of all particles excluding the protons.

Energy	Sum without multiplier		Sum with multiplier		Ratio of sum with to sum without	
(MeV)		Error		Error		Error
800	0.00818	0.00004	0.11013	0.00014	13.46	0.07
750	0.00740	0.00004	0.09817	0.00015	13.27	0.07
700	0.00659	0.00004	0.08649	0.00012	13.12	0.07
650	0.00576	0.00003	0.07725	0.00011	13.42	0.08
600	0.00494	0.00003	0.06666	0.00010	13.49	0.09
550	0.00416	0.00003	0.05676	0.00010	13.66	0.10
500	0.00341	0.00003	0.04736	0.00009	13.88	0.11

Table III - The sum of the values in Table I (without multiplier) are compared to the sum in Table II (with multiplier), and the ratio of the two sums is given.

IV. The MCNP6 Model \# 2

In preparing this document it was realized that the MCNP6 model with the LSO at 100 cm from the window center did not represent the real situation with the LSO as the detector. The problem was re-run for a more realistic case. In this case the LSO material starts $1-\mathrm{cm}$ downstream of the center of the glass-Al window interface and is otherwise the same as Model \#1. A MCNP geometry plot for this second case is shown in Figure 2.

Figure 2 - MCNP geometry for the Model \# 2 geometry (dimensions on the plot are in centimeters), note the aspect ratio of the plot is not 1-to-1. Protons are incident on the window (SiO_{2} and Al$)$ from the left (indicated by the arrow).

As in the case of Model \# 1 results, various particles were tallied in fmesh (track length) tallies that were from -7 cm to +7 cm in both dimensions transverse to the z -axis and from 1.0 cm to 1.2 cm along the z -axis. There were separate fmesh tallies for protons, π^{+}, π^{-}(charged pions), deuterons, tritons, helions $\left({ }^{3} \mathrm{He}\right)$ and alphas, with and without the energy dependent multiplier.

V. Results for Model \#2

The results of the MCNP6 fmesh tallies are given in Table IV as a ratio to the proton fmesh tally for the Model \# 2 (Figure 2) geometry. These results are also plotted in Figure 3a. Table V gives (plotted in Figure 3b) the results when an energy dependent multiplier (that is different for each particle) is applied. These multipliers were the same as the multipliers used for the Model \# 1 results.

Energy	π^{+}		π^{-}		d		t		${ }^{3} \mathrm{He}$		α	
(MeV)		Error										
800	$\begin{array}{r} 4.51 \mathrm{E}- \\ 03 \\ \hline \end{array}$	$\begin{array}{r} 3.93 \mathrm{E}- \\ 06 \\ \hline \end{array}$	$\begin{array}{r} 2.37 \mathrm{E}- \\ 03 \\ \hline \end{array}$	$\begin{array}{r} 3.07 \mathrm{E}- \\ 06 \\ \hline \end{array}$	$\begin{array}{r} 6.32 \mathrm{E}- \\ 03 \\ \hline \end{array}$	$\begin{array}{r} 3.45 \mathrm{E}- \\ 06 \\ \hline \end{array}$	$\begin{array}{r} 1.07 \mathrm{E}- \\ 03 \\ \hline \end{array}$	$\begin{array}{r} 1.11 \mathrm{E}- \\ 06 \\ \hline \end{array}$	$\begin{array}{r} 2.82 \mathrm{E}- \\ 04 \\ \hline \end{array}$	$\begin{array}{r} 4.26 \mathrm{E}- \\ 07 \\ \hline \end{array}$	$\begin{array}{r} 2.95 \mathrm{E}- \\ \hline 04 \\ \hline \end{array}$	$\begin{array}{r} 2.82 \mathrm{E}- \\ 07 \\ \hline \end{array}$
750	$\begin{array}{r} 4.01 \mathrm{E}- \\ 03 \end{array}$	$\begin{array}{r} \hline 3.72 \mathrm{E}- \\ 06 \\ \hline \end{array}$	$\begin{array}{r} 2.03 \mathrm{E}- \\ 03 \\ \hline \end{array}$	$\begin{array}{r} 2.85 \mathrm{E}- \\ 06 \\ \hline \end{array}$	$\begin{array}{r} 5.88 \mathrm{E}- \\ 03 \\ \hline \end{array}$	$\begin{array}{r} 3.27 \mathrm{E}- \\ 06 \end{array}$	$\begin{array}{r} 9.63 \mathrm{E}- \\ 04 \end{array}$	$\begin{array}{r} \hline 1.04 \mathrm{E}- \\ 06 \\ \hline \end{array}$	$\begin{array}{r} 2.54 \mathrm{E}- \\ 04 \\ \hline \end{array}$	$\begin{array}{r} 4.02 \mathrm{E}- \\ 07 \\ \hline \end{array}$	$\begin{array}{r} 2.64 \mathrm{E}- \\ 04 \end{array}$	$\begin{array}{r} 4.17 \mathrm{E}- \\ 07 \\ \hline \end{array}$
700	$\begin{array}{r} 3.48 \mathrm{E}- \\ 03 \end{array}$	$\begin{array}{r} 3.45 \mathrm{E}- \\ 06 \end{array}$	$\begin{array}{r} \hline 1.69 \mathrm{E}- \\ 03 \\ \hline \end{array}$	$\begin{array}{r} \hline 2.60 \mathrm{E}- \\ 06 \\ \hline \end{array}$	$\begin{array}{r} \hline 5.43 \mathrm{E}- \\ 03 \\ \hline \end{array}$	$\begin{array}{r} 3.08 \mathrm{E}- \\ 06 \end{array}$	$\begin{array}{r} 8.66 \mathrm{E}- \\ 04 \end{array}$	$\begin{array}{r} 9.71 \mathrm{E}- \\ 07 \\ \hline \end{array}$	$\begin{array}{r} \hline 2.28 \mathrm{E}- \\ 04 \\ \hline \end{array}$	$\begin{array}{r} 3.77 \mathrm{E}- \\ 07 \end{array}$	$\begin{array}{r} 2.33 \mathrm{E}- \\ \hline \end{array}$	$\begin{array}{r} \hline 2.39 \mathrm{E}- \\ 07 \\ \hline \end{array}$
650	$\begin{array}{r} 2.90 \mathrm{E}- \\ 03 \end{array}$	$\begin{array}{r} 3.13 \mathrm{E}- \\ 06 \end{array}$	$\begin{array}{r} 1.37 \mathrm{E}- \\ 03 \end{array}$	$\begin{array}{r} 2.33 \mathrm{E}- \\ 06 \end{array}$	$\begin{array}{r} 4.95 \mathrm{E}- \\ 03 \end{array}$	$\begin{array}{r} 2.88 \mathrm{E}-\mathrm{-} \\ 06 \end{array}$	$\begin{array}{r} 7.64 \mathrm{E}- \\ 04 \end{array}$	$\begin{array}{r} 8.94 \mathrm{E}- \\ 07 \end{array}$	$\begin{array}{r} 2.01 \mathrm{E}- \\ 04 \end{array}$	$\begin{array}{r} 3.49 \mathrm{E}- \\ 07 \end{array}$	$\begin{array}{r} 2.03 \mathrm{E}- \\ 04 \end{array}$	$\begin{array}{r} 2.17 \mathrm{E}- \\ 07 \end{array}$
600	$\begin{array}{r} 2.30 \mathrm{E}- \\ 03 \\ \hline \end{array}$	$\begin{array}{r} 2.77 \mathrm{E}- \\ 06 \\ \hline \end{array}$	$\begin{array}{r} 1.08 \mathrm{E}- \\ 03 \\ \hline \end{array}$	$\begin{array}{r} \hline 2.07 \mathrm{E}- \\ 06 \\ \hline \end{array}$	$\begin{array}{r} \hline 4.44 \mathrm{E}- \\ 03 \\ \hline \end{array}$	$\begin{array}{r} \hline 2.68 \mathrm{E}- \\ 06 \\ \hline \end{array}$	$\begin{array}{r} \hline 6.67 \mathrm{E}- \\ 04 \\ \hline \end{array}$	$\begin{array}{r} \hline 8.21 \mathrm{E}- \\ 07 \\ \hline \end{array}$	$\begin{array}{r} 1.75 \mathrm{E}- \\ 04 \\ \hline \end{array}$	$\begin{array}{r} \hline 3.23 \mathrm{E}- \\ 07 \\ \hline \end{array}$	$\begin{array}{r} 1.74 \mathrm{E}- \\ 04 \\ \hline \end{array}$	$\begin{array}{r} 1.95 \mathrm{E}- \\ 07 \\ \hline \end{array}$
550	$\begin{array}{r} 1.72 \mathrm{E}- \\ 03 \\ \hline \end{array}$	$\begin{array}{r} 2.36 \mathrm{E}- \\ 06 \\ \hline \end{array}$	$\begin{array}{r} 8.02 \mathrm{E}- \\ 04 \\ \hline \end{array}$	$\begin{array}{r} 1.77 \mathrm{E}- \\ 06 \\ \hline \end{array}$	$\begin{array}{r} \hline 3.93 \mathrm{E}- \\ 03 \\ \hline \end{array}$	$\begin{array}{r} 2.47 \mathrm{E}- \\ 06 \\ \hline \end{array}$	$\begin{array}{r} 5.78 \mathrm{E}- \\ 04 \\ \hline \end{array}$	$\begin{array}{r} 7.52 \mathrm{E}- \\ 07 \\ \hline \end{array}$	$\begin{array}{r} 1.49 \mathrm{E}- \\ 04 \\ \hline \end{array}$	$\begin{array}{r} \hline 2.93 \mathrm{E}- \\ 07 \\ \hline \end{array}$	$\begin{array}{r} 1.48 \mathrm{E}- \\ 04 \\ \hline \end{array}$	$\begin{array}{r} 1.74 \mathrm{E}- \\ 07 \\ \hline \end{array}$
500	$\begin{array}{r} 1.19 \mathrm{E}- \\ 03 \end{array}$	$\begin{array}{r} \hline 1.94 \mathrm{E}- \\ 06 \end{array}$	$\begin{array}{r} 5.58 \mathrm{E}- \\ 04 \end{array}$	$\begin{array}{r} 1.46 \mathrm{E}- \\ 06 \\ \hline \end{array}$	$\begin{array}{r} \hline 3.41 \mathrm{E}- \\ 03 \\ \hline \end{array}$	$\begin{array}{r} 2.25 \mathrm{E}- \\ 06 \end{array}$	$\begin{array}{r} 4.89 \mathrm{E}- \\ 04 \end{array}$	$\begin{array}{r} \hline 6.77 \mathrm{E}- \\ 07 \\ \hline \end{array}$	$\begin{array}{r} 1.24 \mathrm{E}- \\ 04 \\ \hline \end{array}$	$\begin{array}{r} 2.61 \mathrm{E}- \\ 07 \end{array}$	$\begin{array}{r} 1.23 \mathrm{E}- \\ 04 \end{array}$	$\begin{array}{r} 1.54 \mathrm{E}- \\ 07 \\ \hline \end{array}$

Table IV - The values of the fmesh for the indicated particle as a ratio to the value for protons is given for the indicated proton energy.

Energy	π^{+}		π^{-}		d		t		${ }^{3} \mathrm{He}$		α	
(MeV)		Error										
800	$\begin{array}{r} \hline 5.49 \mathrm{E}- \\ 03 \end{array}$	$\begin{array}{r} 5.20 \mathrm{E}- \\ 06 \end{array}$	$\begin{array}{r} 3.18 \mathrm{E}- \\ 03 \end{array}$	$\begin{array}{r} 4.18 \mathrm{E}- \\ 06 \\ \hline \end{array}$	$\begin{array}{r} \hline 5.88 \mathrm{E}- \\ 02 \end{array}$	$\begin{array}{r} 3.03 \mathrm{E}- \\ 05 \end{array}$	$\begin{array}{r} 1.70 \mathrm{E}- \\ 02 \end{array}$	$\begin{array}{r} 1.47 \mathrm{E}- \\ 05 \end{array}$	$\begin{array}{r} 1.42 \mathrm{E}- \\ 02 \end{array}$	$\begin{array}{r} 1.67 \mathrm{E}- \\ 05 \end{array}$	$\begin{array}{r} \hline 3.00 \mathrm{E}- \\ 02 \\ \hline \end{array}$	$\begin{array}{r} 2.24 \mathrm{E}- \\ 05 \\ \hline \end{array}$
750	$\begin{array}{r} 4.90 \mathrm{E}- \\ 03 \end{array}$	$\begin{array}{r} 4.92 \mathrm{E}-\mathrm{-} \\ 06 \end{array}$	$\begin{array}{r} 2.70 \mathrm{E}- \\ 03 \\ \hline \end{array}$	$\begin{array}{r} 3.85 \mathrm{E}- \\ 06 \end{array}$	$\begin{array}{r} 5.35 \mathrm{E}- \\ 02 \end{array}$	$\begin{array}{r} 2.82 \mathrm{E}- \\ 05 \end{array}$	$\begin{array}{r} 1.52 \mathrm{E}-\mathrm{E} \\ 02 \end{array}$	$\begin{array}{r} 1.36 \mathrm{E}- \\ 05 \end{array}$	$\begin{array}{r} 1.27 \mathrm{E}- \\ 02 \end{array}$	$\begin{array}{r} 1.55 \mathrm{E}- \\ 05 \end{array}$	$\begin{array}{r} 2.65 \mathrm{E}-\mathrm{-} \\ 02 \end{array}$	$\begin{array}{r} 3.25 \mathrm{E}- \\ 05 \end{array}$
700	$\begin{array}{r} 4.28 \mathrm{E}-\mathrm{-} \\ 03 \end{array}$	$\begin{array}{r} 4.57 \mathrm{E}-\mathrm{-} \\ 06 \end{array}$	$\begin{array}{r} 2.24 \mathrm{E}- \\ 03 \end{array}$	$\begin{array}{r} 3.48 \mathrm{E}- \\ 06 \end{array}$	$\begin{array}{r} 4.83 \mathrm{E}- \\ 02 \end{array}$	$\begin{array}{r} 2.61 \mathrm{E}- \\ 05 \end{array}$	$\begin{array}{r} 1.34 \mathrm{E}- \\ 02 \end{array}$	$\begin{array}{r} 1.26 \mathrm{E}- \\ 05 \end{array}$	$\begin{array}{r} 1.12 \mathrm{E}-\mathrm{a} \\ 02 \end{array}$	$\begin{array}{r} 1.43 \mathrm{E}-\mathrm{-} \\ 05 \end{array}$	$\begin{array}{r} 2.32 \mathrm{E}-\mathrm{-} \\ 02 \end{array}$	$\begin{array}{r} 1.86 \mathrm{E}- \\ 05 \end{array}$
650	$\begin{array}{r} 3.69 \mathrm{E}- \\ 03 \\ \hline \end{array}$	$\begin{array}{r} 4.28 \mathrm{E}- \\ 06 \\ \hline \end{array}$	$\begin{array}{r} 1.85 \mathrm{E}- \\ 03 \\ \hline \end{array}$	$\begin{array}{r} 3.19 \mathrm{E}- \\ 06 \\ \hline \end{array}$	$\begin{array}{r} 4.41 \mathrm{E}- \\ 02 \\ \hline \end{array}$	$\begin{array}{r} 2.46 \mathrm{E}- \\ 05 \\ \hline \end{array}$	$\begin{array}{r} 1.19 \mathrm{E}- \\ 02 \\ \hline \end{array}$	$\begin{array}{r} \hline 1.19 \mathrm{E}- \\ 05 \\ \hline \end{array}$	$\begin{array}{r} 9.94 \mathrm{E}- \\ 03 \\ \hline \end{array}$	$\begin{array}{r} \hline 1.34 \mathrm{E}- \\ 05 \\ \hline \end{array}$	$\begin{array}{r} 2.05 \mathrm{E}- \\ 02 \\ \hline \end{array}$	$\begin{array}{r} 1.71 \mathrm{E}- \\ 05 \\ \hline \end{array}$
600	$\begin{array}{r} 3.00 \mathrm{E}- \\ 03 \end{array}$	$\begin{array}{r} 3.84 \mathrm{E}- \\ 06 \end{array}$	$\begin{array}{r} 1.47 \mathrm{E}-\mathrm{B} \\ 03 \end{array}$	$\begin{array}{r} 2.82 \mathrm{E}-\mathrm{-} \\ 06 \end{array}$	$\begin{array}{r} 3.91 \mathrm{E}- \\ 02 \end{array}$	$\begin{array}{r} 2.25 \mathrm{E}- \\ 05 \end{array}$	$\begin{array}{r} 1.03 \mathrm{E}- \\ 02 \end{array}$	$\begin{array}{r} 1.03 \mathrm{E}-\mathrm{-} \\ 05 \end{array}$	$\begin{array}{r} 8.57 \mathrm{E}- \\ 03 \end{array}$	$\begin{array}{r} 1.23 \mathrm{E}-\mathrm{-} \\ 05 \end{array}$	$\begin{array}{r} 1.75 \mathrm{E}-\mathrm{e} \\ 02 \end{array}$	$\begin{array}{r} 1.5 \mathrm{E}- \\ 05 \end{array}$
550	$\begin{array}{r} 2.29 \mathrm{E}- \\ 03 \end{array}$	$\begin{array}{r} 3.31 \mathrm{E}- \\ 06 \end{array}$	$\begin{array}{r} 1.10 \mathrm{E}- \\ 03 \end{array}$	$\begin{array}{r} 2.42 \mathrm{E}- \\ 06 \end{array}$	$\begin{array}{r} 3.42 \mathrm{E}- \\ 02 \end{array}$	$\begin{array}{r} 2.05 \mathrm{E}-\mathrm{e} \\ 05 \end{array}$	$\begin{array}{r} 8.83 \mathrm{E}-\mathrm{-} \\ 03 \end{array}$	$\begin{array}{r} 9.67 \mathrm{E}- \\ 06 \end{array}$	$\begin{array}{r} 7.24 \mathrm{E}- \\ 03 \end{array}$	$\begin{array}{r} 1.11 \mathrm{E}- \\ 05 \\ \hline \end{array}$	$\begin{array}{r} 1.47 \mathrm{E}- \\ 02 \end{array}$	$\begin{array}{r} 1.3 \mathrm{E}- \\ 05 \\ \hline \end{array}$
500	$\begin{array}{r} 1.62 \mathrm{E}- \\ 03 \end{array}$	$\begin{array}{r} 2.74 \mathrm{E}- \\ 06 \end{array}$	$\begin{aligned} \text { 7.70E- } \\ 04 \end{aligned}$	$\begin{array}{r} 2.00 \mathrm{E}- \\ 06 \end{array}$	$\begin{array}{r} 2.94 \mathrm{E}-2 \\ 02 \end{array}$	$1.84 \mathrm{E}-$	$\begin{array}{r} 7.34 \mathrm{E}-\mathrm{-} \\ 03 \end{array}$	$\begin{array}{r} 8.57 \mathrm{E}- \\ 06 \end{array}$	$\begin{array}{r} 6.00 \mathrm{E}-\mathrm{-} \\ 03 \end{array}$	$9.83 \mathrm{E}-$	$\begin{array}{r} 1.20 \mathrm{E}- \\ 02 \\ \hline \end{array}$	$\begin{array}{r} 1.17 \mathrm{E}- \\ 05 \end{array}$

Table V - The values of the fmesh for the indicated particle as a ratio to the value for protons is given. This is for the case where each tally has an energy dependent multiplier that is $\mathrm{dE} / \mathrm{dx}$ over $\mathrm{dE} / \mathrm{dx}$ of a $1-\mathrm{GeV}$ proton. Note that these tally multipliers are different for each particle type.

One sees in general that the values in Tables IV and V (Model \# 2) are greater that the values in Tables I and II (Model \# 1) but the ratios of the sum with multiplier to sum without multiplier for Model \# 2 (Table VI) are less than the values for Model \# 1 (Table III). There are at least two effects: one is the fact that the solid angle for particles off the window getting to the LSO will be greater for Model \# 2 than for Model \# 1. A second effect is that the energy spectrum of the particles getting to the LSO in the two cases could be and probably is different.

While we have not tabulated the results here, there is a number of charged muons getting to the LSO in the Model \# 2 case (these were not recorded in the Model \#1 case) - these muons presumably coming from charged-pion decay and are 5% to 8% of the π^{+} / p ratios and $\sim 0.2 \%$ of the π^{-} / p ratios.

Energy	Sum without multiplier		Sum with multiplier		Ratio of sum with to sum without	
(MeV)		Error		Error		Error
800	0.01485	0.00001	0.12868	0.00004	8.67	<0.01
750	0.01340	0.00001	0.11550	0.00005	8.62	0.01
700	0.01193	0.00001	0.10252	0.00004	8.59	0.01
650	0.01038	<0.00001	0.09203	0.00004	8.87	0.01
600	0.00884	<0.00001	0.07989	0.00003	9.04	0.01
550	0.00732	<0.00001	0.06831	0.00003	9.33	0.01
500	0.00589	<0.00001	0.05714	0.00003	9.70	0.01

Table VI - The sum of the values in Table IV (without multiplier) are compared to the sum in Table V (with multiplier), and the ratio of the two sums is given. This is for the MCNP geometry Model \# 2 case.

For Model \# 2 we have also calculation the image of the particles in the LSO with a mesh that is 1400 pixels -by- 1400 pixels -by1 pixel thick covering $14-\mathrm{cm} \times 14-\mathrm{cm} \times 0.2-\mathrm{cm}$. These images divided by the summed image (protons $+\pi^{+}+\pi^{-}+\mu^{+}+\mu^{-}+$ deuterons + tritons $+3 \mathrm{He}+\alpha$) are shown in Figure 4a-i, respectively, on plots that cover two orders of magnitude in the intensity scale; and in Figure 5a-i where the lower bound of the intensity is auto scaled for each plot.

Figure 3a and 3b (left) - Caption is the same as Figure 1a and 1 b except that runs were with MCNP Model \#2 (see text) with LSO detector 1 cm from the center of the window.

Figure 4 a - Ratio of the proton image to the summed image (see text).

Figure $4 b$ - Ratio of the π^{+}image to the summed image (see text).

Figure 4 c - Ratio of the π^{-}image to the summed image (see text).

Figure 4 d - Ratio of the μ^{+}image to the summed image (see text).

Figure 4 e - Ratio of the μ^{-}image to the summed image (see text).

Figure 4 f - Ratio of the deuteron image to the summed image (see text).

Figure 4 g - Ratio of the triton image to the summed image (see text).

Figure 4 h - Ratio of the ${ }^{3} \mathrm{He}$ image to the summed image (see text).

Figure 4 i - Ratio of the alpha particle image to the summed image (see text).

Figure 5 a - Ratio of the proton image to the summed image with the lower limit of the intensity scale auto scaled by the plotting program. This is the same data is in Figure 4a.

Figure 5 b - Ratio of the π^{+}image to the summed image with the lower limit of the intensity scale auto scaled by the plotting program. This is the same data is in Figure 4b.

Figure 5 c - Ratio of the π^{-}image to the summed image with the lower limit of the intensity scale auto scaled by the plotting program. This is the same data is in Figure 4c.

Figure 5 d - Ratio of the proton image to the summed image with the lower limit of the intensity scale auto scaled by the plotting program. This is the same data is in Figure 4d.

Figure 5 e - Ratio of the proton image to the summed image with the lower limit of the intensity scale auto scaled by the plotting program. This is the same data is in Figure 4e.

Figure 5 f - Ratio of the proton image to the summed image with the lower limit of the intensity scale auto scaled by the plotting program. This is the same data is in Figure 4f.

Figure 5 g - Ratio of the proton image to the summed image with the lower limit of the intensity scale auto scaled by the plotting program. This is the same data is in Figure 4 g .

Figure 5 h - Ratio of the proton image to the summed image with the lower limit of the intensity scale auto scaled by the plotting program. This is the same data is in Figure 4h.

Figure 5 i - Ratio of the proton image to the summed image with the lower limit of the intensity scale auto scaled by the plotting program. This is the same data is in Figure 4i.

VI. Conclusions

Monte Carlo calculations with MCNP6 of a protons incident of a thick window (similar to the window used in some proton radiography experiments at Line C) and subsequently transported to a LSO detector show a significant number of secondary particles in the LSO. If a model that accounts for the relative energy loss of the particles in the LSO is applied one sees that the summed signal from the secondary particles is 5% to 12% of the proton signal depending on the incident proton energy.

Tthe effects of these secondary particles should cancel out when the experimenters calculate a transmission by taking the ratio of an object-in run to an object-out run. However, one must be careful since there appears to be energy dependence to the secondary contribution, and the protons energies for the object-in run and the object-out run will probably be different.

The secondary production in the window and subsequent spreading of signal in the LSO scintillator (Figures $4 b$ through $4 i$) might lead to the effect that has been called "long range blur". The effect of long range blur has been discussed in a couple of documents. ${ }^{3}$ These documents discuss the effect at LANSCE Line C ($800-\mathrm{MeV}$ protons) and at the Brookhaven AGS (24-GeV/c protons), respectively, and the latter points out that the long range blur is reduced by approximately an order of magnitude at the energy higher energy. If it is secondary particle production causing the effect then the forward peaking at energy proton energies might explain the effect. We intend to perform similar MCNP6 calculations at the higher energy when the cross sections become available in the code - the cross sections currently stop at $\sim 5-\mathrm{GeV}$ proton energy.

It should be noted that the calculations presented in this note do not include delta rays (i.e. fast electrons produced by the energetic charged particles knocking orbiting electrons out of atoms), or heavy ions (i.e. ions heavier than alpha particles that could be produced primarily by the protons interacting with the nuclei of the window material(s). Both of these processes would modify the scintillator signal, but neither process is included in MCNP6 at the moment.

VII. References

1. "Initial MCNP6 Release Overview", T. Goorley et al., LA-UR-11-01766 -- states: "While MCNP6 is simply and accurately described as the merger of MCNP5 and MCNPX capabilities, it is also the result of 4 years of meticulous effort by the MCNP5 and MCNPX code development teams."

The merger is cited is being or nearing completion, but this author will believe this when it is seen at RSICC (Radiation Safety Information Computational Center).
2. "CEM03.03 and LAQGSM03.03 Event Generators for the MCNP6, MCNPX, and MARS15 Transport Codes", S. G. Mashnik, K. K. Gudima, R. E. Prael, A. J. Sierk, M. I. Baznat, and N. V. Mokhov, Joint ICTP-IAEA Advanced Workshop on Model Codes for Spallation Reactions, February 4-8, 2008, ICTP, Trieste, Italy; LA-UR-08-2931; E-print: arXiv:0805.0751v2 [nucl-th];
IAEA Report INDC(NDS)-0530, Distr. SC, Vienna, Austria, August 2008, p. 51.
3. "Long Range Blur correction to Proton Radiography Data", N. S. P. King, K. B. Morley, C. L. Morris and Pete Pazuchanics, Los Alamos National Laboratory (no date and no LA number); "Tile Glow Correction" Chris Morris et al., LANL, LLNL, and Bechtel Nevada (no date and no LA number).

VIII. Acknowledgements

Thanks to my fellow transporters in XCP-7 "Transport Applications" for the occasional discussion of this and similar topics. And also to XCP-3 "Monte Carlo Codes" for the implementation of the new features that allow proton radiography simulations with MCNP6, and in advance for features that are yet to be implemented.

Appendix I - MCNP6 input for Model \# 2 geometry


```
    sdef erg=700. part=5 sur=101 x=0 y=0 z=-100 vec=0 0 1 dir=1
C
    rand gen=2
    print -160 -30
C
    nps 1000000000
    prdmp j 100000000 1 2 100000000
c
    m13 13027 1. $ aluminum
    m14 14028 1. 08016 2. $ SiO2 == glass (rho=2.64 g/cc)
    m71 71175 2. 14028 1. 8016 5. $ LSO (rho=7.36 g/cc)
c end of material cards
C
fc021 exit of problem
    f021:h 105
    e021 0 001 800i 802
C --------------------
    f031:n 105
    e031 0 001 800i 802
C
    fc411 pi+ at exit of problem
    f411:/ 105
    e411 00 99i 1000
C
    fc511 pi- just after object energy
    f511:* 105
    e511 00 99i 1000
C
    fc611 mu+ just after object energy
    f611:! 105
    e611 00 99i 1000
C
    fc711 mu- just after object energy
    f711:| 105
    e711 00 99i 1000
c
    fc811 deuterons just after object energy
        f811:d 105
        e811 00 99i 1000
c -----------------------------------------------------------------------------
    fc911 tritons just after object energy
        f911:t 105
        e911 00 99i 1000
C
    fc1011 3He just after object energy
        f1011:s 105
        e1011 00 99i 1000
C
    fc1111 alphas just after object energy
        f1111:a 105
        e1111 00 99i 1000
C
C -------------------------------------------------
C -------------------------------------------------
C ------------------------------------------------
    fc154 proton image at IL1
    fmesh154:h geom=rec origin=-7 -7 +1.0
                imesh 7 iints 1400
                jmesh 7 jints 1400 kmesh +1.2 out=cf
    DE154 LIN 
\begin{tabular}{rrrrrr}
8.51959 & 9.29068 & 10.13160 & 11.04850 & 12.04850 & 13.13900 \\
14.32820 & 15.62500 & 17.03920 & 18.58140 & 20.26310 & 22.09710 \\
24.09700 & 26.27800 & 28.65640 & 31.25000 & 34.07840 & 37.16270 \\
40.52620 & 44.19420 & 48.19410 & 52.55600 & 57.31280 & 62.50000 \\
68.15670 & 74.32540 & 81.05250 & 88.38830 & 96.38820 & 105.11200 \\
114.62600 & 125.00000 & 136.31300 & 148.65100 & 162.10500 & 176.77699 \\
192.77600 & 210.22400 & 229.25101 & 250.00000 & 272.62701 & 297.30200 \\
324.20999 & 353.55301 & 385.55301 & 420.44800 & 458.50201 & 500.00000
\end{tabular}
```


imesh 7 iints 1400
jmesh 7 jints 1400 kmesh +1.2 out=cf

DE654 LIN	5.06578	5.52427	6.02426	6.56950	7.16409	7.81250
	8.51959	9.29068	10.13160	11.04850	12.04850	13.13900
	14.32820	15.62500	17.03920	18.58140	20.26310	22.09710
	24.09700	26.27800	28.65640	31.25000	34.07840	37.16270
	40.52620	44.19420	48.19410	52.55600	57.31280	62.50000
	68.15670	74.32540	81.05250	88.38830	96.38820	105.11200
	114.62600	125.00000	136.31300	148.65100	162.10500	176.77699
	192.77600	210.22400	229.25101	250.00000	272.62701	297.30200
	324.20999	353.55301	385.55301	420.44800	458.50201	500.00000
	545.25403	594.60400	648.41998	707.10699	771.10498	840.89600
	917.00403	100.00000				
	5.46768	5.12906	4.81208	4.81208	4.23864	3.97987
	3.73813	3.51271	3.30252	3.30252	2.92424	2.75446
	2.59712	2.45038	2.31414	2.31414	2.07065	1.96219
	1.86209	1.76934	1.68382	1.68382	1.53230	1.46558
	1.40439	1.34837	1.29722	1.29722	1.20832	1.17001
	1.13548	1.10451	1.07689	1.07689	1.03084	1.01203
	0.99580	0.98199	0.97036	0.97036	0.95301	0.94702
	0.94266	0.93981	0.93837	0.93837	0.93926	0.94139
	0.94451	0.94855	0.95341	0.95341	0.96525	0.97210
	0.97946	0.98728	0.99551	0.99551	1.01294	1.02205

C -
fc754 mu- image at IL1
fmesh754:| geom=rec origin=-7-7 +1.0
imesh 7 iints 1400
jmesh 7 jints 1400 kmesh +1.2 out=cf
$\begin{array}{lllllll}\text { DE754 LIN } & 5.06578 & 5.52427 & 6.02426 & 6.56950 & 7.16409 & 7.81250\end{array}$

8.51959	9.29068	10.13160	11.04850	12.04850	13.13900
14.32820	15.62500	17.03920	18.58140	20.26310	22.09710
24.09700	26.27800	28.65640	31.25000	34.07840	37.16270
40.52620	44.19420	48.19410	52.55600	57.31280	62.50000
68.15670	74.32540	81.05250	88.38830	96.38820	105.11200
114.62600	125.00000	136.31300	148.65100	162.10500	176.77699
192.77600	210.22400	229.25101	250.00000	272.62701	297.30200
324.20999	353.55301	385.55301	420.44800	458.50201	500.00000
545.25403	594.60400	648.41998	707.10699	771.10498	840.89600

5.46768	5.12906	4.81208	4.81208	4.23864	3.97987	\$ ratio of muon $\mathrm{dE} / \mathrm{dx} \mathrm{values}$	
3.73813	3.51271	3.30252	3.30252	2.92424	2.75446	$\$$ to proton $\mathrm{dE} / \mathrm{dx} \mathrm{at} \mathrm{l}-\mathrm{GeV}$	
2.59712	2.45038	2.31414	2.31414	2.07065	1.96219		
1.86209	1.76934	1.68382	1.68382	1.53230	1.46558		
1.40439	1.34837	1.29722	1.29722	1.20832	1.17001		
1.13548	1.10451	1.07689	1.07689	1.03084	1.01203		
0.99580	0.98199	0.97036	0.97036	0.95301	0.94702		
0.94266	0.93981	0.93837	0.93837	0.93926	0.94139		
0.94451	0.94855	0.95341	0.95341	0.96525	0.97210		
0.97946	0.98728	0.99551	0.99551	1.01294	1.02205		
1.03136	1.04084						

fc854 deuteron image at IL1 - - d's are the largest fraction of other stuff
fmesh854:d geom=rec origin=-7-7 +1.0 imesh 7 iints 1400
jmesh 7 jints 1400 kmesh +1.2 out=cf

DE854 LIN	5.06578	5.52427	6.02426	6.56950	7.16409	7.81250	
	8.51959	9.29068	10.13160	11.04850	12.04850	13.13900	
	14.32820	15.62500	17.03920	18.58140	20.26310	22.09710	
	24.09700	26.27800	28.65640	31.25000	34.07840	37.16270	
	40.52620	44.19420	48.19410	52.55600	57.31280	62.50000	
	68.15670	74.32540	81.05250	88.38830	96.38820	105.11200	
	114.62600	125.00000	136.31300	148.65100	162.10500	176.77699	
	192.77600	210.22400	229.25101	250.00000	272.62701	297.30200	
	324.20999	353.55301	385.55301	420.44800	458.50201	500.00000	
	545.25403	594.60400	648.41998	707.10699	771.10498	840.89600	
	917.00403	100.00000					
	46.99316	43.84974	40.86316	40.86316	35.35503	32.83821	$\$$ ratio of deuteron dE/dx
	30.45042	28.19230	26.07328	26.07328	23.06054	21.76551	$\$$ to proton $d E / d x$ at $1-\mathrm{GeV}$
	20.52985	19.35507	18.23888	18.23888	16.17406	15.21982	

An Equal Opportunity Employer / Operated by Los Alamos Nuclear Security, LLC

