LA-UR-11-04858

Approved for public release; distribution is unlimited.

\author{

MCNP References,

 historical document from 2002 unpublished memos}
\qquad

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Los Alamos

NATIONALLABORATORY

research note
Applied Physics Division
Diagnostics Applications
To/MS: Forrest B. Brown
From/MS: Yasunobu Nagaya / X-5, MS F663
Phone/Email: 5-3914 / nagaya@lanl.gov
Symbol: X-5:YN-02-XXX
Date: August 2, 2002

Group X-5, MS F663
Los Alamos, New Mexico 87545

Testing MCNP random number generators

Y. Nagaya and F. B. Brown

Abstract

Linear congruential random number generators (LCGs) are most widely used for particle-transport Monte Carlo methods and most Monte Carlo codes employ 47- or 48-bit LCGs. Recent progress of computers makes the period of the generators shorter. Thus, we picked up possible candidates of 63 -bit LCGs and tested the LCGs including the current MCNP random number generator. We performed the spectral test, Knuth's standard tests and Marsaglia's DIEHARD tests for the MCNP generator, 63-bit LCGs extended from the MCNP generator and 63 -bit LCGs proposed by L'Ecuyer. We found that the MCNP generator fails some tests in the DIEHARD test suite and the 63-bit LCGs extended from the MCNP RNG fail the spectral test. On the other hand, L'Ecuyer's 63-bit LCGs pass all the tests and their multipliers are excellent. It is considered that they are the most promising LCGs that can be easily upgraded from the current LCG.

1 Introduction

It is needless to say that random number generators (RNGs) play a very important role in Monte Carlo simulation. If the quality of a RNG used in the simulation is poor, we cannot trust all results obtained from the simulation. Thus, RNGs used in the simulation must have robust theoretical properties and must be thoroughly verified with tests.

In general, random numbers generated on computers are called "pseudo" random numbers and the sequence of the numbers has a period or cycle length because the available bit length is limited. RNGs should have a period long enough for the simulation. The period can be known theoretically and an appropriate parameter set must be chosen to achieve the long period.

Another requirement for RNGs is that random numbers must be randomly and uniformly distributed in a certain interval. This is often examined by RNG tests with random numbers actually generated. There are a large number of tests proposed for this purpose and some tests have been used as de facto standard. RNGs used should pass some tests for verification of randomness and uniformity.

Linear congruential generators (LCGs) are most frequently used in Monte Carlo simulation. The LCG is one of the classical generators proposed by Lehmer[1]. A lot of other generators have been proposed and some of them have a longer period than the LCG. Nevertheless, most Monte Carlo codes for particle transport have conventionally used them for a long time. It is because LCGs have the following desirable properties;

1. The sequence is deterministic so that repeated calculations will produce identical results.
2. They are very fast, involving only a small number of arithmetic operations.
3. Initialization is trivial, and the state information to specify the sequence for a history is small (1 word).
4. A simple algorithm exists for skipping ahead to any given point in the random sequence.
5. If 48 bits of precision are used in the LCG, the period is large $\left(2^{46} \sim\right.$ 7.0×10^{13}, or $\sim 10^{14}$) and serial correlation is entirely negligible.
6. The algorithm is robust, that is, it cannot fail.

Most Monte Carlo codes use 47- or 48-bit LCGs that have the modulus of 2^{47} or 2^{48} and the period of 2^{45} or 2^{46}, respectively. The modulus is usually restricted by integer precision of compilers and chosen as a nearly maximum value of available integers for a long period. Such LCGs generate a random number sequence of a period long enough for ordinary Monte Carlo calculations. For example, the current version of MCNP (Version 4) uses a 48-bit LCG and 152917 random numbers are kept for each particle (stride). Then the number of tracked particles from just a sequence is approximately $2^{46} / 152917=4.6 \times 10^{8}$.

Recently it is, however, not unusual to perform a calculation for 10^{8} histories or more as the computer speed increases rapidly. Even if all random numbers in a sequence are exhausted, the calculation result would be still reliable in most cases but it may cause unpredictable correlation. Therefore, LCGs with a longer period have been recently required. Fortunately, recent most compilers allow to use 64-bit integers and thus we can extend the period easily.

A new RNG package upgraded for MCNP Version 5 (MCNP5) includes not only the original MCNP 48-bit LCG but also several 63-bit LCGs. The 63 -bit LCGs have the period of $2^{61}\left(=2.3 \times 10^{18}\right)$ and $2^{63}\left(=9.2 \times 10^{18}\right)$ for multiplicative and mixed LCGs, respectively. Some 63-bit LCGs in the package are recommended by L'Ecuyer[2] and the others are obtained by slightly changing the parameters to determine LCGs. Therefore, they are subject to the RNG tests.

In this work, all the proposed RNGs for MCNP5 are tested with the standard test suite summarized by Knuth[3] and the DIEHARD test suite proposed by Marsaglia[4].

2 Linear Congruential Generator

2.1 Review of principle and features

The basic recursive equation for the linear congruential generators (LCGs) is given by

$$
\begin{equation*}
S_{n+1}=\left(g S_{n}+c\right) \bmod m \tag{1}
\end{equation*}
$$

where S_{n} is the integer in the interval [$0, m-1$], m the modulus $(m>0), g$ the multiplier $(0 \leq a<m), c$ the increment $(0 \leq c<m)$. Then, the random
number ξ_{n} between 0 and 1 is generated by the following equation;

$$
\begin{equation*}
\xi_{n}=S_{n} / m \tag{2}
\end{equation*}
$$

We denote the above LCG as $\operatorname{LCG}(g, c, m)$. The LCGs are categorized into 2 types; multiplicative LCGs for $c=0$ and mixed LCGs for $c \neq 0$.

Apparently the integers generated by Eq. (1) lie between 0 and $m-1$. Thus the possible maximum period is m. In the case of multiplicative LCGs, the integers lie between 1 and $m-1$ because $S_{i}=0$ cannot be allowed. The possible maximum period is $m-1$.

The maximum period cannot be achieved for all the sets of $\left(g, c, m, S_{0}\right)$. Our most concern is to find the sets that enable LCGs have the maximum period. For this purpose, we use the following theorems for mixed and multiplicative LCGs, respectively.

Theorem A (See [3, p. 17]) The $\operatorname{LCG}(g, c, m)$ has the maximum period m if and only if

1. c is relatively prime to m;
2. $g-1$ is a multiple of p, for every prime p dividing m;
3. $g-1$ is a multiple of 4 , if m is a multiple of 4 .

Theorem B (See [16, p. 592]) The $\operatorname{LCG}(g, 0, m)$ has the maximum period $m-1$ if and only if

1. m is a prime number;
2. g is a primitive root of m.
g is a primitive root of m (prime) if and only if

- $g^{m-1} \equiv 0(\bmod m)$;
- For all integers $i<m-1$, the quantity $\left(g^{i}-1\right) / m$ is not an integer.

Theorems A and B give us to choose the sets of the parameters but there are still a huge number of choices that satisfy Theorem A. What we have to consider first is often the choice of a modulus m. It is restricted by integer precision available on a computing platform. Currently, a type declaration

INTEGER(8) is available on most platforms and the modulus is often less than or equal to 2^{64} in this case.

There are two major choices for the modulus. One is a prime modulus. In particular, a Mersenne prime that has the form of $2^{\alpha}-1$ is often used. Such RNGs are often seen in scientific subroutine libraries. The other choice is the modulus of the power of 2 . This is also often used because of the computational advantage. However RNGs with such moduli have the following drawbacks;

- They does not have the maximum period $m-1$ because they does not satisfy Theorem B-1.
- The $(r+1)$-th most significant bit has period length at most 2^{-r} times that of the most significant bit [2].
In spite of these drawbacks, The RNGs with moduli of the power of 2 is traditionally used in Monte Carlo codes for particle transport. We also investigate only those RNGs in this work. For the RNGs, Theorems A for mixed RNGs can be rewritten as follows.

Theorem C (See [16, p. 601]) The $\operatorname{LCG}\left(g, c, 2^{\beta}\right)$ has the maximum period 2^{β} if and only if

1. $g \equiv 1(\bmod 4)$;
2. c is odd.

On the other hand, we use the following theorem for multiplicative LCGs instead of Theorem B.

Theorem D (See [16, p. 598]) The $\operatorname{LCG}\left(g, 0,2^{\beta}\right)$ has the maximum period $2^{\beta-2}$ if and only if

1. $g \equiv \pm 3(\bmod 8)$;
2. S_{0} is an odd integer.

Furthermore, multipliers of the form $A \equiv 5(\bmod 8)$ produce more uniformly distributed random numbers than multipliers of the form $A \equiv 3(\bmod 8)$ (See [16, p. 600]). We may choose the of the form $A \equiv 5(\bmod 8)$ though it is not particularly serious for large β.

We have to find the sets of the parameters that satisfy Theorem C or D at least.

2.2 New MCNP RNGs

A new random number package for MCNP5 includes the following RNGs.

1. $\operatorname{LCG}\left(5^{19}, 0,2^{48}\right)$: current MCNP RNG
2. $\operatorname{LCG}\left(5^{19}, 0,2^{63}\right)$: multiplicative LCG
3. $\operatorname{LCG}\left(5^{23}, 0,2^{63}\right):$ multiplicative LCG
4. $\operatorname{LCG}\left(5^{25}, 0,2^{63}\right)$: multiplicative LCG
5. $\operatorname{LCG}\left(5^{19}, 1,2^{63}\right):$ mixed LCG
6. $\operatorname{LCG}\left(5^{23}, 1,2^{63}\right):$ mixed LCG
7. $\operatorname{LCG}\left(5^{25}, 1,2^{63}\right):$ mixed LCG
8. LCG(3512401965023503517, $\left.0,2^{63}\right)$: L'Ecuyer's table
9. LCG(2444805353187672469, $\left.0,2^{63}\right)$: L'Ecuyer's table
10. LCG(1987591058829310733, $\left.0,2^{63}\right):$ L'Ecuyer's table
11. LCG(9219741426499971445, $\left.1,2^{63}\right)$: L'Ecuyer's table, mixed LCG
12. LCG(2806196910506780709, $\left.1,2^{63}\right)$: L'Ecuyer's table, mixed LCG
13. LCG(3249286849523012805, 1, $\left.2^{63}\right)$: L'Ecuyer's table, mixed LCG

The first RNG is a 48-bit LCG that has been used for MCNP. This LCG is proposed by Beyer (See [12]) and its validity has been well established through many production runs. The other RNGs that are newly implemented for MCNP5 are 63-bit LCGs. Of course, 64-bit LCGs can be easily realized on current 64-bit based platforms but there are still machine/compiler quirks with a sign bit. Therefore, the 63 -bit LCGs are chosen for portability.

LCGs $2 \sim 4$ are 63 -bit multiplicative LCGs. LCG 2 has the same multiplier as the original MCNP RNG and is a very good candidate for a 63 -bit LCG. However, the multiplier may be slightly small for a modulus $2^{6} 3$. The most significant bit of 5^{19} is 45 since

$$
\begin{aligned}
5^{19}= & 100010101100011100100011000001001000100111101_{2} \\
= & 2^{44}+2^{40}+2^{38}+2^{36}+2^{35}+2^{31}+2^{30}+2^{29}+2^{26}+2^{22}+2^{21} \\
& +2^{15}+2^{12}+2^{8}+2^{5}+2^{4}+2^{3}+2^{2}+2^{0}
\end{aligned}
$$

Thus the first 19 bits are 0's in the 64 -bit representation. It does not always lead to the non-randomness of a sequence but it is desirable that each of 64 bits should be randomly arranged with 0 and 1.

The multipliers $5^{23}, 5^{25}$ and 5^{27} are possible candidates. One reason is that multipliers of odd powers of 5 always 5 modulo 8 . Since

$$
5^{2 i-1}=5 \times(3 \times 8+1)^{i-1} \equiv 5(\bmod 8)
$$

for $i>1$, the multipliers of $5^{2 i-1}$ satisfy Theorem D-1. The other reason is that the multipliers can be expressed in the precision of a FORTRAN type declaration $\operatorname{INTEGER}(8)$ whose range is $\left[-2^{63}, 2^{63}-1\right]$. However, 5^{27} is rejected from the candidates because of its bit pattern. The following is the bit patterns for $5^{23}, 5^{25}$ and 5^{27};

$$
\begin{aligned}
5^{23}= & 101010010110100000010110001111110000101001010111101101_{2} \\
5^{25}= & 100001000101100101010001011000010100000000010100100001 \\
& 00101_{2} \\
5^{27}= & 11001110110010111000111100100111111101 \underline{0000100000000011} \\
& 110011101_{2} .
\end{aligned}
$$

One can see a regular bit pattern in the underlined part.
LCGs $5 \sim 7$ are 63 -bit mixed LCGs. The multipliers are the same as those of the multiplicative LCGs. They also satisfy Theorem C-1 since

$$
5^{2 i-1}=(4+1)^{2 i-1} \equiv 1(\bmod 4) .
$$

The period of the mixed LCGs is 2^{63} and is slightly longer than that of the multiplicative LCGs.

LCGs $8 \sim 13$ are 63 -bit LCGs proposed by L'Ecuyer [2]. They have a good lattice structure and are recommended to use as RNGs for computer simulation.

3 Tests for RNGs

There are a lot of tests to assess the RNGs. Here, we summarize the tests focusing on those we have used in this work.

The tests are classified into following two categories.

- Theoretical tests: Analyzing the algorithm of RNGs based on the number theory and the theory of statistics.
- Empirical tests: Analyzing the uniformity, patterns and so on of RNs generated by RNGs.

The theoretical tests provide us a clue for a good choice of the RNG parameters such as multiplier, increment, modulus etc. On the other hand, the empirical tests uses output RNs that are used actually, and thus they are useful to verify the algorithm implemented in the program.

The empirical tests can be further classified into some categories.

- Standard tests
- Bit level tests
- Physical tests

In this work, we have performed the standard and Bit level tests with the SPRNG[17] and DIEHARD[4] test routines. The tests used in this work are briefly described in the following sections.

Some of these tests are applied directly to a real-valued sequence of RNs

$$
\begin{equation*}
\xi_{0}, \xi_{1}, \xi_{2}, \cdots \tag{3}
\end{equation*}
$$

However, other tests must be applied to a sequence of random integers. In this case, the sequence of random integers

$$
\begin{equation*}
I_{0}, I_{1}, I_{2}, \cdots \tag{4}
\end{equation*}
$$

is obtained from the following rule;

$$
\begin{equation*}
I_{n}=\left\lfloor d \xi_{n}\right\rfloor \tag{5}
\end{equation*}
$$

where d is an arbitrary integer and $\lfloor x\rfloor$ is the floor of x, that is, the greatest integer such that $\max _{k \leq x} k . d$ is sometimes chosen as a power of 2 ;

$$
\begin{equation*}
d=2^{m} \tag{6}
\end{equation*}
$$

where m is an integer. For $0 \leq \xi_{n}<1, \xi_{n}$ can be expressed as the following form;

$$
\begin{equation*}
\xi_{n}=b_{1} * 2^{-1}+b_{2} * 2^{-2}+\cdots+b_{m-1} * 2^{-m+1}+b_{m} * 2^{-m}+\cdots \tag{7}
\end{equation*}
$$

Then I_{n} turns out to be

$$
\begin{equation*}
I_{n}=b_{1} * 2^{m-1}+b_{2} * 2^{m-2}+\cdots+b_{m-1} * 2^{1}+b_{m} * 2^{0} \tag{8}
\end{equation*}
$$

Therefore, I_{n} represents the m most significant bits of the binary representation of ξ_{n}.

3.1 Theoretical Test

One of the most useful theoretical tests for LCGs is the spectral test. This test inspects the property of the full period of a RNG. All RNGs currently known to be bad fail the test [3, p. 93].

This test was originally introduced by Coveyou and MacPherson [5] and improved by Dieter [6] and Knuth [7]. Hopkins proposed a revised algorithm with a source program to perform the spectral test [8].

3.1.1 Spectral Test

It is well known that LCGs have regular patterns (lattice structures) when overlapping t-tuples of a random number sequence are plotted in a hypercube [9]. In other words, all the t-tuples are covered with families of parallel $(t-1)$ dimensional hyperplanes. The spectral test determines the maximal distance between adjacent parallel hyperplanes. As one can easily find, the smaller the distance is, the better the RNG is.

Now we define the i-th overlapping t-tuples;

$$
\left(\xi_{i}, \xi_{i+1}, \cdots, \xi_{i+t-1}\right) \text { for } t \geq 1
$$

where ξ_{i} is the i-th random number of a sequence. We regard the t-tuples as a point in the t-dimensional unit hypercube $[0,1)^{t}$ If the period of the sequence is M, we can plot M points in the hypercube. Then, there exist multiple families of of parallel $(t-1)$-dimensional hyperplanes that covers all the points. Let $d_{t}(m, g)$ be the maximal distance between the adjacent parallel hyperplanes. (Recall that m is the modulus and g the multiplier.) The distance is also rewritten as follows [3, p. 94];

$$
\begin{equation*}
d_{t}(m, g)=\frac{1}{\nu_{t}(m, g)} \tag{9}
\end{equation*}
$$

where $\nu_{t}(m, g)$ is called the t-dimensional accuracy of the RNG and defined as follows [3, p. 101];

$$
\begin{equation*}
\nu_{t}(m, g)=\min _{i}\left\{\sqrt{\sum_{k=1}^{t} S_{i+k-1}} \mid \sum_{k=1}^{t} g^{i-1} S_{i+k-1} \equiv 0 \bmod m\right\} \tag{10}
\end{equation*}
$$

for $2 \leq t \leq T$, given T . The spectral test calculates $\nu_{t}(m, g)$ and an algorithm is described in Reference [3, p. 101].

There is a theoretical upper bound on $\nu_{t}(m, g)$ given by

$$
\begin{equation*}
\nu_{t}(m, g) \leq \gamma_{t}^{1 / 2} \tau^{1 / t} \stackrel{\text { def }}{=} \nu_{t}^{*}(m) \tag{11}
\end{equation*}
$$

where τ is the number of points per unit volume and γ_{t} is Hermite's constant. The constant is known for $t \leq 8$ (See [10, p. 332]):

$$
\begin{gather*}
\gamma_{1}=1, \gamma_{2}=\left(\frac{4}{3}\right)^{1 / 2}, \gamma_{3}=2^{1 / 3}, \gamma_{4}=2^{1 / 2} \\
\gamma_{5}=2^{3 / 5}, \gamma_{6}=\left(\frac{64}{3}\right)^{1 / 6}, \gamma_{7}=4^{3 / 7}, \gamma_{8}=2 \tag{12}
\end{gather*}
$$

Since we consider multiplicative LCGs with modulus 2^{β} and mixed LCGs with a full period, τ is equivalent to $M(\tau=M)$:

$$
M= \begin{cases}\frac{m}{4} & \text { for multiplicative LCGs (modulus } \left.2^{\beta}\right) \tag{13}\\ m & \text { for mixed LCGs. }\end{cases}
$$

Then the inequality (11) can be rewritten as

$$
\begin{equation*}
\nu_{t}(m, g) \leq \gamma_{t}^{1 / 2} M^{1 / t} \stackrel{\text { def }}{=} \nu_{t}^{*}(m) \tag{14}
\end{equation*}
$$

Identically, there is a lower bound on $d_{t}(m, g)$:

$$
\begin{equation*}
d_{t}(m, g) \geq \gamma_{t}^{-1 / 2} \tau^{-1 / t} \stackrel{\text { def }}{=} d_{t}^{*}(m) \tag{15}
\end{equation*}
$$

In our case, the above inequality can be rewritten as

$$
\begin{equation*}
d_{t}(m, g) \geq \gamma_{t}^{-1 / 2} M^{-1 / t} \stackrel{\text { def }}{=} d_{t}^{*}(m) \tag{16}
\end{equation*}
$$

The normalized maximal distance is often used as a measure and is defined as

$$
\begin{equation*}
S_{t}(m, g)=\frac{d_{t}^{*}(m)}{d_{t}(m, g)} \tag{17}
\end{equation*}
$$

$S_{t}(m, g)$ lies between 0 and 1.
Note that the increment c does not appear in the above discussion. In theory, c does not affect the spectral test [3, p. 97], for $c \neq 0$. However, c affects the results of the spectral test implicitly in our work because we consider the LCGs with modulus 2^{β} and the existence of c increases the period of them.

There are some criteria to rank LCGs. Knuth proposed a measure $m u_{t}(m, g)$ that indicates the effectiveness of the multiplier $g[3$, p. 105]:

$$
\begin{equation*}
\mu_{t}(m, g)=\frac{\pi^{t / 2} \nu_{t}^{t}(m, g)}{(t / 2)!M} \tag{18}
\end{equation*}
$$

where

$$
\begin{equation*}
\left(\frac{t}{2}\right)=\left(\frac{t}{2}\right)\left(\frac{t}{2}-1\right) \cdots\left(\frac{1}{2}\right) \sqrt{\pi} \text { for } t \text { odd. } \tag{19}
\end{equation*}
$$

Knuth also introduced a criterion with $\mu_{t}(m, g)$ as summarized in Table 1.
Table 1: Knuth's criterion for the spectral test

$\mu_{t}(m, g)$ for $2 \leq t \leq 6$	Result
$\mu_{t}(m, g) \geq 1$	Pass and the multiplier is excellent.
$1 \geq \mu_{t}(m, g) \geq 0.1$	Pass.
$0.1>\mu_{t}(m, g)$	Fail.

Fishman employed $S_{t}(m, g)$ to screen multipliers in his papers [11], [12]. He proposed the following criterion;

$$
\begin{equation*}
M_{T}(m, g) \stackrel{\text { def }}{=} \min _{2 \leq t \leq T} S_{t}(m, g) \geq S \tag{20}
\end{equation*}
$$

where S is between 0 and 1 and he chose $S=0.8$. According to his study [12], any multiplier that satisfies the above condition does not exceed $d_{t}^{*}(m)$ by more than 25%.

L'Ecuyer also employed same criterion as above to obtain the best multipliers for 31-bit and 15-bit LCGs [13]. Recently, he performed an extensive study to find LCGs of different sizes with good lattice structures and investigated $d_{t}(m, g)$ for higher dimensions [2]. In the paper, he employed extended criteria $M_{8}(m, g), M_{16}(m, g)$ and $M_{32(m, g)}$ and proposed the best multiplier for each criterion.

3.2 Standard Tests

The standard tests have been used widely to check the quality of RNGs and were well reviewed by Knuth[3].

3.2.1 Equidistribution test (Frequency test)

The equidistribution test is a very fundamental test for Monte Carlo calculations. This test check whether RNs are generated uniformly between 0 and 1. In this test, the RNs can be submitted directly to the Kolmogorov-Smirnov (K-S) test[3] but the chi-square (χ^{2}) test can be also applied for the random integers. In the latter case, RNs in the interval $[0,1)$ are multiplied by d and truncated to integers in the interval $[0, d)$. If the RNs are uniformly generated, each integer must have the equal probability $1 / d$.

The equidistribution test in the SPRNG routines uses the latter scheme. In addition, the chi-square test is repeated the specified times (NTESTS) and the K-S test is applied for the obtained chi-square statistics.

3.2.2 Serial test

This test checks serial correlation of a RN stream. Generally, n groups of k-tuples are comprised of $k * n$ random integers in [$0, d-1$], and then it is checked whether the k-tuples are uniformly distributed in the k-dimensional hypercube. Each k-tuple must occur with the probability $1 / d^{k}$ unless the serial correlation exists.

The serial test in the SPRNG routines can be used only for pairs of RNs, that is, $k=2$. We generate n pairs of integers such as $\left(I_{1}, I_{2}\right),\left(I_{3}, I_{4}\right), \cdots$, $\left(I_{2 n}, I_{2 n+1}\right)$ and count the number of times that each pair occurs. Each of the d^{2} pairs should be equally likely to occur. Thus we apply the chi-square test to these d^{2} bins with probability $1 / d^{2}$ in each bin. In addition, the chi-square test is repeated the specified times (NTESTS) and the K-S test is applied for the obtained chi-square statistics.

3.2.3 Gap test

In this test, the lengths of "gaps" between random numbers in a certain range are counted. The range is defined with 2 real numbers a, b such that $0 \leq a<b \leq 1$. Suppose that random numbers ξ_{j} and ξ_{r} lie between a and b
and others $\xi_{j+1}, \cdots, \xi_{r-1}$ do not; $\xi_{j}, \xi_{j+1}, \cdots, \xi_{r-1}, \underline{\xi_{r}}$. Then the gap length is r.

As an example, suppose that we get the following RN sequence and set $(a, b)=(0.4,0.6)$;
$0.10574,0.66509, \underline{0.46622}, 0.93925,0.26551,0.11361,0.25714, \underline{0.45412}$,
$0.13971, \underline{0.59733}, 0.26273,0.09937,0.94662,0.14760,0.34662,0.93293$,
$0.08641,0.02030, \underline{0.45855}, 0.82829,0.20008,0.32121,0.72824, \underline{0.45938}$,
\cdots,
then we obtain the gap lengths $5,2,10,5, \cdots$, in turn.
In SPRNG, n gap lengths are counted and gap lengths greater than t is lumped together in a category. The chi-square test is applied to the $t+1$ categories. In addition, the chi-square test is repeated the specified times (NTESTS) and the K-S test is applied for the obtained chi-square statistics.

3.2.4 Poker test (Partition test)

We generate n groups of k successive random integers (k-tuples) in $[0, d-1]$ and count the number of distinct integers in each k-tuple. A chi-square test is then applied to the k categories.

Suppose that we consider the following random integer sequence for $d=5$,

$$
0,3,2,4,1,0,1,2,0,2,1,0,4,1,1,4,0,0,2,4, \cdots
$$

and make 5 -tuples $(k=5)$. Then, we obtain the following result.

5 -tuple	distinct integers	hand
$(0,3,2,4,1)$	5	all different
$(0,1,2,0,2)$	3	two pair
$(1,0,4,1,1)$	3	three of a kind
$(4,0,0,2,4)$	3	two pair

The above example shows the simple case of the classical poker test. In this example, "two pair" and "three of a kind" are treated as the same category but not in the classical test. Likewise, "full house" and "four of a kind" are treated as the different category in the classical test.

In SPRNG, the chi-square test is repeated the specified times (NTESTS) and the K-S test is applied for the obtained chi-square statistics.

3.2.5 Coupon collector's test

We generate random integers in $[0, d-1]$ and observe the length of the segment that includes a complete set of integers from 0 to $d-1$. For example, if we get the following random integer sequence for $d=3$,

$$
0,1,1,2,0,0,0,1,0,1,0,0,2,0,1,2,0,0,1,2, \cdots,
$$

then we obtain the following result.

segment	length of segment
$(0,1,1,2)$	4
$(0,0,0,1,0,1,0,0,2)$	9
$(0,1,2)$	3
$(0,0,1,2)$	4

Usually, we lump segments of length larger than t and have $t-d+1$ categories. A chi-square test is then applied to these categories.

In SPRNG, the chi-square test is repeated the specified times (NTESTS) and the K-S test is applied for the obtained chi-square statistics.

3.2.6 Permutation test

We generate n sets of m successive RNs (m-tuples) in $[0,1$). The RNs in each set have m ! possible orders and the number of times each order appears is scored. All the orders must occur with equal probability if the RNs are properly generated. A chi-square test is thus applied to m ! categories with probability $1 / m$!.

As an example, suppose that we get the following RN sequence,

$$
\begin{aligned}
& 0.10574,0.66509,0.46622,0.93925,0.26551,0.11361, \\
& 0.25714,0.45412,0.13971,0.59733,0.26273,0.09938
\end{aligned}
$$

and consider the sets of triples $(m=3)$. When we rank the triples in each set according to their magnitude, we have 6 categories; $(1,2,3)$, $(1,3,2),(2,1,3)$, $(2,3,1),(3,1,2),(3,2,1)$, where 1 and 3 mean the smallest and largest RNs in each set, respectively. Then we can obtain the following result from the above sequence.

triples	category
$(0.10574,0.66509,0.46622)$	$(1,3,2)$
$(0.93925,0.26551,0.11361)$	$(3,2,1)$
$(0.25714,0.45412,0.13971)$	$(2,3,1)$
$(0.59733,0.26273,0.09938)$	$(3,2,1)$
\ldots	

In SPRNG, the chi-square test is repeated the specified times (NTESTS) and the K-S test is applied for the obtained chi-square statistics.

3.2.7 Runs-up test

In the runs-up test, RNs are generated in $[0,1)$ and the length of runs-up in which the successive RNs are increasing. For example, if we get the same RN sequence as in the permutation test and put a vertical line at the breakpoint,

$$
\begin{aligned}
& 0.10574,0.66509|0.46622,0.93925| 0.26551 \mid 0.11361, \\
& 0.25714,0.45412|0.13971,0.59733| 0.26273 \mid 0.09938
\end{aligned}
$$

then the length of the first run is 2 , the length of the second run is 2 , the length of the third and fourth runs is 1 , etc. The runs up of the length greater than t are lumped together.

We cannot simply apply a chi-square test to the counts of the length because the adjacent runs are not independent. Instead we apply the chisquare test to a test statistic in the covariance matrix form.

In SPRNG, a slightly modified version of the test is implemented. The RN that follows a previous run is discarded. In the above example, 0.46622 , $0.26551,0.13971$ and 0.26273 are discarded;

$$
\begin{aligned}
& 0.10574,0.66509|(0.46622) 0.93925|(0.26551) \mid 0.11361, \\
& 0.25714,0.45412|(0.13971) 0.59733|(0.26273) \mid 0.09938,
\end{aligned}
$$

Then the lengths of runs-up are, in turn, $2,1,3,1,1 \cdots$. The chi-square test is applied to the counts of the lengths and repeated the specified times (NTESTS) and the K-S test is applied for the obtained chi-square statistics.

3.2.8 Maximum-of- t test

We generate n sets of t successive RNs (t-tuples) in $[0,1$) and observe a maximum RN in each set. For example, suppose that we get the following RN sequence,

$$
0.10574,0.66509,0.46622,0.93925,0.26551,0.11361
$$ $0.25714,0.45412,0.13971,0.59733,0.26273,0.09938$, ...

If $t=3$, we obtain the following result.

triples	maximum RN
$(0.10574,0.66509,0.46622)$	0.66509
$(0.93925,0.26551,0.11361)$	0.93925
$(0.25714,0.45412,0.13971)$	0.45412
$(0.59733,0.26273,0.09938)$	0.59733
\ldots	

The distribution of the maximum RNs should be x^{t} and the K-S test is applied to them.

In SPRNG, the K-S test is repeated the specified times (NTESTS) and another K-S test is applied for the obtained K-S statistics.

3.2.9 Collision test

Suppose that we have m urns and throw n balls into the urns at random. If $m \gg n$, then most of the balls fall into empty urns. However, some balls may fall into an run that is occupied by other balls. In this case, it is said that a "collision" has occurred. The collision test counts the number of collisions and a RNG passes this test if there are not too many or too few collisions.

In order to realize the above idea, we generate n sets of $\log m d$ successive random integers in $\left[0,2^{\log d}-1\right]$. Then we form n new $\log m$ bit random integers with the $\log d$ most significant bits from $\log m d$ random integers, where $\log m=\log m d \times \log d$. For example, if $\log d=1$ and we get the following random integer sequence,
$0,1,0,1,0,0,0,0,0,1,0,0,1,0,0,1,0,0,0,1$
$0,0,1,0,1,0,1,0,1,1,1,1,0,1,1,0,0,0,1,0$
$1,1,1,0,0,0,0,1,0,1,0,1,0,0,0,1,0,1,1,0$
then we obtain the following result for $\log m d=20$.

$$
\begin{aligned}
& 01010000010010010001_{2}=328849 \\
& 00101010111101100010_{2}=175970 \\
& 11100001010100010110_{2}=922902
\end{aligned}
$$

All possible values of the new random integers and each new random integer correspond to urns and a ball, respectively. When the same random integer appears in n sets, a collision occurs. The number of collisions is counted and a chi-square test is applied to it.

In SPRNG, $\log m=\log m d \times \log d$ must be less than 32 and n must be less than the number of possible new random integers $2^{\log m d \times \log d}$.

3.3 DIEHARD Tests

3.3.1 Birthday spacings test

In this test, we choose m birthdays in a year of n days. This is simulated by generating m random integers in $[1, n]$. Suppose we get random integers $I_{1}, I_{2}, \cdots, I_{m}$, we sort them into non-decreasing order; $I_{(1)} \leq I_{(2)} \leq \cdots \leq$ $I_{(m)}$. Then we obtain a list of m birthday spacings;

$$
I_{(1)}, I_{(2)}-I_{(1)}, I_{(3)}-I_{(2)}, \cdots, I_{(m)}-I_{(m-1)}=Y_{1}, Y_{2}, Y_{3}, \cdots, Y_{m} .
$$

We sort the spacings into non-decreasing order; $Y_{(1)} \leq Y_{(2)} \leq \cdots \leq Y_{(m)}$. Then we counts the number of indices j such that $1<j \leq n$ and $Y_{(j)}=Y_{(j-1)}$. If j is the number of values that occur more than once in that list, then j is asymptotically Poisson distributed with mean $m^{3} /(4 n)$.

Experience shows n must be quite large, say $n \geq 2^{18}$, for comparing the results to the Poisson distribution with that mean. This test in DIEHARD uses $n=2^{24}$ and $m=2^{9}$, so that the underlying distribution for j is taken to be Poisson with mean $\lambda=\left(2^{9}\right)^{3} /\left(2^{2} \times 2^{24}\right)=2$. The process to obtain j is repeated 500 times and a chi-square test is applied to $500 j$'s. As a result, the chi-square test provides a p-value.

This test in DIEHARD uses several parts of bits of given 32-bit random integers. The first test uses bits 1-24 (counting from the left) from integers. In the second test, bits 2-25 are used to provide birthdays, then 3-26 and so on to bits $9-32$. Each set of bits provides a p-value, and the nine p-values provide a sample for a K-S test.

3.3.2 Overlapping 5-permutation test

This test is a kind of overlapping m-tuple tests. The tests use sets of overlapped successive random integers. For example, we consider the following sequence of random integers obtained for $d=8$ in Eq. (5);

$$
0,5,3,7,2,0,2,3,1,4,2,0,7,1,2,7, \cdots, 4,5,3,1,5,2
$$

In the case of $m=5$, we add the first 4 integers to the end of the sequence and we group n sets of overlapping 5 -tuples;

$$
(0,5,3,7,2),(5,3,7,2,0),(3,7,2,0,2), \cdots(5,2,0,5,3),(2,0,5,3,7)
$$

According to Marsaglia[24], the circulation has an asymptotically negligible effect but makes deriving a covariance matrix for a test statistic much simpler. Obviously, the sets are not independent of each other and thus a test statistic of the quadratic form with a covariance matrix is used. The statistic has asymptotically a chi-square distribution.

The basic idea of the overlapping 5-permutation test is the same as the permutation test described in Section 3.2.6. The difference is whether the sets of 5 -tuple is overlapped or not. Each set of five successive integers can be in one of 120 states (5! possible orderings of five integers). The number of occurrences of each state is counted for the test statistic.

This test in DIEHARD uses random integer sequences of length 1000 and forms 1000 sets of overlapping 5 -tuples. This process is repeated 1000 times and the cumulative counts are made for a million 32-bit random integers. The counts are used to yield the test statistic with the quadratic form in the weak inverse of the 120×120 covariance matrix. (If $C C^{-} C=C$, then C^{-}is a weak inverse of C.) Finally a p-value is obtained from a chi-square distribution with 99 degrees of freedom (the asymptotic rank of the covariance matrix). This version of overlapping 5 -permutation test uses a million integers, twice.

3.3.3 Binary rank test

We form a binary matrix from a sequence of random integers. Each column of the matrix consists of the binary representation of a random integer. In general, $m n$-bit random integers forms a $m \times n$ binary matrix. The i-th n-bit random integer can be expressed as follows;

$$
\begin{aligned}
I_{i} & =f_{i, 1} * 2^{n-1}+f_{i, 2} * 2^{n-1}+\cdots+f_{i, n-1} * 2^{1}+f_{i, n} * 2^{0} \\
& =\left(f_{i, 1} f_{i, 2} \cdots f_{i, n-1} f_{i, n}\right)
\end{aligned}
$$

where $f_{i, j}$ is 0 or 1 . Then using m integers, we obtain a binary matrix A;

$$
A=\left(\begin{array}{cccc}
f_{1,1} & f_{1,2} & \cdots & f_{1, n} \\
f_{2,1} & f_{2,2} & \cdots & f_{2, n} \\
\vdots & \vdots & \vdots & \vdots \\
f_{m, 1} & f_{m, 2} & \cdots & f_{m, n}
\end{array}\right)
$$

A lot of matrices are usually generated from a sequence of random integers and the ranks of the matrices are calculated. A chi-square test is applied to the ranks to obtain a p-value.

It is not alway necessary to use a full matrix for this test and we can use a partial matrix. The binary rank test in DIEHARD is performed for three forms of matrices; $31 \times 31,32 \times 32$ (full) and 6×8 matrices. For 31×31 matrices, the leftmost 31 bits of 31 random integers are used to form each matrix. The ranks can be from 0 to 31, but ranks less than 28 are rare. Thus the counts for rank less than 28 are lumped together. Ranks are found for 40,000 matrices and a chi-square test is applied to counts for ranks $31,30,29$ and equal to or less than 28.

For 32×32 matrices, all bits of 32 random integers are used to form each matrix. The ranks can be from 0 to 32 . Since ranks less than 29 are rare, the counts for rank less than 29 are lumped together. Ranks are found for 40,000 matrices and a chi-square test is applied to counts for ranks 32,31 , 30 and equal to or less than 29.

For 6×8 matrices, 6 bits of 8 random integers are used to form each matrix. The ranks can be from 0 to 6 . However, ranks $0,1,2,3$ are rare and thus their counts are lumped together as rank 4. Ranks are found for 100,000 matrices and a chi-square test is applied to the counts for ranks 6,5 and equal to or less than 4.

3.3.4 Bitstream test

In this test, a sequence of random integers is taken to be a stream of sequential bits. Since the i-th 32 -bit random integer is expressed as $\left(b_{i, 1} b_{i, 2} \cdots b_{i, 32}\right)$ where $b_{i, j}=0$ or 1 , the stream becomes

$$
b_{1,1}, b_{1,2}, \cdots, b_{1,32}, b_{2,1}, b_{2,2}, \cdots, b_{2,32}, \cdots, b_{i, 1}, b_{i, 2}, \cdots, b_{i, 32}, \cdots
$$

We treat $b_{i, j}$'s as a letter 0 or 1 and think of the stream of bits as a succession of overlapping 20-letter "words". The first word is $b_{1,13} b_{1,14} \cdots b_{1,31} b_{1,32}$ and
the second word is $b_{1,14} b_{1,15} \cdots b_{1,32} b_{2,1}$, and so on. The bitstream test counts the number of missing 20 -letter (20-bit) words in a string of 2^{21} overlapping 20 -letter words. There are 2^{20} possible 20 letter words. For a truly random string of $2^{21}+19$ bits, the number of missing words j should be (very close to) normally distributed with mean 141,909 and standard deviation $\sigma=428$. Thus $(j-141909) / 428$ should be a standard normal variate $(z=(x-\mu) / \sigma)$ that leads to a uniform $[0,1) p$-value. The test in DIEHARD is repeated twenty times.

3.3.5 Overlapping-pairs-sparse-occupancy test (OPSO test)

In this test, 2-letter words are formed from an alphabet of 1024 letters. Each letter is determined by a designated string of consecutive 10 bits from a 32 bit random integer in the sequence to be tested. When we express the i-th 32 -bit random integer as $\left(b_{i, 1} b_{i, 2} \cdots b_{i, 32}\right)$ in the binary form, we can form 2-letter words with 2 last 10 bits;

$$
\begin{gathered}
\underbrace{b_{1,1} b_{1,2} \cdots b_{1,32}}_{32 \text {-bit integer }}, \underbrace{b_{2,1} b_{2,2} \cdots b_{2,32}}_{32 \text {-bit integer }}, \cdots \\
\Longrightarrow \underbrace{\overbrace{b_{1,13} b_{1,14} \cdots b_{1,32}}^{\text {word }} \underbrace{b_{2,13} b_{2,14} \cdots b_{2,32}}_{1 \text { letter }}}_{1 \text { letter }}, \underbrace{\overbrace{2,13} b_{2,14} \cdots b_{2,32}}_{1 \text { letter }} \underbrace{1 \text { word }}_{1 \text { letter }}
\end{gathered}
$$

The test generates 2^{21} overlapping 2-letter words (from $2^{21}+1$ "keystrokes") and counts the number of missing words, that is, 2 -letter words which do not appear in the entire sequence. The number of missing words j should be very close to normally distributed with mean 141,909 , standard deviation $\sigma=290$. Thus $(j-141909) / 290$ should be a standard normal variate that provide a p-value.

The above process is repeated for the next designated 10 bits of 32 -bit random integers of the same sequence. In the next process, the following 2-letter words are used;

$$
\underbrace{\overbrace{b_{1,12} b_{1,13} \cdots b_{1,31}}^{1 \text { word }} \underbrace{b_{2,12} b_{2,13} \cdots b_{2,31}}_{1 \text { letter }}}_{1 \text { letter }}, \underbrace{l}_{\underbrace{\overbrace{2,12} b_{2,13} \cdots b_{2,31}}_{1 \text { letter }} \underbrace{1 \text { word }}_{1 \text { letter }} \underbrace{\text { wor }}_{3,12 b_{3,13} \cdots b_{3,31}}, \cdots . ~}
$$

The OPSO test in DIEHARD repeats the process 22 times with the designated 10 bits shifted left.

3.3.6 Overlapping-quadruples-sparse-occupancy test (OQSO test)

The OQSO test is similar to the OPSO test above. In this test, 4-letter words are formed from an alphabet of 32 letters. Each letter is determined by a designated string of 5 consecutive bits from a 32 -bit random integer in the sequence to be tested. Using the same expression for the i-th 32 -bit random integer as in the OPSO test, we can form 4-letter words with 2 last 5 bits;

The test generates 2^{21} overlapping 4-letter words (from $2^{21}+3$ "keystrokes") and counts the number of missing words, that is, 4 -letter words which do not appear in the entire sequence. The number of missing words j should be very close to normally distributed with mean 141909, standard deviation $\sigma=295$. Thus $(j-141909) / 295$ should be a standard normal variate that provide a p-value.

The above process is repeated for the next designated 5 bits of 32 -bit random integers of the same sequence. The OPSO test in DIEHARD repeats the process 28 times with the designated 10 bits shifted left.

3.3.7 DNA test

The DNA test is similar to the OPSO and OQSO tests above. In this test, 10 -letter words are formed from an alphabet of 4 letters. Each letter is determined by a designated string of 2 consecutive bits from a 32 -bit random integer in the sequence to be tested. Using the same expression for the i-th 32 -bit random integer as in the OPSO test, we can form 10-letter words with 2 last 2 bits;

$$
\overbrace{\underbrace{b_{1,31} b_{1,32}}_{1 \text { letter }} \underbrace{b_{2,31} b_{2,32}}_{1 \text { letter }} \cdots \underbrace{b_{10,31} b_{10,32}}_{1 \text { letter }}, \underbrace{\overbrace{2,31} b_{2,32}}_{1 \text { letter }} \underbrace{b_{3,31} b_{3,32}}_{1 \text { letter }} \cdots \underbrace{b_{11,31} b_{11,32}}_{1 \text { letter }}, \cdots .}^{1 \text { word }} \cdots
$$

The test generates 2^{21} overlapping 10 -letter words (from $2^{21}+9$ "keystrokes") and counts the number of missing words, that is, 10 -letter words which do not appear in the entire sequence. The number of missing words j should be very close to normally distributed with mean 141909, standard deviation $\sigma=399$. Thus $(j-141909) / 295$ should be a standard normal variate that provide a p-value.

The above process is repeated for the next designated 2 bits of 32 -bit random integers of the same sequence. The OPSO test in DIEHARD repeats the process 31 times with the designated 2 bits shifted left.

3.3.8 Count-the-1's test on a stream of bytes

This test is a kind of overlapping m-tuple tests. We consider a sequence of 32 -bit random integers as a stream of bytes (4 bytes per 32 bit integer).

32-bit integer

Each byte can contain from 0 to 8 1's, with probabilities 1,8,28,56,70,56,28,8,1 over 256. Now let the stream of bytes provide a string of overlapping 5 -letter words, each "letter" taking values A,B,C,D,E. The letters are determined by the number of 1's in a byte;

Number of 1's	Letter	Probability
$0,1,2$	A	37
3	B	56
4	C	70
5	D	56
$6,7,8$	E	37

There are 5^{5} possible 5 -letter words and the frequencies for each word are counted for a string of 2560000 overlapping 5 -letter words.

The quadratic form in the weak inverse of the covariance matrix of the cell counts has asymptotically a chi-square distribution. Instead, an alternative statistic $Q_{5}-Q_{4}$ is used to provide a p-value. Q_{5} and Q_{4} are the native Pearson's sums for the counts of 5 - and 4 - letter words, respectively, and
defined as follows;

$$
\begin{aligned}
Q_{5} & =\sum_{i, j, k, \ell, m} \frac{\left(w_{i, j, k, \ell, m}-\mu_{i, j, k, \ell, m}\right)^{2}}{\mu_{i, j, k, \ell, m}} \\
Q_{4} & =\sum_{i, j, k, \ell} \frac{\left(w_{i, j, k, \ell}-\mu_{i, j, k, \ell}\right)^{2}}{\mu_{i, j, k, \ell}}
\end{aligned}
$$

where w and μ are the observed and expected counts, respectively, and (i, j, k, ℓ, m) denotes a possible state (word). Then the statistic has asymptotically a chi-square distribution with $5^{5}-5^{4}$ degrees of freedom.

In DIEHARD, the above process is repeated twice and $2 p$-values are obtained.

3.3.9 Count-the-1's test for specific bytes

This test is similar to the count-the-1's test on a stream of bytes. Again, we consider a sequence of 32 -bit random integers as a stream of bytes. In this test, a specific byte in each integer is chosen to form a letter. For example, suppose the leftmost 8 bits in each integer are chosen, the following byte stream is obtained;

$$
\underbrace{b_{1,1} \cdots b_{1,8}}_{1 \text { byte }}, \underbrace{b_{2,1} \cdots b_{2,8}}_{1 \text { byte }}, \underbrace{b_{3,1} \cdots b_{3,8}}_{1 \text { byte }}, \underbrace{b_{4,1} \cdots b_{4,8}}_{1 \text { byte }}, \underbrace{b_{5,1} \cdots b_{5,8}}_{1 \text { byte }}, \cdots .
$$

¿From the stream, 256000 overlapping 5 -letter words are formed and a test statistic to provide a p-value is calculated in the same way as the count-the1's test on a stream of bytes.

Next, the process is performed for another byte stream comprised of a next specific byte in each integer,

$$
\underbrace{b_{1,2} \cdots b_{1,9}}_{1 \text { byte }}, \underbrace{b_{2,2} \cdots b_{2,9}}_{1 \text { byte }}, \underbrace{b_{3,2} \cdots b_{3,9}}_{1 \text { byte }}, \underbrace{b_{4,2} \cdots b_{4,9}}_{1 \text { byte }}, \underbrace{b_{5,2} \cdots b_{5,9}}_{1 \text { byte }}, \cdots .
$$

The process is repeated 25 times and thus all possible successive bytes in each integer are considered.

3.3.10 Parking lot test

We consider parking cars randomly in a square of side 100. Each car occupies space of a circle of radius 1 there ${ }^{1}$. When cars are parked repeatedly, an

[^0]attempt to park a car may cause a crash with one already parked. Then the attempt is tried again at a new random location. Each attempt leads to either a crash or a success. If a car is successfully parked, the position of the car is added to the list of cars already parked. The number of cars successfully parked k is counted for a large number of attempts and a p-value is provided from the distribution determined by simulation.

This test in DIEHARD is performed for 12000 attempts. Simulation shows that k should have a very close normal distribution with mean 3523 and standard deviation 21.9 for those attempts. Thus $(k-3523) / 21.9$ should be a standard normal variable that provides a p-value. This process is repeated 10 times and a K-S test is applied to a sample of $10 p$-values.

3.3.11 Minimum distance test

In this test, $n=8000$ random points in a square of side 10000 are chosen and the minimum distance d between the $\left(n^{2}-n\right) / 2$ pairs of the points is scored. If the points are truly independent and uniform, the square of the minimum distance d^{2} should be (very close to) exponentially distributed with mean 0.995 . Thus $1-\exp \left(-d^{2} / 0.995\right)$ should be uniform on $[0,1)$. This process is repeated 100 times. A K-S test on the resulting 100 values serves as a test of uniformity for random points in the square and yields a p-value.

3.3.12 3-D spheres test

In this test, 4000 random points are chosen in a cube of edge 1000. At each point, a sphere is centered large enough to reach the next closest point. Then the volume of the smallest such sphere is (very close to) exponentially distributed with mean $120 \pi / 3$. Thus the radius cubed r^{3} is exponential with mean 30.0 (The mean is obtained by extensive simulation). The 3D spheres test in DIEHARD generates 4000 such spheres 20 times. Each minimum radius cubed leads to a uniform variable by means of $1-\exp \left(-r^{3} / 30.0\right)$, then a K-S test is performed on the 20 p-values.

3.3.13 Squeeze test

This test uses real-valued random numbers uniformly distributed on $[0,1)$. The random numbers are generated from a sequence of 32 -bit random integers as follows;

$$
U_{i}=I_{i} / 2^{32}
$$

An initial number $k_{0}=2^{31}=2147483647$ is multiplied by a random number and then the next number k_{1} is obtained with the following equation;

$$
k_{i}=\left\lceil k_{i-1} U\right\rceil \text {, }
$$

where $\lceil x\rceil$ is the ceiling of x, that is, the least integer such that $\min _{k \geq x} k$. The reduction is repeated until k_{j} is 1 and j is the number of iterations necessary to reduce k to 1 . In DIEHARD, $100000 j$'s are found and then the number of times that j is $\leq 6,7, \cdots, 47, \geq 48$ is counted. A chi-square test is applied to the counts to provide a p-value.

3.3.14 Overlapping sums test

This test also uses real-valued random numbers uniformly distributed on $[0,1)$ and the numbers are obtained in the same way as the squeeze test. Suppose we get a sequence of the random numbers,

$$
U_{1}, U_{2}, \cdots,
$$

then we can form overlapping sums of 100 random numbers;

$$
S_{1}=U_{1}+\cdots+U_{100}, S_{2}=U_{2}+\cdots+U_{101}, \cdots
$$

The S 's are virtually normal with a certain covariance matrix. A linear transformation of the S 's yields a sequence of independent standard normals, which are converted to uniform variables for a K-S test. This process is repeated 100 times and $100 p$-values are obtained. Another K-S test is performed on the $100 p$-values to provide a final p-value. Furthermore, the above process is repeated 10 times in DIEHARD.

3.3.15 Runs test

This is basically the same as the runs-up test in the standard test suite but this test in DIEHARD includes the runs-down test. The test counts runsup and runs-down in a sequence of real-valued random numbers uniformly distributed on $[0,1)$. The numbers are obtained from 32-bit integers in the same way as the squeeze test.

The covariance matrices for the runs-up and runs-down are well known, leading to chi-square tests for quadratic forms in the weak inverses of the covariance matrices. The runs are counted for sequences of length 10,000 and this is repeated 10 times to yield a p-value. Furthermore, this process is repeated twice.

3.3.16 Craps test

This test simulates the game of craps where a player always makes a "passline" bet. The craps game is based on the rolls of 2 dice. For the first throw of the dice ("come-out roll"), the player wins the pass-line bet if the come-out roll is either a 7 or 11. The player loses the pass-line bet if the come-out roll is a 2,3 or 12 (Craps). If the come-out roll is any other than the above (4 , $5,6,8,9,10$), the roll is set to a "point" and the game continues. For the second throw or later, the player wins if the point appears again before a 7 is rolled. The player loses if a 7 is rolled before the point appears again.

Each 32-bit random integer I provides the value for the throw of a die with $\left(I / 2^{32}\right) \times 6+1$. The test in DIEHARD plays 200000 games of craps and counts the number of wins and the number of throws necessary to end each game. The number of wins j should be (very close to) a normal with mean $\mu=200000 p$ and variance $\sigma^{2}=200000 p(1-p)$ with $p=244 / 495$. Thus $(j-\mu) / \sigma$ should be a standard normal variate that yields a p-value.

The number of throws necessary to complete the game can vary from 1 to infinity, but counts for all larger than 21 are lumped with 21 . A chi-square test is performed on the counts for the number of throws to provide a p-value.

4 Test Results

4.1 Results for the spectral test

In order to perform the spectral test, we employed an algorithm proposed by Hopkins [8]. We transformed a provided source code written in Fortran 66 into a script bc that is an arbitrary precision numeric processing language supported by Free Software Foundation [14]. With the bc script, we obtained the measures $\mu_{t}(m, g), S_{t}(m, g)$ and $M_{T}(m, g)$.

At first, we obtained the measures for $\operatorname{LCG}\left(69069,0,2^{32}\right)$ and $\operatorname{LCG}(69069$, $1,2^{32}$) to verify that the transformed script works correctly. These RNGs are proposed by Marsaglia [15] and the values of $\mu_{t}(m, g)$ and $S_{t}(m, g)$ are listed in literatures [3, p. 107] and [16, p. 616]. Tables 2 and 3 show the results of the spectral test for the above LCGs. Our results are in very good agreement with Fishman's and Knuth's ones. Therefore, it has been verified that the transformed script gives correct values.

Table 2: Results of the spectral test for $\operatorname{LCG}\left(69069,0,2^{32}\right)$

	Our results		Fishman[16, p. 616]
Dimension (t)	$\mu_{t}\left(69069,0,2^{32}\right)$	$S_{t}\left(69069,0,2^{32}\right)$	$S_{t}\left(69069,0,2^{32}\right)$
2	0.7759	0.4625	0.4625
3	0.1819	0.3131	0.3131
4	0.4312	0.4572	0.4572
5	0.7694	0.5529	0.5529
6	0.0682	0.3767	0.3767

Table 3: Results of the spectral test for $\operatorname{LCG}\left(69069,1,2^{32}\right)$

	Our results		Knuth[3, p. 107]
Dimension (t)	$\mu_{t}\left(69069,1,2^{32}\right)$	$S_{t}\left(69069,1,2^{32}\right)$	$\mu_{t}\left(69069,1,2^{32}\right)$
2	3.1037	0.9250	3.10
3	2.9099	0.7890	2.91
4	3.2036	0.7548	3.20
5	5.0065	0.8042	5.01
6	0.0171	0.2990	0.02

Table 4 shows the results of the spectral test for the current MCNP RNG and LCGs proposed as new MCNP RNGs. The μ_{t} values less than 0.1 are bold-faced. According to Knuth's criterion, the MCNP RNG pass the spectral test but the extended LCGs (LCG $2 \sim 7$) fail. This indicates that simple extension from the original MCNP RNG to 63-LCGs are not good.

On the other hand, other 63 -bit LCGs proposed by L'Ecuyer, of course, pass the test with excellent μ_{t} or S_{t} values because their multipliers are chosen based on this test. Our M_{8} values coincide with the values in L'Ecuyer's paper [2]. It also ensures that our program calculates correct results of the spectral test.

Table 4: Results of the spectral test for LCGs proposed as new MCNP RNGs

Dimension (t)	2	3	4	5	6	7	8
LCG($\left.5^{19}, 0,2^{48}\right)$							
μ_{t}	3.0233	0.1970	1.8870	0.9483	1.8597	0.8802	1.2931
S_{t}	0.9129	0.3216	0.6613	0.5765	0.6535	0.5844	0.6129
$\operatorname{LCG}\left(5^{19}, 0,2^{63}\right)$							
μ_{t}	1.7321	2.1068	2.7781	1.4379	0.0825	2.0043	5.9276
S_{t}	0.6910	0.7085	0.7284	0.6266	0.3888	0.6573	0.7414
$\operatorname{LCG}\left(5^{23}, 0,2^{63}\right)$							
μ_{t}	0.0028	1.9145	2.4655	5.4858	0.3327	0.2895	6.6286
S_{t}	0.0280	0.6863	0.7070	0.8190	0.4906	0.4986	0.7518
$\operatorname{LCG}\left(5^{25}, 0,2^{63}\right)$							
μ_{t}	0.3206	1.8083	0.0450	3.0128	0.3270	3.1053	0.4400
S_{t}	0.2973	0.6733	0.2598	0.7265	0.4892	0.6998	0.5356
$\operatorname{LCG}\left(5^{19}, 1,2^{63}\right)$							
μ_{t}	1.7321	2.9253	2.4193	0.3595	0.0206	0.5011	1.6439
S_{t}	0.6910	0.7904	0.7036	0.4749	0.3086	0.5392	0.6316
$\operatorname{LCG}\left(5^{23}, 1,2^{63}\right)$							
μ_{t}	0.0007	2.8511	2.5256	3.1271	4.5931	1.8131	4.2919
S_{t}	0.0140	0.7837	0.7112	0.7319	0.7598	0.6480	0.7121
$\operatorname{LCG}\left(5^{25}, 1,2^{63}\right)$							
μ_{t}	0.0801	3.4624	1.3077	1.0853	1.4452	0.7763	1.3524
S_{t}	0.1486	0.8361	0.6033	0.5923	0.6266	0.5740	0.6163
LCG(3512401965023503517, $0,2^{63}$)							
μ_{t}	2.9062	2.9016	3.1105	4.0325	5.3992	6.7498	7.2874
S_{t}	0.8951	0.7883	0.7493	0.7701	0.7806	0.7818	0.7608
LCG(2444805353187672469, 0, ${ }^{63}$)							
μ_{t}	2.2588	2.4430	6.4021	2.9364	3.0414	5.4274	4.6180
S_{t}	0.7891	0.7443	0.8974	0.7228	0.7094	0.7579	0.7186
LCG(1987591058829310733, 0, ${ }^{63}$)							
μ_{t}	2.4898	3.4724	1.7071	2.5687	2.1243	2.0222	4.1014
S_{t}	0.8285	0.8369	0.6449	0.7037	0.6682	0.6582	0.7080
LCG(9219741426499971445, 1, ${ }^{63}$)							
μ_{t}	2.8509	2.8046	3.5726	3.8380	3.8295	6.4241	6.8114
S_{t}	0.8865	0.7794	0.7757	0.7625	0.7371	0.7763	0.7544
LCG(2806196910506780709, 1, 2^{63})							
μ_{t}	1.9599	4.0204	4.4591	3.1152	3.0728	3.0111	3.7947
S_{t}	0.7350	0.8788	0.8199	0.7314	0.7106	0.6967	0.7012
LCG(3249286849523012805, 1, ${ }^{63}$)							
μ_{t}	2.4594	2.4281	3.7081	2.8333	3.7633	3.0844	1.9471
S_{t}	0.8234	0.7428	0.7829	0.7176	0.7350	0.6991	0.6451

4.2 Results for standard test suite

All tests calculate the values of a test statistic and they are evaluated with chi-square or K-S goodness-of-fit tests. As described in Section 3.2, all the standard tests except for the collision test in SPRNG includes two steps; the first step is a chi-square or K-S test for subsequences and the second step is a K-S test for the resultant percentiles in the first step. This procedure is called a second-order test [18] or a two-level test [19] and may tend to detect both local and global nonrandomness of a random number sequence [3, p. 52]. The collision test in SPRNG is a first-order or single-level test.

The goodness-of-fit test yields a p-value defined by

$$
\begin{equation*}
p=F(t)=\operatorname{Pr}(T<t) \tag{21}
\end{equation*}
$$

where $F(t)$ is a distribution function for a value t of a test statistic T and T is a random variable. The p-value means that a test statistic is less than t with probability p. For the chi-square and K-S tests, $F(t)$ is the chi-square distribution and a distribution derived by Birnbaum [20], respectively. The approximated form of the distribution is often used for the K-S test [21] and the SPRNG test routines use this form.

RNGs are evaluated by the p-value. A RNG fails a test if a p-value of the test is close to 0 or 1 . Otherwise, the RNG passes the test. The most difficult problem for the evaluation is to determine a significance level. The level is usually 0.05 or 0.01 which is based on experiences. In this work, we set the significance level to 0.01 and perform each test 3 times for disjoint random number sequences. We consider that a RNG fails only if all $3 p$-values are less than $0.01(1 \%)$ or larger than $0.99(99 \%)$.

One requires some parameters for the standard tests since the default values are not provided for them in SPRNG. We have chosen them from papers where some parameters are listed. The parameters used are L'Ecuyer's[13] and Vattulainen's set[22] listed in Table 5 and 6, respectively.

Using these parameters, we performed the standard tests for all 13 RNGs in the new MCNP random package. Each test was repeated 3 times for 3 disjoint random number sequences. To ensure the sequences are disjoint, an initial seed for each sequence is set to the final value of the previous sequence. Namely, we used 3 consecutive sequences.

Tables $7 \sim 19$ show the results of the standard tests for 13 RNGs. Suspicious p-values that are less than $0.01(1 \%)$ or larger than $0.99(99 \%)$ are
bold-faced. All the RNGs pass all the tests for L'Ecuyer's and Vattulainen's test suites.

Table 5: Parameters for L'Ecuyer's test suite

Standard tests	Parameters	Test ID
Equidistribution	$N=10^{4}, n=10^{3}, d=64$	LEC01
	$N=10^{4}, n=10^{4}, d=256$	LEC02
	$N=10^{3}, n=10^{5}, d=64$	LEC03
Gap	$N=10^{3}, n=10^{4}, a=0.0, b=0.05, t=15$	LEC04
	$N=10^{3}, n=10^{4}, a=0.95, b=1.0, t=15$	LEC05
	$N=10^{3}, n=10^{4}, a=1 / 3, b=2 / 3, t=10$	LEC06
	$N=10^{3}, n=10^{4}, k=4, d=4$	LEC07
	$N=10^{3}, n=10^{4}, k=6, d=8$	LEC08
	$N=10^{3}, n=10^{4}, k=8, d=16$	LEC09
Coupon	$N=10^{3}, n=10^{4}, d=5, t=25$	LEC10
Permutation	$N=10^{3}, n=10^{4}, t=3$	LEC11
	$N=10^{3}, n=10^{4}, t=5$	LEC12
Runs-up	$N=10^{3}, n=10^{5}, t=6^{*}$	LEC13
Maximum of t	$N=10^{3}, n=10^{4}, t=8$	LEC15
Collision	$N=10^{2}, n=2 \times 10^{4}, \log m d=6, \log d=3$	LEC16
	$N=10^{2}, n=2 \times 10^{4}, \log m d=10, \log d=2$	LE $20, \log d=1$
	$N=10^{2}, n=2 \times 10^{4}, \log m d=20, \operatorname{LEC17}$	

N is the number of times the test was repeated for the (secondlevel) K-S test. n is the length of the random number sequence. Other parameters are described in Section 3.2.
*) t is not listed in the paper[13], so it is set to the same value as Vattulainen's value for the runs-up test.

Table 6: Parameters for Vattulainen's test suite

Standard tests	Parameters	Test ID
Equidistribution	$N=10^{4}, n=10^{4}, d=128$	VAT01
	$N=10^{4}, n=10^{5}, d=256$	VAT02
Serial	$N=10^{3}, n=10^{5}, d=100$	VAT03
Gap	$N=10^{3}, n=2.5 \times 10^{4}, a=0.0, b=0.05, t=$ 30	VAT04
	$\begin{aligned} & N=10^{3}, n=2.5 \times 10^{4}, a=0.45, b= \\ & 0.55, t=30 \end{aligned}$	VAT05
	$\begin{aligned} & N=10^{3}, n=2.5 \times 10^{4}, a=0.95, b=1.0, t= \\ & 30 \end{aligned}$	VAT06
Runs-up*	$N=10^{3}, n=10^{5}, t=6$	VAT07
Maximum of t	$N=10^{3}, n=2 \times 10^{3}, t=5$	VAT08
	$N=10^{3}, n=2 \times 10^{3}, t=3$	VAT08
Collision	$N=10^{3}, n=2^{14}, \log m d=2, \log d=10$	VAT10
	$N=10^{3}, n=2^{14}, \log m d=4, \log d=5$	VAT11
	$N=10^{3}, n=2^{14}, \log m d=10, \log d=2$	VAT12

N is the number of times the test was repeated for the (secondlevel) K-S test. n is the length of the random number sequence. Other parameters are described in Section 3.2.
*) Same as L'Ecuyer's runs-up test.

Table 7: Results of L'Ecuyer's and Vattulainen's test suites for $\operatorname{LCG}\left(5^{19}, 0,2^{48}\right)$

Standard tests	Test ID	p-value (\%)		
		Run 1	Run 2	Run 3
L'Ecuyer's test suite				
Equidistribution	LEC01	49.94	75.04	99.38
	LEC02	54.36	84.90	40.75
Serial	LEC03	90.24	80.66	38.01
Gap	LEC04	56.79	61.72	18.74
	LEC05	49.91	2.09	24.06
	LEC06	89.51	65.11	87.18
Poker	LEC07	59.01	21.28	38.66
	LEC08	7.51	95.66	26.90
	LEC09	11.25	92.17	85.69
Coupon	LEC10	40.25	97.48	28.11
Permutation	LEC11	22.26	52.56	54.19
	LEC12	67.54	66.14	61.76
Runs-up	LEC13	49.87	39.21	92.83
Maximum of t	LEC14	52.26	37.63	87.46
Collision	LEC15	95.61	61.32	96.24
	LEC16	8.00	95.67	93.13
	LEC17	9.33	72.21	73.29
Vattulainen's test suite				
Equidistribution	VAT01	64.71	16.00	69.64
	VAT02	42.17	43.39	48.46
Serial	VAT03	31.45	93.43	88.68
Gap	VAT04	1.43	27.75	78.76
	VAT05	55.15	83.40	34.84
	VAT06	11.12	45.22	1.45
Runs-up	VAT07	49.87	39.21	92.83
Maximum of t	VAT08	39.03	66.30	41.71
	VAT09	81.50	46.55	77.76
Collision	VAT10	49.21	21.66	78.34
	VAT11	27.68	63.79	11.94
	VAT12	90.80	48.09	51.65

Table 8: Results of L'Ecuyer's and Vattulainen's test suites for $\operatorname{LCG}\left(5^{19}, 0,2^{63}\right)$

Standard tests	Test ID	p-value (\%)		
		Run 1	Run 2	Run 3
L'Ecuyer's test suite				
Equidistribution	LEC01	95.61	49.15	43.86
	LEC02	7.68	50.20	74.52
Serial	LEC03	18.03	97.98	11.65
Gap	LEC04	37.73	71.36	79.00
	LEC05	68.33	30.14	45.35
	LEC06	45.81	48.95	91.66
Poker	LEC07	60.72	28.14	30.19
	LEC08	33.67	69.57	96.30
	LEC09	57.81	81.96	7.30
Coupon	LEC10	58.37	99.64	40.32
Permutation	LEC11	91.65	52.83	67.19
	LEC12	1.24	49.35	14.86
Runs-up	LEC13	61.42	11.97	85.93
Maximum of t	LEC14	32.73	89.29	94.39
Collision	LEC15	12.57	27.34	29.43
	LEC16	92.09	54.02	51.15
	LEC17	91.57	16.30	36.57
Vattulainen's test suite				
Equidistribution	VAT01	26.06	4.13	94.13
	VAT02	49.22	28.22	83.85
Serial	VAT03	83.31	36.07	90.10
Gap	VAT04	70.22	82.45	49.52
	VAT05	88.86	69.45	47.13
	VAT06	59.50	8.70	36.74
Runs-up	VAT07	61.42	11.97	85.93
Maximum of t	VAT08	47.35	0.11	34.25
	VAT09	80.81	10.19	10.96
Collision	VAT10	9.48	90.53	36.32
	VAT11	18.96	24.84	13.26
	VAT12	78.94	87.87	14.92

Table 9: Results of L'Ecuyer's and Vattulainen's test suites for $\operatorname{LCG}\left(5^{23}, 0,2^{63}\right)$

Standard tests	Test ID	p-value (\%)		
		Run 1	Run 2	Run 3
L'Ecuyer's test suite				
Equidistribution	LEC01	26.96	90.63	82.37
	LEC02	24.63	87.94	99.31
Serial	LEC03	22.01	71.44	32.92
Gap	LEC04	89.94	19.32	6.98
	LEC05	97.79	89.05	14.95
	LEC06	90.78	31.90	14.66
Poker	LEC07	43.79	13.93	14.15
	LEC08	81.53	4.70	77.55
	LEC09	73.58	67.87	54.33
Coupon	LEC10	98.91	97.38	47.62
Permutation	LEC11	10.24	27.34	14.11
	LEC12	78.32	81.47	95.96
Runs-up	LEC13	44.39	18.39	66.05
Maximum of t	LEC14	73.77	59.14	16.98
Collision	LEC15	35.46	43.76	67.37
	LEC16	8.83	50.78	24.68
	LEC17	25.52	61.10	72.94
Vattulainen's test suite				
Equidistribution	VAT01	23.04	68.04	99.31
	VAT02	19.89	74.40	32.44
Serial	VAT03	95.96	66.15	49.78
Gap	VAT04	60.42	77.52	56.76
	VAT05	14.99	53.08	5.36
	VAT06	70.86	11.22	3.68
Runs-up	VAT07	44.39	18.39	66.05
Maximum of t	VAT08	18.46	78.19	59.45
	VAT09	46.39	17.90	40.59
Collision	VAT10	72.54	64.95	23.75
	VAT11	8.24	11.02	2.43
	VAT12	72.51	66.78	50.87

Table 10: Results of L'Ecuyer's and Vattulainen's test suites for $\operatorname{LCG}\left(5^{25}, 0,2^{63}\right)$

Standard tests	Test ID	p-value (\%)		
		Run 1	Run 2	Run 3
L'Ecuyer's test suite				
Equidistribution	LEC01	79.90	93.18	91.06
	LEC02	45.11	95.23	47.81
Serial	LEC03	67.51	41.70	47.44
Gap	LEC04	79.52	99.50	35.82
	LEC05	60.67	39.82	17.22
	LEC06	81.25	35.42	79.54
Poker	LEC07	92.15	22.99	41.65
	LEC08	59.97	76.01	85.39
	LEC09	37.14	71.88	56.06
Coupon	LEC10	3.35	25.23	30.14
Permutation	LEC11	94.35	15.26	53.83
	LEC12	23.50	21.08	58.38
Runs-up	LEC13	47.01	72.52	71.53
Maximum of t	LEC14	41.59	23.38	69.78
Collision	LEC15	96.42	8.60	3.49
	LEC16	75.87	47.61	93.83
	LEC17	55.07	62.55	89.67
Vattulainen's test suite				
Equidistribution	VAT01	50.55	80.78	70.03
	VAT02	70.72	88.85	17.46
Serial	VAT03	83.63	54.71	72.20
Gap	VAT04	46.24	64.44	46.54
	VAT05	39.12	54.10	74.76
	VAT06	18.02	6.66	19.82
Runs-up	VAT07	47.01	72.52	71.53
Maximum of t	VAT08	37.92	54.86	24.81
	VAT09	9.19	16.34	2.86
Collision	VAT10	65.12	79.31	54.81
	VAT11	34.12	42.18	89.77
	VAT12	76.90	27.58	23.83

Table 11: Results of L'Ecuyer's and Vattulainen's test suites for $\operatorname{LCG}\left(5^{19}, 1,2^{63}\right)$

Standard tests	Test ID	p-value (\%)		
		Run 1	Run 2	Run 3
L'Ecuyer's test suite				
Equidistribution	LEC01	37.75	98.47	97.25
	LEC02	2.20	15.85	9.76
Serial	LEC03	85.94	77.91	34.27
Gap	LEC04	74.35	40.43	23.34
	LEC05	65.00	3.31	94.58
	LEC06	10.57	4.85	36.63
Poker	LEC07	15.82	10.03	76.45
	LEC08	32.75	34.97	9.39
	LEC09	2.26	90.75	81.20
Coupon	LEC10	34.13	28.71	64.86
Permutation	LEC11	75.58	93.36	90.57
	LEC12	83.84	38.55	92.90
Runs-up	LEC13	85.70	64.07	75.10
Maximum of t	LEC14	63.92	70.40	34.82
Collision	LEC15	18.13	77.26	26.97
	LEC16	65.52	11.54	12.91
	LEC17	16.14	33.95	50.35
Vattulainen's test suite				
Equidistribution	VAT01	42.92	98.81	48.52
	VAT02	30.77	29.72	88.60
Serial	VAT03	98.25	69.72	0.83
Gap	VAT04	59.80	57.33	50.33
	VAT05	53.91	61.56	63.91
	VAT06	37.34	81.74	40.55
Runs-up	VAT07	85.70	64.07	75.10
Maximum of t	VAT08	30.25	80.76	27.23
	VAT09	47.69	7.43	59.61
Collision	VAT10	5.95	75.31	72.28
	VAT11	83.64	84.87	7.94
	VAT12	54.09	58.00	8.29

Table 12: Results of L'Ecuyer's and Vattulainen's test suites for $\operatorname{LCG}\left(5^{23}, 1,2^{63}\right)$

Standard tests	Test ID	p-value (\%)		
		Run 1	Run 2	Run 3
L'Ecuyer's test suite				
Equidistribution	LEC01	33.78	95.14	89.04
	LEC02	76.59	44.33	86.22
Serial	LEC03	77.63	10.18	34.20
Gap	LEC04	36.10	77.62	87.70
	LEC05	31.16	29.40	48.42
	LEC06	90.97	27.42	49.18
Poker	LEC07	62.23	40.58	72.69
	LEC08	64.77	89.30	11.11
	LEC09	72.97	75.33	87.47
Coupon	LEC10	23.73	65.07	88.32
Permutation	LEC11	68.21	32.47	21.60
	LEC12	86.50	88.58	92.04
Runs-up	LEC13	17.84	6.17	68.51
Maximum of t	LEC14	14.21	95.66	68.62
Collision	LEC15	2.82	19.73	98.52
	LEC16	71.06	31.75	52.53
	LEC17	83.93	27.00	64.96
Vattulainen's test suite				
Equidistribution	VAT01	41.97	72.84	35.51
	VAT02	82.31	37.91	41.86
Serial	VAT03	86.87	11.50	87.55
Gap	VAT04	43.40	93.39	19.63
	VAT05	87.92	53.51	65.02
	VAT06	65.55	42.36	0.99
Runs-up	VAT07	17.84	6.17	68.51
Maximum of t	VAT08	0.71	1.67	12.30
	VAT09	23.83	80.75	63.27
Collision	VAT10	61.06	89.98	68.18
	VAT11	45.48	47.67	9.98
	VAT12	11.58	22.94	97.77

Table 13: Results of L'Ecuyer's and Vattulainen's test suites for $\operatorname{LCG}\left(5^{25}, 1,2^{63}\right)$

Standard tests	Test ID	p-value (\%)		
		Run 1	Run 2	Run 3
L'Ecuyer's test suite				
Equidistribution	LEC01	99.69	62.21	92.75
	LEC02	9.07	54.40	51.48
Serial	LEC03	37.41	44.02	85.73
Gap	LEC04	34.00	80.48	0.76
	LEC05	53.83	21.94	55.44
	LEC06	20.15	81.59	24.71
Poker	LEC07	55.38	7.63	11.06
	LEC08	40.00	15.39	4.67
	LEC09	54.16	7.28	54.47
Coupon	LEC10	52.43	30.01	29.40
Permutation	LEC11	47.82	62.82	38.59
	LEC12	69.91	5.07	95.52
Runs-up	LEC13	35.05	83.26	8.75
Maximum of t	LEC14	82.23	58.21	40.34
Collision	LEC15	97.12	95.28	20.24
	LEC16	29.03	42.35	7.94
	LEC17	21.37	34.13	25.30
Vattulainen's test suite				
Equidistribution	VAT01	18.14	88.64	48.88
	VAT02	3.61	62.97	81.79
Serial	VAT03	35.25	31.10	95.36
Gap	VAT04	73.46	3.09	59.98
	VAT05	60.76	62.98	80.49
	VAT06	79.11	97.23	30.52
Runs-up	VAT07	35.05	83.26	8.75
Maximum of t	VAT08	45.03	46.19	60.64
	VAT09	50.68	0.55	64.95
Collision	VAT10	41.02	62.24	75.09
	VAT11	36.51	78.98	84.25
	VAT12	51.07	18.92	40.06

Table 14: Results of L'Ecuyer's and Vattulainen's test suites for LCG(3512401965023503517, 0, 2^{63})

Standard tests	Test ID	p-value (\%)		
		Run 1	Run 2	Run 3
L'Ecuyer's test suite				
Equidistribution	LEC01	78.94	95.74	77.90
	LEC02	78.81	24.96	47.98
Serial	LEC03	3.97	10.42	92.03
Gap	LEC04	7.11	69.07	93.96
	LEC05	57.08	77.35	59.15
	LEC06	35.98	53.18	10.07
Poker	LEC07	84.66	19.67	41.14
	LEC08	62.51	23.18	71.31
	LEC09	73.33	7.01	76.54
Coupon	LEC10	38.70	6.32	49.40
Permutation	LEC11	31.19	58.89	99.06
	LEC12	53.44	83.87	71.22
Runs-up	LEC13	41.22	10.90	59.35
Maximum of t	LEC14	50.85	20.80	10.02
Collision	LEC15	29.85	28.54	17.82
	LEC16	27.34	12.05	80.14
	LEC17	65.85	76.39	2.44
Vattulainen's test suite				
Equidistribution	VAT01	44.03	60.90	63.39
	VAT02	51.33	86.86	14.12
Serial	VAT03	37.72	91.31	63.58
Gap	VAT04	58.42	4.11	44.37
	VAT05	43.06	35.81	78.08
	VAT06	92.01	67.67	80.22
Runs-up	VAT07	41.22	10.90	59.35
Maximum of t	VAT08	92.83	41.62	54.79
	VAT09	43.62	6.01	95.66
Collision	VAT10	46.00	68.38	56.47
	VAT11	70.06	65.61	40.86
	VAT12	86.35	34.77	48.93

Table 15: Results of L'Ecuyer's and Vattulainen's test suites for LCG(2444805353187672469, 0, 2^{63})

Standard tests	Test ID	p-value (\%)		
		Run 1	Run 2	Run 3
L'Ecuyer's test suite				
Equidistribution	LEC01	95.14	79.03	71.62
	LEC02	76.57	37.08	10.07
Serial	LEC03	80.74	85.03	89.33
Gap	LEC04	14.41	60.21	8.88
	LEC05	7.49	46.79	2.62
	LEC06	59.45	28.83	28.25
Poker	LEC07	2.92	66.94	61.14
	LEC08	67.24	25.50	28.00
	LEC09	2.00	8.47	32.35
Coupon	LEC10	17.68	8.84	9.87
Permutation	LEC11	53.91	88.51	47.69
	LEC12	37.03	14.60	49.62
Runs-up	LEC13	81.47	26.66	24.05
Maximum of t	LEC14	84.26	0.89	10.17
Collision	LEC15	32.26	71.71	4.81
	LEC16	22.48	91.85	13.00
	LEC17	58.05	69.64	55.21
Vattulainen's test suite				
Equidistribution	VAT01	68.47	18.68	9.81
	VAT02	43.67	91.88	80.48
Serial	VAT03	54.33	78.96	69.55
Gap	VAT04	75.15	15.01	36.87
	VAT05	52.24	49.39	83.96
	VAT06	24.72	83.97	91.25
Runs-up	VAT07	81.47	26.66	24.05
Maximum of t	VAT08	60.06	35.55	12.10
	VAT09	40.52	32.16	34.65
Collision	VAT10	9.84	4.69	69.31
	VAT11	15.13	95.90	15.43
	VAT12	66.96	12.66	49.03

Table 16: Results of L'Ecuyer's and Vattulainen's test suites for LCG(1987591058829310733, 0, 2^{63})

Standard tests	Test ID	p-value (\%)		
		Run 1	Run 2	Run 3
L'Ecuyer's test suite				
Equidistribution	LEC01	93.63	98.18	83.34
	LEC02	44.22	32.07	64.11
Serial	LEC03	16.66	1.69	87.15
Gap	LEC04	30.77	52.82	92.52
	LEC05	56.67	85.33	74.06
	LEC06	31.34	99.14	95.24
Poker	LEC07	85.58	48.08	61.77
	LEC08	71.88	74.70	18.28
	LEC09	20.95	9.82	95.10
Coupon	LEC10	52.27	29.82	30.59
Permutation	LEC11	55.43	36.28	71.81
	LEC12	44.47	52.15	0.81
Runs-up	LEC13	68.33	38.44	49.67
Maximum of t	LEC14	6.50	58.20	10.07
Collision	LEC15	58.59	7.98	13.35
	LEC16	52.59	61.64	39.02
	LEC17	81.87	32.24	35.01
Vattulainen's test suite				
Equidistribution	VAT01	7.50	11.49	63.39
	VAT02	53.28	83.74	16.81
Serial	VAT03	95.53	13.08	49.88
Gap	VAT04	33.58	2.35	23.19
	VAT05	36.62	34.77	6.54
	VAT06	98.46	73.44	72.81
Runs-up	VAT07	68.33	38.44	49.67
Maximum of t	VAT08	0.01	2.42	94.93
	VAT09	33.16	59.16	0.12
Collision	VAT10	82.80	73.07	65.38
	VAT11	5.03	94.98	79.47
	VAT12	75.33	17.44	87.06

Table 17: Results of L'Ecuyer's and Vattulainen's test suites for LCG(9219741426499971445, 1, 2^{63})

Standard tests	Test ID	p-value (\%)		
		Run 1	Run 2	Run 3
L'Ecuyer's test suite				
Equidistribution	LEC01	24.85	78.67	82.55
	LEC02	42.85	77.22	57.85
Serial	LEC03	55.38	20.50	11.79
Gap	LEC04	41.76	45.09	29.37
	LEC05	49.80	13.52	69.07
	LEC06	39.53	53.32	65.63
Poker	LEC07	39.73	82.36	83.06
	LEC08	52.00	56.05	2.84
	LEC09	15.92	62.70	92.91
Coupon	LEC10	19.51	74.37	80.85
Permutation	LEC11	54.63	19.24	61.58
	LEC12	71.54	88.22	41.67
Runs-up	LEC13	64.28	99.15	39.88
Maximum of t	LEC14	75.10	89.41	41.23
Collision	LEC15	91.19	72.12	39.08
	LEC16	19.48	33.83	10.69
	LEC17	12.28	19.34	6.48
Vattulainen's test suite				
Equidistribution	VAT01	80.62	19.91	0.41
	VAT02	43.21	29.23	18.75
Serial	VAT03	17.29	21.21	59.01
Gap	VAT04	60.03	85.39	27.12
	VAT05	64.68	8.28	85.92
	VAT06	93.09	12.58	94.04
Runs-up	VAT07	64.28	99.15	39.88
Maximum of t	VAT08	37.01	30.52	31.36
	VAT09	63.52	4.24	49.61
Collision	VAT10	57.44	47.03	95.07
	VAT11	48.85	29.73	10.39
	VAT12	46.97	69.50	99.29

Table 18: Results of L'Ecuyer's and Vattulainen's test suites for LCG(2806196910506780709, 1, 2^{63})

Standard tests	Test ID	p-value (\%)		
		Run 1	Run 2	Run 3
L'Ecuyer's test suite				
Equidistribution	LEC01	92.74	37.86	28.38
	LEC02	40.72	8.17	56.93
Serial	LEC03	48.22	35.65	75.22
Gap	LEC04	81.04	3.92	12.54
	LEC05	24.46	77.22	36.98
	LEC06	30.86	45.53	51.56
Poker	LEC07	36.62	55.66	30.83
	LEC08	57.21	13.14	57.31
	LEC09	88.24	27.36	47.30
Coupon	LEC10	63.57	42.29	53.57
Permutation	LEC11	19.77	39.29	10.97
	LEC12	40.55	14.81	63.13
Runs-up	LEC13	33.41	52.91	61.23
Maximum of t	LEC14	74.45	29.21	80.80
Collision	LEC15	49.50	46.01	58.10
	LEC16	44.14	39.92	35.97
	LEC17	86.57	92.78	61.75
Vattulainen's test suite				
Equidistribution	VAT01	26.54	88.15	32.03
	VAT02	21.19	17.63	35.18
Serial	VAT03	45.69	41.45	24.86
Gap	VAT04	90.31	63.12	96.85
	VAT05	68.31	93.39	67.05
	VAT06	13.00	77.51	92.42
Runs-up	VAT07	33.41	52.91	61.23
Maximum of t	VAT08	99.21	14.08	98.85
	VAT09	57.81	99.87	81.39
Collision	VAT10	89.60	17.25	92.17
	VAT11	95.37	82.78	55.54
	VAT12	51.07	95.45	53.47

Table 19: Results of L'Ecuyer's and Vattulainen's test suites for LCG(3249286849523012805, 1, 2^{63})

Standard tests	Test ID	p-value (\%)		
		Run 1	Run 2	Run 3
L'Ecuyer's test suite				
Equidistribution	LEC01	58.01	55.33	73.93
	LEC02	24.49	16.70	59.74
Serial	LEC03	15.71	66.87	16.38
Gap	LEC04	96.32	45.69	93.10
	LEC05	46.75	91.48	87.00
	LEC06	99.75	4.87	75.42
Poker	LEC07	35.74	36.17	27.53
	LEC08	43.87	2.44	81.31
	LEC09	95.64	22.13	58.70
Coupon	LEC10	29.65	39.55	40.70
Permutation	LEC11	20.87	88.72	66.01
	LEC12	56.71	94.88	55.82
Runs-up	LEC13	54.55	93.38	48.43
Maximum of t	LEC14	36.53	11.47	17.33
Collision	LEC15	2.75	40.92	63.38
	LEC16	76.24	71.87	96.60
	LEC17	56.34	87.44	99.23
Vattulainen's test suite				
Equidistribution	VAT01	15.14	47.45	0.93
	VAT02	69.21	25.57	36.92
Serial	VAT03	8.28	20.48	27.70
Gap	VAT04	63.31	94.24	88.31
	VAT05	31.39	22.10	49.37
	VAT06	13.01	46.26	43.77
Runs-up	VAT07	54.55	93.38	48.43
Maximum of t	VAT08	59.57	39.89	52.81
	VAT09	27.89	92.90	47.17
Collision	VAT10	14.14	94.70	98.35
	VAT11	44.42	7.91	73.09
	VAT12	65.50	6.63	16.15

We performed another standard tests with different parameters because the number of RNs tested with L'Ecuyer's and Vattulainen's ones is relatively small for 63 -bit LCGs; $1.0 \times 10^{7} \sim 2.0 \times 10^{8}$ for L'Ecuyer's, $6.0 \times 10^{6} \sim$ 1.0×10^{9} for Vattulainen's. The parameters are taken from Mascagni and Srinivasan's test suite [23]. Their tests were, however, performed for multiple RN sequences interleaved from different LCGs. Since we test a single RN sequence, we adjust the number of tested RNs so that it is about 1.0×10^{11}.

The standard tests with Mascagni and Srinivasan's parameters were performed basically only once for each LCGs because they require relatively long calculation time. Each test was repeated three times only when the first test was failed; the first p-value is less than $0.01(1 \%)$ or larger than $0.99(99 \%)$. Tables $20 \sim 32$ show the results of Mascagni and Srinivasan's the test suite. Some RNGs fail a test for the first subsequence but pass the test for the subsequent subsequences as shown in Table 33. Therefore, we consider that all the RNGs pass Mascagni and Srinivasan's test suite.

Table 20: Results of Mascagni and Srinivasan's test suite for $\operatorname{LCG}\left(5^{19}, 0,2^{48}\right)$

Standard tests	Parameters	p-value
Equidistribution	$N=5 \times 10^{3}, n=2 \times 10^{7}, d=10000$	1.84
Serial	$N=10^{3}, n=5 \times 10^{7}, d=100$	85.19
Gap	$N=10^{3}, n=10^{6}, a=0.50, b=0.51, t=200$	76.46
Poker	$N=10^{3}, n=10^{7}, k=10, d=10$	47.55
Coupon	$N=10^{3}, n=5 \times 10^{6}, d=10, t=39$	12.01
Permutation	$N=10^{3}, n=2 \times 10^{7}, t=5$	19.60
Runs-up	$N=10^{3}, n=5 \times 10^{7}, t=10$	94.70
Maximum of t	$N=10^{5}, n=5 \times 10^{4}, t=16$	54.21
Collision 1	$N=10^{5}, n=10^{5}, \log m d=10, \log d=3$	2.25
Collision 2	$N=10^{5}, n=2 \times 10^{5}, \log m d=4, \log d=5$	$\mathbf{9 9 . 3 9}$

N is the number of times the test was repeated for the (secondlevel) K-S test. n is the length of the random number sequence. Other parameters are described in Section 3.2.

Table 21: Results of Mascagni and Srinivasan's test suite for $\operatorname{LCG}\left(5^{19}, 0,2^{63}\right)$

Standard tests	Parameters	p-value
Equidistribution	$N=5 \times 10^{3}, n=2 \times 10^{7}, d=10000$	88.63
Serial	$N=10^{3}, n=5 \times 10^{7}, d=100$	73.09
Gap	$N=10^{3}, n=10^{6}, a=0.50, b=0.51, t=200$	49.55
Poker	$N=10^{3}, n=10^{7}, k=10, d=10$	24.33
Coupon	$N=10^{3}, n=5 \times 10^{6}, d=10, t=39$	22.54
Permutation	$N=10^{3}, n=2 \times 10^{7}, t=5$	5.11
Runs-up	$N=10^{3}, n=5 \times 10^{7}, t=10$	85.69
Maximum of t	$N=10^{5}, n=5 \times 10^{4}, t=16$	18.97
Collision 1	$N=10^{5}, n=10^{5}, \log m d=10, \log d=3$	53.14
Collision 2	$N=10^{5}, n=2 \times 10^{5}, \log m d=4, \log d=5$	36.31

Table 22: Results of Mascagni and Srinivasan's test suite for $\operatorname{LCG}\left(5^{23}, 0,2^{63}\right)$

Standard tests	Parameters	p-value
Equidistribution	$N=5 \times 10^{3}, n=2 \times 10^{7}, d=10000$	30.53
Serial	$N=10^{3}, n=5 \times 10^{7}, d=100$	81.58
Gap	$N=10^{3}, n=10^{6}, a=0.50, b=0.51, t=200$	11.85
Poker	$N=10^{3}, n=10^{7}, k=10, d=10$	83.83
Coupon	$N=10^{3}, n=5 \times 10^{6}, d=10, t=39$	49.36
Permutation	$N=10^{3}, n=2 \times 10^{7}, t=5$	32.60
Runs-up	$N=10^{3}, n=5 \times 10^{7}, t=10$	9.19
Maximum of t	$N=10^{5}, n=5 \times 10^{4}, t=16$	13.32
Collision 1	$N=10^{5}, n=10^{5}, \log m d=10, \log d=3$	94.20
Collision 2	$N=10^{5}, n=2 \times 10^{5}, \log m d=4, \log d=5$	87.14

Table 23: Results of Mascagni and Srinivasan's test suite for $\operatorname{LCG}\left(5^{25}, 0,2^{63}\right)$

Standard tests	Parameters	p-value
Equidistribution	$N=5 \times 10^{3}, n=2 \times 10^{7}, d=10000$	35.46
Serial	$N=10^{3}, n=5 \times 10^{7}, d=100$	6.53
Gap	$N=10^{3}, n=10^{6}, a=0.50, b=0.51, t=200$	96.69
Poker	$N=10^{3}, n=10^{7}, k=10, d=10$	93.82
Coupon	$N=10^{3}, n=5 \times 10^{6}, d=10, t=39$	25.78
Permutation	$N=10^{3}, n=2 \times 10^{7}, t=5$	89.69
Runs-up	$N=10^{3}, n=5 \times 10^{7}, t=10$	24.73
Maximum of t	$N=10^{5}, n=5 \times 10^{4}, t=16$	21.96
Collision 1	$N=10^{5}, n=10^{5}, \log m d=10, \log d=3$	81.82
Collision 2	$N=10^{5}, n=2 \times 10^{5}, \log m d=4, \log d=5$	17.06

Table 24: Results of Mascagni and Srinivasan's test suite for $\operatorname{LCG}\left(5^{19}, 1,2^{63}\right)$

Standard tests	Parameters	p-value
Equidistribution	$N=5 \times 10^{3}, n=2 \times 10^{7}, d=10000$	1.70
Serial	$N=10^{3}, n=5 \times 10^{7}, d=100$	47.08
Gap	$N=10^{3}, n=10^{6}, a=0.50, b=0.51, t=200$	42.43
Poker	$N=10^{3}, n=10^{7}, k=10, d=10$	19.55
Coupon	$N=10^{3}, n=5 \times 10^{6}, d=10, t=39$	95.33
Permutation	$N=10^{3}, n=2 \times 10^{7}, t=5$	8.31
Runs-up	$N=10^{3}, n=5 \times 10^{7}, t=10$	74.36
Maximum of t	$N=10^{5}, n=5 \times 10^{4}, t=16$	83.08
Collision 1	$N=10^{5}, n=10^{5}, \log m d=10, \log d=3$	51.17
Collision 2	$N=10^{5}, n=2 \times 10^{5}, \log m d=4, \log d=5$	42.04

Table 25: Results of Mascagni and Srinivasan's test suite for $\operatorname{LCG}\left(5^{23}, 1,2^{63}\right)$

Standard tests	Parameters	p-value
Equidistribution	$N=5 \times 10^{3}, n=2 \times 10^{7}, d=10000$	48.25
Serial	$N=10^{3}, n=5 \times 10^{7}, d=100$	68.38
Gap	$N=10^{3}, n=10^{6}, a=0.50, b=0.51, t=200$	29.67
Poker	$N=10^{3}, n=10^{7}, k=10, d=10$	53.97
Coupon	$N=10^{3}, n=5 \times 10^{6}, d=10, t=39$	$\mathbf{0 . 1 8}$
Permutation	$N=10^{3}, n=2 \times 10^{7}, t=5$	50.92
Runs-up	$N=10^{3}, n=5 \times 10^{7}, t=10$	8.65
Maximum of t	$N=10^{5}, n=5 \times 10^{4}, t=16$	41.98
Collision 1	$N=10^{5}, n=10^{5}, \log m d=10, \log d=3$	88.46
Collision 2	$N=10^{5}, n=2 \times 10^{5}, \log m d=4, \log d=5$	16.24

Table 26: Results of Mascagni and Srinivasan's test suite for $\operatorname{LCG}\left(5^{25}, 1,2^{63}\right)$

Standard tests	Parameters	p-value
Equidistribution	$N=5 \times 10^{3}, n=2 \times 10^{7}, d=10000$	93.43
Serial	$N=10^{3}, n=5 \times 10^{7}, d=100$	$\mathbf{0 . 2 5}$
Gap	$N=10^{3}, n=10^{6}, a=0.50, b=0.51, t=200$	11.45
Poker	$N=10^{3}, n=10^{7}, k=10, d=10$	92.79
Coupon	$N=10^{3}, n=5 \times 10^{6}, d=10, t=39$	15.04
Permutation	$N=10^{3}, n=2 \times 10^{7}, t=5$	53.21
Runs-up	$N=10^{3}, n=5 \times 10^{7}, t=10$	77.31
Maximum of t	$N=10^{5}, n=5 \times 10^{4}, t=16$	55.16
Collision 1	$N=10^{5}, n=10^{5}, \log m d=10, \log d=3$	84.32
Collision 2	$N=10^{5}, n=2 \times 10^{5}, \log m d=4, \log d=5$	57.70

Table 27: Results of Mascagni and Srinivasan's test suite for LCG(3512401965023503517, 0, 2^{63})

Standard tests	Parameters	p-value
Equidistribution	$N=5 \times 10^{3}, n=2 \times 10^{7}, d=10000$	94.90
Serial	$N=10^{3}, n=5 \times 10^{7}, d=100$	51.07
Gap	$N=10^{3}, n=10^{6}, a=0.50, b=0.51, t=200$	76.42
Poker	$N=10^{3}, n=10^{7}, k=10, d=10$	2.76
Coupon	$N=10^{3}, n=5 \times 10^{6}, d=10, t=39$	43.81
Permutation	$N=10^{3}, n=2 \times 10^{7}, t=5$	53.70
Runs-up	$N=10^{3}, n=5 \times 10^{7}, t=10$	63.13
Maximum of t	$N=10^{5}, n=5 \times 10^{4}, t=16$	43.94
Collision 1	$N=10^{5}, n=10^{5}, \log m d=10, \log d=3$	10.61
Collision 2	$N=10^{5}, n=2 \times 10^{5}, \log m d=4, \log d=5$	31.16

Table 28: Results of Mascagni and Srinivasan's test suite for LCG(2444805353187672469, 0, 2^{63})

Standard tests	Parameters	p-value
Equidistribution	$N=5 \times 10^{3}, n=2 \times 10^{7}, d=10000$	60.11
Serial	$N=10^{3}, n=5 \times 10^{7}, d=100$	51.87
Gap	$N=10^{3}, n=10^{6}, a=0.50, b=0.51, t=200$	9.05
Poker	$N=10^{3}, n=10^{7}, k=10, d=10$	98.24
Coupon	$N=10^{3}, n=5 \times 10^{6}, d=10, t=39$	4.14
Permutation	$N=10^{3}, n=2 \times 10^{7}, t=5$	42.91
Runs-up	$N=10^{3}, n=5 \times 10^{7}, t=10$	24.05
Maximum of t	$N=10^{5}, n=5 \times 10^{4}, t=16$	21.23
Collision 1	$N=10^{5}, n=10^{5}, \log m d=10, \log d=3$	36.45
Collision 2	$N=10^{5}, n=2 \times 10^{5}, \log m d=4, \log d=5$	97.41

Table 29: Results of Mascagni and Srinivasan's test suite for LCG(1987591058829310733, 0, 2^{63})

Standard tests	Parameters	p-value
Equidistribution	$N=5 \times 10^{3}, n=2 \times 10^{7}, d=10000$	42.07
Serial	$N=10^{3}, n=5 \times 10^{7}, d=100$	87.83
Gap	$N=10^{3}, n=10^{6}, a=0.50, b=0.51, t=200$	12.55
Poker	$N=10^{3}, n=10^{7}, k=10, d=10$	35.50
Coupon	$N=10^{3}, n=5 \times 10^{6}, d=10, t=39$	86.83
Permutation	$N=10^{3}, n=2 \times 10^{7}, t=5$	46.37
Runs-up	$N=10^{3}, n=5 \times 10^{7}, t=10$	57.69
Maximum of t	$N=10^{5}, n=5 \times 10^{4}, t=16$	6.14
Collision 1	$N=10^{5}, n=10^{5}, \log m d=10, \log d=3$	66.20
Collision 2	$N=10^{5}, n=2 \times 10^{5}, \log m d=4, \log d=5$	5.39

Table 30: Results of Mascagni and Srinivasan's test suite for LCG(9219741426499971445, 1, 2^{63})

Standard tests	Parameters	p-value
Equidistribution	$N=5 \times 10^{3}, n=2 \times 10^{7}, d=10000$	85.38
Serial	$N=10^{3}, n=5 \times 10^{7}, d=100$	74.15
Gap	$N=10^{3}, n=10^{6}, a=0.50, b=0.51, t=200$	65.03
Poker	$N=10^{3}, n=10^{7}, k=10, d=10$	94.35
Coupon	$N=10^{3}, n=5 \times 10^{6}, d=10, t=39$	31.26
Permutation	$N=10^{3}, n=2 \times 10^{7}, t=5$	53.11
Runs-up	$N=10^{3}, n=5 \times 10^{7}, t=10$	17.55
Maximum of t	$N=10^{5}, n=5 \times 10^{4}, t=16$	62.03
Collision 1	$N=10^{5}, n=10^{5}, \log m d=10, \log d=3$	11.37
Collision 2	$N=10^{5}, n=2 \times 10^{5}, \log m d=4, \log d=5$	10.55

Table 31: Results of Mascagni and Srinivasan's test suite for LCG(2806196910506780709, 1, 2^{63})

Standard tests	Parameters	p-value
Equidistribution	$N=5 \times 10^{3}, n=2 \times 10^{7}, d=10000$	34.13
Serial	$N=10^{3}, n=5 \times 10^{7}, d=100$	62.07
Gap	$N=10^{3}, n=10^{6}, a=0.50, b=0.51, t=200$	16.12
Poker	$N=10^{3}, n=10^{7}, k=10, d=10$	85.14
Coupon	$N=10^{3}, n=5 \times 10^{6}, d=10, t=39$	6.20
Permutation	$N=10^{3}, n=2 \times 10^{7}, t=5$	35.12
Runs-up	$N=10^{3}, n=5 \times 10^{7}, t=10$	25.85
Maximum of t	$N=10^{5}, n=5 \times 10^{4}, t=16$	19.91
Collision 1	$N=10^{5}, n=10^{5}, \log m d=10, \log d=3$	12.43
Collision 2	$N=10^{5}, n=2 \times 10^{5}, \log m d=4, \log d=5$	38.31

Table 32: Results of Mascagni and Srinivasan's test suite for LCG(3249286849523012805, 1, 2^{63})

Standard tests	Parameters	p-value
Equidistribution	$N=5 \times 10^{3}, n=2 \times 10^{7}, d=10000$	42.55
Serial	$N=10^{3}, n=5 \times 10^{7}, d=100$	51.10
Gap	$N=10^{3}, n=10^{6}, a=0.50, b=0.51, t=200$	18.56
Poker	$N=10^{3}, n=10^{7}, k=10, d=10$	45.34
Coupon	$N=10^{3}, n=5 \times 10^{6}, d=10, t=39$	90.72
Permutation	$N=10^{3}, n=2 \times 10^{7}, t=5$	96.23
Runs-up	$N=10^{3}, n=5 \times 10^{7}, t=10$	69.42
Maximum of t	$N=10^{5}, n=5 \times 10^{4}, t=16$	93.61
Collision 1	$N=10^{5}, n=10^{5}, \log m d=10, \log d=3$	95.85
Collision 2	$N=10^{5}, n=2 \times 10^{5}, \log m d=4, \log d=5$	84.81

Table 33: Results of additional tests for RNGs whose first subsequence failed

RNG	Failed test	p-value (\%)		
		Run 1	Run 2	Run 3
LCG $\left(5^{19}, 0,2^{48}\right)$	Collision 2	$\mathbf{9 9 . 3 9}$	52.80	6.83
LCG $\left(5^{23}, 1,2^{63}\right)$	Coupon	$\mathbf{0 . 1 8}$	89.81	44.10
LCG $\left(5^{25}, 1,2^{63}\right)$	Serial	$\mathbf{0 . 2 5}$	44.82	85.60

4.3 Results for DIEHARD test suite

The DIEHARD tests were also performed for all thirteen RNGs. For the tests, we set two significance levels depending on each test. In the case where a test returns more than five p-values, we set a significance level to 0.01 and consider that a RNG fails the test if we get six or more p-values less than 0.01 or more than 0.99 . When a test returns more than two and less than six p-values, we consider that a RNG fails the test if all p-values are less than 0.01 or more than 0.99 . When a test returns only one p-value, we set a significance level to 0.005 . Namely, a RNG fails the test if the p-value is less than 0.005 or more than 0.995 .

Tables $35 \sim 47$ shows the results of the DIEHARD tests. Since the name of each test is slightly long, it is designated for short as listed in Table 34. The p-values less than 0.01 or more than 0.99 are bold-faced.

The MCNP RNG (LCG $\left(5^{19}, 0,2^{48}\right)$) fails the OPSO, OQSO and DNA tests as shown in Table 35. In particular, less significant (lower) bits of RNs fail the tests. It is considered that these failures in less significant bits are caused by the shorter period than the significant bits as mentioned in Section 2.1. However, it does not seems that these failures have a significant impact in the practical use of the RNG.

On the other hand, all 63 -bit LCGs pass all the tests though some p values are less than 0.01 or more than 0.99 . No failures are found in less significant bits for the OPSO, OQSO and DNA tests as found for the MCNP RNG.

Table 34: Short names for DIEHARD test suite

Full name	Short name
Birthday spacings test	BDAY
Overlapping 5-permutation test	OPERM
Binary rank test	RANK
Bitstream test	BSTREAM
Overlapping-pairs-sparse-occupancy test	OPSO
Overlapping-quadruples-sparse-occupancy test	OQSO
DNA test	DNA
Count-the-1's test on a stream of bytes	COUNT1S
Count-the-1's test for specific bytes	COUNT1B
Parking lot test	PARKING
Minimum distance test	MDIST
3-D sphere test	SPHERE
Squeeze test	SQUEEZE
Overlapping sums test	OSUMS
Runs test	RUNS
Craps test	CRAPS

Table 35: DIEHARD test results for $\operatorname{LCG}\left(5^{19}, 0,2^{48}\right)$

Table 36: DIEHARD test results for $\operatorname{LCG}\left(5^{19}, 0,2^{63}\right)$

Test	p-value	Test		p-value
BDAY bits 1 to 24	0.456631		14th	0.34189
bits 2 to 25	0.934950		15th	0.32406
bits 3 to 25	0.395226		16th	0.95865
bits 4 to 25	0.151227		17 th	0.18460
bits 5 to 25	0.436915		18th	0.38572
bits 6 to 25	0.881191		19th	0.50249
bits 7 to 25	0.694738		20th	0.17905
bits 8 to 25	0.630287	OPSO	bits 23 to 32	0.7311
bits 9 to 25	0.010339		bits 22 to 31	0.0011
K-S test for $9 p$-values	0.052709		bits 21 to 30	0.6319
OPERM 1st	0.997566		bits 20 to 29	0.7490
2nd	0.793837		bits 19 to 28	0.2914
RANK 31×31	0.588108		bits 18 to 27	0.1792
RANK 32×32	0.617617		bits 17 to 26	0.3253
RANK 6×8 bits 1 to 8	0.302278		bits 16 to 25	0.7277
bits 2 to 9	0.904982		bits 15 to 24	0.5257
bits 3 to 10	0.468827		bits 14 to 23	0.4913
bits 4 to 11	0.540425		bits 13 to 22	0.8678
bits 5 to 12	0.916199		bits 12 to 21	0.7673
bits 6 to 13	0.816692		bits 11 to 20	0.5612
bits 7 to 14	0.762551		bits 10 to 19	0.8377
bits 8 to 15	0.225721		bits 9 to 18	0.4284
bits 9 to 16	0.597547		bits 8 to 17	0.0658
bits 10 to 17	0.116105		bits 7 to 16	0.2547
bits 11 to 18	0.856230		bits 6 to 15	0.9948
bits 12 to 19	0.951742		bits 5 to 14	0.9303
bits 13 to 20	0.821750		bits 4 to 13	0.2670
bits 14 to 21	0.042335		bits 3 to 12	0.6639
bits 15 to 22	0.519765		bits 2 to 11	0.2843
bits 16 to 23	0.465420		bits 1 to 10	0.3790
bits 17 to 24	0.844583	OQSO	bits 28 to 32	0.5575
bits 18 to 25	0.815318		bits 27 to 31	0.1634
bits 19 to 26	0.053148		bits 26 to 30	0.6600
bits 20 to 27	0.914019		bits 25 to 29	0.2096
bits 21 to 28	0.903223		bits 24 to 28	0.3759
bits 22 to 29	0.475548		bits 23 to 27	0.9191
bits 23 to 30	0.351186		bits 22 to 26	0.8554
bits 24 to 31	0.100732		bits 21 to 25	0.5535
bits 25 to 32	0.914019		bits 20 to 24	0.4955
K-S test for $25 p$-values	0.681956		bits 19 to 23	0.0868
BSTREAM 1st	0.47082		bits 18 to 22	0.1943
2nd	0.07200		bits 17 to 21	0.8554
3 rd	0.99618		bits 16 to 20	0.7421
4 th	0.86171		bits 15 to 19	0.9408
5 th	0.70343		bits 14 to 18	0.9062
6 th	0.97074		bits 13 to 17	0.2887
7 th	0.00814		bits 12 to 16	0.4190
8th	0.64197		bits 11 to 15	0.3492
9 th	0.76317		bits 10 to 14	0.5588
10th	0.70826		bits 9 to 13	0.9693
11th	0.17420		bits 8 to 12	0.7377
12 th	0.01066		bits 7 to 11	0.6348
13th	0.34792		bits 6 to 10	0.8912

Test		p-value		Test	p-value
	bits 5 to 9	0.7829		bits 20 to 27	0.502216
	bits 4 to 8	0.9443		bits 21 to 28	0.702212
	bits 3 to 7	0.4456		bits 22 to 29	0.750895
	bits 2 to 6	0.8912		bits 23 to 30	0.445270
	bits 1 to 5	0.5225		bits 24 to 31	0.079477
DNA	bits 31 to 32	0.0925		bits 25 to 32	0.755761
	bits 30 to 31	0.0197	PARKING	1st	0.218799
	bits 29 to 30	0.7377		2nd	0.753306
	bits 28 to 29	0.7171		3 rd	0.126820
	bits 27 to 28	0.0309		4 th	0.050105
	bits 26 to 27	0.2803		5 th	0.323972
	bits 25 to 26	0.8440		6 th	0.708135
	bits 24 to 25	0.4550		7 th	0.246694
	bits 23 to 24	0.4737		8th	0.276387
	bits 22 to 23	0.7834		9th	0.340551
	bits 21 to 22	0.4063		10th	0.659449
	bits 20 to 21	0.8959	K-S test for	p-values	0.774103
	bits 19 to 20	0.3438	MDIST		0.061572
	bits 18 to 19	0.3972	SPHERE	1st	0.22119
	bits 17 to 18	0.8986		2nd	0.23493
	bits 16 to 17	0.5407		3 rd	0.42664
	bits 15 to 16	0.3624		4 th	0.68078
	bits 14 to 15	0.9057		5 th	0.92590
	bits 13 to 14	0.8468		6 th	0.63639
	bits 12 to 13	0.7290		7 th	0.70631
	bits 11 to 12	0.7019		8th	0.88884
	bits 10 to 11	0.8603		9 th	0.39730
	bits 9 to 10	0.9227		10th	0.56672
	bits 8 to 9	0.6313		11th	0.23983
	bits 7 to 8	0.5020		12 th	0.99167
	bits 6 to 7	0.8583		13 th	0.94178
	bits 5 to 6	0.0732		14 th	0.39060
	bits 4 to 5	0.2893		15 th	0.84633
	bits 3 to 4	0.6833		16 th	0.57522
	bits 2 to 3	0.2627		17 th	0.23271
	bits 1 to 2	0.9101		18th	0.40224
COUNT1S	1st	0.360386		19 th	0.76420
	2nd	0.005499		20th	0.28931
COUNT1B	bits 1 to 8	0.408927	K-S test for $20 p$-values		0.628216
	bits 2 to 9	0.737503	SQUEEZE		0.181459
	bits 3 to 10	0.086679	OSUMS	1st	0.483660
	bits 4 to 11	0.885425		2nd	0.782529
	bits 5 to 12	0.415990		3nd	0.561988
	bits 6 to 13	0.414412		4 nd	0.310576
	bits 7 to 14	0.803623		5 nd	0.273276
	bits 8 to 15	0.080755		6 nd	0.194041
	bits 9 to 16	0.832648		7 nd	0.111713
	bits 10 to 17	0.916187		8nd	0.095835
	bits 11 to 18	0.417992		9 nd	0.622909
	bits 12 to 19	0.888201		10nd	0.215314
	bits 13 to 20	0.347871	K-S test for $10 p$-values		0.785766
	bits 14 to 21	0.744566	RUNS	UP 1st	0.291501
	bits 15 to 22	0.887958		DOWN 1st	0.658321
	bits 16 to 23	0.467662		UP 2nd	0.819057
	bits 17 to 24	0.748463		DOWN 2nd	0.388523
	bits 18 to 25	0.088331	CRAPS	No. of wins	0.516305
	bits 19 to 26	0.757319		Throws/game	0.622109

Table 37: DIEHARD test results for $\operatorname{LCG}\left(5^{23}, 0,2^{63}\right)$

Table 38: DIEHARD test results for $\operatorname{LCG}\left(5^{25}, 0,2^{63}\right)$

Test		p-value		Test	p-value
	bits 5 to 9	0.7769		bits 20 to 27	0.925802
	bits 4 to 8	0.4177		bits 21 to 28	0.474846
	bits 3 to 7	0.1418		bits 22 to 29	0.175687
	bits 2 to 6	0.9462		bits 23 to 30	0.751236
	bits 1 to 5	0.7058		bits 24 to 31	0.860441
DNA	bits 31 to 32	0.8218		bits 25 to 32	0.970178
	bits 30 to 31	0.8404	PARKING	1st	0.323972
	bits 29 to 30	0.6324		2nd	0.708135
	bits 28 to 29	0.9716		3 rd	0.323972
	bits 27 to 28	0.0334		4 th	0.958644
	bits 26 to 27	0.2793		5 th	0.659449
	bits 25 to 26	0.0483		6 th	0.853193
	bits 24 to 25	0.6927		7 th	0.899470
	bits 23 to 24	0.3769		8th	0.781201
	bits 22 to 23	0.9443		9th	0.969407
	bits 21 to 22	0.5442		10th	0.977738
	bits 20 to 21	0.4902		K-S test for $10 p$-values	0.993381
	bits 19 to 20 bits 18 to 19	0.1792	MDIST		0.407511
		0.6958	SPHERE	1st	0.54685
	bits 17 to 18	0.2569		2nd	0.62404
	bits 16 to 17	0.8440		3 rd	0.28389
	bits 15 to 16	0.8730		4 th	0.93359
	bits 14 to 15	0.5477		5 th	0.35013
	bits 13 to 14	0.3984		6 th	0.25624
	bits 12 to 13	0.5803		7 th	0.61072
	bits 11 to 12	0.7720		8th	0.00332
	bits 10 to 11	0.1627		9th	0.50748
	bits 9 to 10	0.4410		10th	0.99591
	bits 8 to 9	0.4086		11th	0.67114
	bits 7 to 8	0.6822		12 th	0.10592
	bits 6 to 7	0.6770		13th	0.18394
	bits 5 to 6	0.0548		14th	0.74981
	bits 4 to 5	0.3927		15 th	0.68083
	bits 3 to 4	0.4831		16th	0.69253
	bits 2 to 3	0.1032		17 th	0.29552
	bits 1 to 2	0.0305		18th	0.65892
COUNT1S	1st	0.238104	K-S test for $20 \begin{array}{r}19 \text { th } \\ \text { 20th } \\ p \text {-values }\end{array}$		0.05535
	2nd	0.654703			0.58649
COUNT1B	bits 1 to 8	0.332852			0.243988
	bits 2 to 9 bits 3 to 10	0.904618	SQUEEZE		0.896761
		0.622997	OSUMS	1st	0.937360
	bits 4 to 11	0.873031		2nd	0.748848
	bits 5 to 12	0.998515		3nd	0.817578
	bits 6 to 13	0.051583		4nd	0.506994
	bits 7 to 14	0.385513		5nd	0.558444
	bits 8 to 15	0.154935		6 nd	0.397806
	bits 9 to 16	0.965408		7 nd	0.341894
	bits 10 to 17	0.100266		8nd	0.765528
	bits 11 to 18	0.465014		9 nd	0.691076
	bits 12 to 19	0.931173	K-S test for 10 10nd		0.225903
	bits 13 to 20 bits 14 to 21	$\begin{aligned} & 0.871369 \\ & 0.315702 \end{aligned}$			0.582238
			RUNS	UP 1st	0.488985
	bits 15 to 22	0.746001		DOWN 1st	0.780775
	bits 16 to 23	0.373761		UP 2nd	0.733830
	bits 17 to 24	0.550210		DOWN 2nd	0.489666
	bits 18 to 25	0.062564	CRAPS	No. of wins	0.974980
	bits 19 to 26	0.320470		Throws/game	0.772641

Table 39: DIEHARD test results for $\operatorname{LCG}\left(5^{19}, 1,2^{63}\right)$

Test	p-value	Test		p-value
BDAY bits 1 to 24	0.598890		14th	0.61190
bits 2 to 25	0.217354		15 th	0.47268
bits 3 to 25	0.812984		16 th	0.05262
bits 4 to 25	0.221838		17 th	0.71543
bits 5 to 25	0.211322		18th	0.38126
bits 6 to 25	0.273215		19th	0.84675
bits 7 to 25	0.966747		20th	0.92452
bits 8 to 25	0.501631	OPSO	bits 23 to 32	0.9423
bits 9 to 25	0.214666		bits 22 to 31	0.7055
K-S test for $9 p$-values	0.527559		bits 21 to 30	0.7219
OPERM 1st	0.185146		bits 20 to 29	0.8110
2nd	0.397079		bits 19 to 28	0.0269
RANK 31×31	0.422641		bits 18 to 27	0.0454
RANK 32×32	0.757807		bits 17 to 26	0.5571
RANK 6×8 bits 1 to 8	0.526444		bits 16 to 25	0.0298
bits 2 to 9	0.283043		bits 15 to 24	0.5639
bits 3 to 10	0.885177		bits 14 to 23	0.4447
bits 4 to 11	0.470605		bits 13 to 22	0.5353
bits 5 to 12	0.158696		bits 12 to 21	0.3949
bits 6 to 13	0.813975		bits 11 to 20	0.0510
bits 7 to 14	0.223295		bits 10 to 19	0.6763
bits 8 to 15	0.156549		bits 9 to 18	0.0413
bits 9 to 16	0.191216		bits 8 to 17	0.7694
bits 10 to 17	0.882014		bits 7 to 16	0.9266
bits 11 to 18	0.690904		bits 6 to 15	0.2750
bits 12 to 19	0.967506		bits 5 to 14	0.2750
bits 13 to 20	0.947775		bits 4 to 13	0.3582
bits 14 to 21	0.780829		bits 3 to 12	0.8893
bits 15 to 22	0.744143		bits 2 to 11	0.4570
bits 16 to 23	0.024331		bits 1 to 10	0.3404
bits 17 to 24	0.060709	OQSO	bits 28 to 32	0.8369
bits 18 to 25	0.739415		bits 27 to 31	0.4216
bits 19 to 26	0.163587		bits 26 to 30	0.3417
bits 20 to 27	0.518397		bits 25 to 29	0.0270
bits 21 to 28	0.786544		bits 24 to 28	0.3220
bits 22 to 29	0.615802		bits 23 to 27	0.1659
bits 23 to 30	0.596588		bits 22 to 26	0.8079
bits 24 to 31	0.996263		bits 21 to 25	0.6450
bits 25 to 32	0.308065		bits 20 to 24	0.8088
K-S test for $25 p$-values	0.334937		bits 19 to 23	0.5986
BSTREAM 1st	0.94517		bits 18 to 22	0.0137
2nd	0.17541		bits 17 to 21	0.7497
3 rd	0.79503		bits 16 to 20	0.9045
4 th	0.22499		bits 15 to 19	0.9733
5 th	0.74701		bits 14 to 18	0.1488
6 th	0.62526		bits 13 to 17	0.9922
7 th	0.55082		bits 12 to 16	0.3220
8 th	0.25850		bits 11 to 15	0.1851
9 th	0.43382		bits 10 to 14	0.0963
10th	0.09524		bits 9 to 13	0.7208
11th	0.39379		bits 8 to 12	0.3914
12 th	0.30335		bits 7 to 11	0.7208
13th	0.52578		bits 6 to 10	0.5279

Test		p-value	Test	p-value
	bits 5 to 9	0.1209	bits 20 to 27	0.360840
	bits 4 to 8	0.0049	bits 21 to 28	0.532679
	bits 3 to 7	0.1511	bits 22 to 29	0.830430
	bits 2 to 6	0.3028	bits 23 to 30	0.308146
	bits 1 to 5	0.7000	bits 24 to 31	0.269508
DNA	bits 31 to 32	0.9933	bits 25 to 32	0.629817
	bits 30 to 31	0.9463	PARKING 1st	0.078457
	bits 29 to 30	0.0021	2nd	0.192812
	bits 28 to 29	0.0421	3 rd	0.807188
	bits 27 to 28	0.4271	4 th	0.126820
	bits 26 to 27	0.4749	5 th	0.117571
	bits 25 to 26	0.4456	6 th	0.009936
	bits 24 to 25	0.0558	7 th	0.518210
	bits 23 to 24	0.8766	8th	0.873180
	bits 22 to 23	0.4808	9th	0.914635
	bits 21 to 22	0.5302	10th	0.842447
	bits 20 to 21	0.3558	K-S test for $10 p$-values	0.746309
	bits 19 to 20	0.0149	MDIST	0.214052
	bits 18 to 19	0.8736	SPHERE 1st	0.54033
	bits 17 to 18	0.3893	2nd	0.90737
	bits 16 to 17	0.2627	3 rd	0.01103
	bits 15 to 16	0.0181	4 th	0.51826
	bits 14 to 15	0.5814	5 th	0.14380
	bits 13 to 14	0.6566	6 th	0.60742
	bits 12 to 13	0.2852	7 th	0.43446
	bits 11 to 12	0.1500	8th	0.42220
	bits 10 to 11	0.5998	9th	0.10220
	bits 9 to 10	0.7538	10th	0.05250
	bits 8 to 9	0.0863	11th	0.27437
	bits 7 to 8	0.6413	12 th	0.80002
	bits 6 to 7	0.8674	13th	0.42436
	bits 5 to 6	0.8390	14 th	0.03394
	bits 4 to 5	0.5699	15 th	0.20920
	bits 3 to 4	0.0201	16 th	0.89106
	bits 2 to 3	0.9419	17 th	0.56395
	bits 1 to 2	0.5442	18th	0.82387
COUNT1S	1st	0.905273	19th	0.86696
	2nd	0.045513	20th	0.67515
COUNT1B	bits 1 to 8	0.987626	K-S test for $20 p$-values	0.218178
	bits 2 to 9	0.027794	SQUEEZE	0.073604
	bits 3 to 10	0.347403	$\begin{array}{ll}\text { OSUMS } & \\ & \text { 1st } \\ & \text { 2nd } \\ & \text { 3nd } \\ & \text { 4nd } \\ & \text { 5nd } \\ & \text { 6nd } \\ & 7 \mathrm{nd} \\ & \text { 8nd } \\ & \text { 9nd } \\ & \text { 10nd }\end{array}$	0.757899
	bits 4 to 11	0.081196		0.717099
	bits 5 to 12	0.209411		0.263340
	bits 6 to 13	0.152336		0.403221
	bits 7 to 14	0.224502		0.149960
	bits 8 to 15	0.602737		0.965015
	bits 9 to 16	0.320630		0.971890
	bits 10 to 17	0.564691		0.398787
	bits 11 to 18	0.967510		0.516020
	bits 12 to 19	0.110182		0.889466
	bits 13 to 20	0.218207		0.616520
	bits 14 to 21	0.605838	RUNS	0.441220
	bits 15 to 22	0.621087		0.910215
	bits 16 to 23	0.502065		0.715504
	bits 17 to 24	0.692466		0.091807
	bits 18 to 25	0.194252	CRAPS	0.274687
	bits 19 to 26	0.924246		0.460578

Table 40: DIEHARD test results for $\operatorname{LCG}\left(5^{23}, 1,2^{63}\right)$

Test		p-value		Test	p-value
	bits 5 to 9	0.1719		bits 20 to 27	0.453169
	bits 4 to 8	0.7058		bits 21 to 28	0.073325
	bits 3 to 7	0.2981		bits 22 to 29	0.176200
	bits 2 to 6	0.4097		bits 23 to 30	0.361816
	bits 1 to 5	0.6051		bits 24 to 31	0.440753
DNA	bits 31 to 32	0.9206		bits 25 to 32	0.367757
	bits 30 to 31	0.1761	PARKING	1st	0.374623
	bits 29 to 30	0.3769		2nd	0.246694
	bits 28 to 29	0.3525		3 rd	0.078457
	bits 27 to 28	0.1521		4 th	0.445521
	bits 26 to 27	0.4410		5 th	0.374623
	bits 25 to 26	0.6357		6 th	0.232514
	bits 24 to 25	0.3384		7 th	0.692266
	bits 23 to 24	0.6457		8th	0.590298
	bits 22 to 23	0.9309		9 th	0.126820
	bits 21 to 22	0.1335		10th	0.340551
	bits 20 to 21	0.3927	K-S test for $10 p$-values		0.874748
	bits 19 to 20	0.8871	MDIST		0.756212
	bits 18 to 19	0.2292	SPHERE	1st	0.00725
	bits 17 to 18	0.1528		2nd	0.93088
	bits 16 to 17	0.4433		3 rd	0.43462
	bits 15 to 16	0.9630		4 th	0.50485
	bits 14 to 15	0.1108		5 th	0.80240
	bits 13 to 14	0.5384		6 th	0.35580
	bits 12 to 13	0.1148		7 th	0.14443
	bits 11 to 12	0.9618		8th	0.14023
	bits 10 to 11	0.9888		9th	0.30040
	bits 9 to 10	0.8536		10th	0.59817
	bits 8 to 9	0.3893		11th	0.92163
	bits 7 to 8	0.3118		12 th	0.02845
	bits 6 to 7	0.3171		13 th	0.30271
	bits 5 to 6	0.1694		14 th	0.30549
	bits 4 to 5	0.6446		15 th	0.62047
	bits 3 to 4	0.0268		16th	0.94403
	bits 2 to 3	0.5008		17 th	0.80386
	bits 1 to 2	0.4843		18th	0.79112
COUNT1S	1st	0.679839		19th	0.42274
	2nd	0.680702		20th	0.38949
COUNT1B	bits 1 to 8	0.984081	K-S test for $20 p$-values		0.091389
	bits 2 to 9	0.617778	SQUEEZE		0.968048
	bits 3 to 10	0.296050	OSUMS	1st	0.282576
	bits 4 to 11	0.272029		2nd	0.675938
	bits 5 to 12	0.886256		3nd	0.872226
	bits 6 to 13	0.740017		4nd	0.739651
	bits 7 to 14	0.790192		5nd	0.385764
	bits 8 to 15	0.425556		6 nd	0.168696
	bits 9 to 16	0.436191		7 nd	0.303410
	bits 10 to 17	0.085636		8nd	0.572098
	bits 11 to 18	0.588265		9nd	0.558191
	bits 12 to 19	0.992207		10nd	0.460775
	bits 13 to 20	0.808170	K-S test for $10 p$-values		0.271523
	bits 14 to 21	0.763816	RUNS	UP 1st	0.084616
	bits 15 to 22	0.106782		DOWN 1st	0.264600
	bits 16 to 23	0.057482		UP 2nd	0.099764
	bits 17 to 24	0.841543		DOWN 2nd	0.078459
	bits 18 to 25	0.647273	CRAPS	No. of wins	0.761696
	bits 19 to 26	0.317607		Throws/game	0.564042

Table 41: DIEHARD test results for $\operatorname{LCG}\left(5^{25}, 1,2^{63}\right)$

Test		p-value	Test	p-value
	bits 5 to 9	0.4833	bits 20 to 27	0.039475
	bits 4 to 8	0.2887	bits 21 to 28	0.967496
	bits 3 to 7	0.0554	bits 22 to 29	0.742038
	bits 2 to 6	0.6259	bits 23 to 30	0.852440
	bits 1 to 5	0.1202	bits 24 to 31	0.664025
DNA	bits 31 to 32	0.8316	bits 25 to 32	0.640546
	bits 30 to 31	0.8883	PARKING 1st	0.853193
	bits 29 to 30	0.2355	2nd	0.659449
	bits 28 to 29	0.4503	3 rd	0.481790
	bits 27 to 28	0.3961	4 th	0.659449
	bits 26 to 27	0.8642	5 th	0.767486
	bits 25 to 26	0.5536	6 th	0.723613
	bits 24 to 25	0.7309	7 th	0.357445
	bits 23 to 24	0.3514	8th	0.100530
	bits 22 to 23	0.1001	9th	0.374623
	bits 21 to 22	0.7453	10th	0.625377
	bits 20 to 21	0.6641	K-S test for $10 p$-values	0.509465
	bits 19 to 20	0.4224	MDIST	0.906752
	bits 18 to 19	0.0753	SPHERE 1st	0.32600
	bits 17 to 18	0.5384	2nd	0.82439
	bits 16 to 17	0.8616	3 rd	0.03554
	bits 15 to 16	0.9106	4 th	0.67480
	bits 14 to 15	0.9698	5 th	0.64824
	bits 13 to 14	0.2008	6 th	0.77630
	bits 12 to 13	0.3836	7 th	0.68713
	bits 11 to 12	0.6134	8th	0.21617
	bits 10 to 11	0.4855	9th	0.13792
	bits 9 to 10	0.7928	10th	0.41616
	bits 8 to 9	0.6706	11th	0.03112
	bits 7 to 8	0.9052	12 th	0.65695
	bits 6 to 7	0.2903	13th	0.79027
	bits 5 to 6	0.5255	14 th	0.33711
	bits 4 to 5	0.0665	15 th	0.68957
	bits 3 to 4	0.1649	16 th	0.14503
	bits 2 to 3	0.2714	17th	0.98231
	bits 1 to 2	0.0086	18th	0.25226
COUNT1S	1st	0.105943	19th	0.20049
	2nd	0.921093	20th	0.68244
COUNT1B	bits 1 to 8	0.635437	K-S test for $20 p$-values	0.247693
	bits 2 to 9	0.595580	SQUEEZE	0.170055
	bits 3 to 10	0.103928	$\begin{array}{lc}\text { OSUMS } & \text { 1st } \\ & \text { 2nd } \\ & 3 \mathrm{nd} \\ & \text { nnd } \\ & \text { nnd } \\ & \text { nnd } \\ & 7 \mathrm{nd} \\ & \text { 8nd } \\ & \text { 9nd } \\ & \text { 10nd }\end{array}$	0.224604
	bits 4 to 11	0.259409		0.295827
	bits 5 to 12	0.399723		0.319191
	bits 6 to 13	0.599593		0.304288
	bits 7 to 14	0.529607		0.086728
	bits 8 to 15	0.514767		0.843053
	bits 9 to 16	0.462789		0.226564
	bits 10 to 17	0.400949		0.989154
	bits 11 to 18	0.373807		0.753418
	bits 12 to 19	0.213108		0.962030
	bits 13 to 20	0.853634		0.557772
	bits 14 to 21	0.569019	RUNS	0.493002
	bits 15 to 22	0.068772		0.729682
	bits 16 to 23	0.203534		0.574884
	bits 17 to 24	0.263829		0.289951
	bits 18 to 25	0.445256	CRAPS	0.297499
	bits 19 to 26	0.212759		0.974715

Table 42: DIEHARD test results for $\operatorname{LCG}\left(3512401965023503517,0,2^{63}\right)$

Test		p-value	Test	p-value
	bits 5 to 9	0.2135	bits 20 to 27	0.089912
	bits 4 to 8	0.0290	bits 21 to 28	0.363575
	bits 3 to 7	0.5508	bits 22 to 29	0.065150
	bits 2 to 6	0.7603	bits 23 to 30	0.125726
	bits 1 to 5	0.6361	bits 24 to 31	0.356028
DNA	bits 31 to 32	0.8655	bits 25 to 32	0.639261
	bits 30 to 31	0.7009	PARKING 1st	0.781201
	bits 29 to 30	0.7211	2nd	0.554479
	bits 28 to 29	0.3287	3 rd	0.261324
	bits 27 to 28	0.2050	4 th	0.136563
	bits 26 to 27	0.3213	5 th	0.323972
	bits 25 to 26	0.5710	6 th	0.085365
	bits 24 to 25	0.8661	7 th	0.781201
	bits 23 to 24	0.5290	8th	0.445521
	bits 22 to 23	0.8003	9th	0.168804
	bits 21 to 22	0.8346	10th	0.340551
	bits 20 to 21	0.5998	K-S test for $10 p$-values	0.651458
	bits 19 to 20	0.2569	MDIST	0.238350
	bits 18 to 19	0.1303	SPHERE 1st	0.73870
	bits 17 to 18	0.3904	2nd	0.74901
	bits 16 to 17	0.5055	3 rd	0.33461
	bits 15 to 16	0.9290	4 th	0.77565
	bits 14 to 15	0.7009	5 th	0.66809
	bits 13 to 14	0.7919	6 th	0.45308
	bits 12 to 13	0.5617	7 th	0.58390
	bits 11 to 12	0.3395	8th	0.09677
	bits 10 to 11	0.2126	9th	0.28968
	bits 9 to 10	0.0146	10th	0.60912
	bits 8 to 9	0.4167	11th	0.05553
	bits 7 to 8	0.2126	12 th	0.13490
	bits 6 to 7	0.2401	13 th	0.18493
	bits 5 to 6	0.0757	14 th	0.69821
	bits 4 to 5	0.5008	15 th	0.05054
	bits 3 to 4	0.0765	16th	0.38510
	bits 2 to 3	0.7500	17 th	0.37116
	bits 1 to 2	0.8256	18th	0.19396
COUNT1S	1st	0.722610	19th	0.73248
	2nd	0.354334	20th	0.34286
COUNT1B	bits 1 to 8	0.691069	K-S test for $20 p$-values	0.708280
	bits 2 to 9	0.027032	SQUEEZE	0.282916
	bits 3 to 10	0.630820	OSUMS 1st	0.812200
	bits 4 to 11	0.206829	2nd	0.485152
	bits 5 to 12	0.971943	3nd	0.654435
	bits 6 to 13	0.839165	4nd	0.249923
	bits 7 to 14	0.892951	5nd	0.728370
	bits 8 to 15	0.974180	6 nd	0.472731
	bits 9 to 16	0.373406	7 nd	0.179069
	bits 10 to 17	0.992262	8nd	0.556552
	bits 11 to 18	0.439712	9nd	0.602433
	bits 12 to 19	0.650300	10nd	0.332094
	bits 13 to 20	0.796946	K-S test for $10 p$-values	0.429908
	bits 14 to 21	0.604809	RUNS UP 1st	0.199066
	bits 15 to 22	0.183616	DOWN 1st	0.484925
	bits 16 to 23	0.201743	UP 2nd	0.398951
	bits 17 to 24	0.582343	DOWN 2nd	0.741266
	bits 18 to 25	0.720871	CRAPS No. of wins	0.121663
	bits 19 to 26	0.789796	Throws/game	0.871119

Table 43: DIEHARD test results for $\operatorname{LCG}\left(2444805353187672469,0,2^{63}\right)$

Test	p-value	Test		p-value
BDAY bits 1 to 24	0.193545		14th	0.51367
bits 2 to 25	0.532924		15th	0.95589
bits 3 to 25	0.268666		16th	0.20321
bits 4 to 25	0.644471		17th	0.79102
bits 5 to 25	0.397855		18th	0.72798
bits 6 to 25	0.899574		19th	0.34964
bits 7 to 25	0.386786		20th	0.35921
bits 8 to 25	0.576710	OPSO	bits 23 to 32	0.9105
bits 9 to 25	0.318485		bits 22 to 31	0.0864
K-S test for $9 p$-values	0.415225		bits 21 to 30	0.2470
OPERM 1st	0.353411		bits 20 to 29	0.2503
2nd	0.443585		bits 19 to 28	0.7694
RANK 31×31	0.325080		bits 18 to 27	0.5734
RANK 32×32	0.556414		bits 17 to 26	0.7031
RANK 6×8 bits 1 to 8	0.041842		bits 16 to 25	0.8715
bits 2 to 9	0.171740		bits 15 to 24	0.0356
bits 3 to 10	0.089051		bits 14 to 23	0.5489
bits 4 to 11	0.773874		bits 13 to 22	0.8427
bits 5 to 12	0.103779		bits 12 to 21	0.4461
bits 6 to 13	0.109914		bits 11 to 20	0.8525
bits 7 to 14	0.208084		bits 10 to 19	0.8220
bits 8 to 15	0.968900		bits 9 to 18	0.8913
bits 9 to 16	0.925074		bits 8 to 17	0.6056
bits 10 to 17	0.926686		bits 7 to 16	0.7446
bits 11 to 18	0.915222		bits 6 to 15	0.0389
bits 12 to 19	0.225424		bits 5 to 14	0.1122
bits 13 to 20	0.212238		bits 4 to 13	0.7161
bits 14 to 21	0.291307		bits 3 to 12	0.7947
bits 15 to 22	0.790935		bits 2 to 11	0.2448
bits 16 to 23	0.290217		bits 1 to 10	0.9979
bits 17 to 24	0.511052	OQSO	bits 28 to 32	0.4982
bits 18 to 25	0.867991		bits 27 to 31	0.6637
bits 19 to 26	0.278514		bits 26 to 30	0.5212
bits 20 to 27	0.313323		bits 25 to 29	0.3927
bits 21 to 28	0.351587		bits 24 to 28	0.5775
bits 22 to 29	0.718712		bits 23 to 27	0.7453
bits 23 to 30	0.094206		bits 22 to 26	0.1693
bits 24 to 31	0.025524		bits 21 to 25	0.0992
bits 25 to 32	0.681659		bits 20 to 24	0.1617
K-S test for $25 p$-values	0.822926		bits 19 to 23	0.4698
BSTREAM 1st	0.22781		bits 18 to 22	0.6348
2nd	0.52857		bits 17 to 21	0.4032
3 rd	0.86274		bits 16 to 20	0.2561
4 th	0.33847		bits 15 to 19	0.7254
5 th	0.99243		bits 14 to 18	0.8821
6 th	0.77032		bits 13 to 17	0.5454
7 th	0.42923		bits 12 to 16	0.8361
8th	0.94746		bits 11 to 15	0.7666
9th	0.59751		bits 10 to 14	0.7728
10th	0.38662		bits 9 to 13	0.9615
11th	0.12743		bits 8 to 12	0.4403
12 th	0.16419		bits 7 to 11	0.6772
13th	0.62437		bits 6 to 10	0.0514

	Test	p-value		Test	p-value
	bits 5 to 9	0.0536		bits 20 to 27	0.819698
	bits 4 to 8	0.9525		bits 21 to 28	0.584896
	bits 3 to 7	0.0421		bits 22 to 29	0.642023
	bits 2 to 6	0.9288		bits 23 to 30	0.733239
	bits 1 to 5	0.4631		bits 24 to 31	0.033304
DNA	bits 31 to 32	0.7519		bits 25 to 32	0.464097
	bits 30 to 31	0.4352	PARKING	1st	0.009936
	bits 29 to 30	0.1480		2nd	0.276387
	bits 28 to 29	0.2852		3 rd	0.463618
	bits 27 to 28	0.7171		4 th	0.055002
	bits 26 to 27	0.2724		5 th	0.781201
	bits 25 to 26	0.5196		6 th	0.518210
	bits 24 to 25	0.9613		7 th	0.853193
	bits 23 to 24	0.7970		8th	0.590298
	bits 22 to 23	0.6280		9th	0.853193
	bits 21 to 22	0.2410		10th	0.831196
	bits 20 to 21	0.3384	K-S test for $10 p$-values		0.343457
	bits 19 to 20	0.3319	MDIST		0.897445
	bits 18 to 19	0.2733	SPHERE	1st	0.34716
	bits 17 to 18	0.6391		2nd	0.48100
	bits 16 to 17	0.8927		3 rd	0.43662
	bits 15 to 16	0.4655		4 th	0.30058
	bits 14 to 15	0.0911		5 th	0.35877
	bits 13 to 14	0.2646		6 th	0.54640
	bits 12 to 13	0.7280		7 th	0.99834
	bits 11 to 12	0.6652		8th	0.83490
	bits 10 to 11	0.8382		9th	0.50928
	bits 9 to 10	0.5524		10th	0.84301
	bits 8 to 9	0.4996		11th	0.13023
	bits 7 to 8	0.0624		12 th	0.06790
	bits 6 to 7	0.6968		13th	0.16116
	bits 5 to 6	0.0468		14 th	0.00479
	bits 4 to 5	0.5008		15 th	0.08544
	bits 3 to 4	0.0004		16 th	0.57751
	bits 2 to 3	0.8866		17 th	0.22946
	bits 1 to 2	0.8954		18th	0.95542
COUNT1S	1st	0.207042		19th	0.08717
	2nd	0.961829		20th	0.09574
COUNT1B	bits 1 to 8	0.224769	K-S test for $20 p$-values		0.863873
	bits 2 to 9	0.731407	SQUEEZE		0.881511
	bits 3 to 10	0.507596	OSUMS	1st	0.706169
	bits 4 to 11	0.084269		2nd	0.233125
	bits 5 to 12	0.263026		3nd	0.431244
	bits 6 to 13	0.174003		4 nd	0.629350
	bits 7 to 14	0.938141		5 nd	0.771801
	bits 8 to 15	0.379658		6 nd	0.754542
	bits 9 to 16	0.783477		7 nd	0.893973
	bits 10 to 17	0.728043		8nd	0.211153
	bits 11 to 18	0.754630		9 nd	0.468310
	bits 12 to 19	0.534358		10nd	0.946623
	bits 13 to 20	0.605773	K-S test for $10 p$-values		0.550182
	bits 14 to 21	0.765819	RUNS	UP 1st	0.772599
	bits 15 to 22	0.885956		DOWN 1st	0.682501
	bits 16 to 23	0.671126		UP 2nd	0.801633
	bits 17 to 24	0.702257		DOWN 2nd	0.287603
	bits 18 to 25	0.641689	CRAPS	No. of wins	0.902801
	bits 19 to 26	0.602335		Throws/game	0.731621

Table 44: DIEHARD test results for $\operatorname{LCG}\left(1987591058829310733,0,2^{63}\right)$

Test		p-value		Test	p-value
	bits 5 to 9	0.8060		bits 20 to 27	0.633061
	bits 4 to 8	0.3184		bits 21 to 28	0.998769
	bits 3 to 7	0.9795		bits 22 to 29	0.382028
	bits 2 to 6	0.2539		bits 23 to 30	0.480145
	bits 1 to 5	0.0577		bits 24 to 31	0.209215
DNA	bits 31 to 32	0.8124		bits 25 to 32	0.759778
	bits 30 to 31	0.4375	PARKING	1st	0.006836
	bits 29 to 30	0.6916		2nd	0.481790
	bits 28 to 29	0.0684		3 rd	0.831196
	bits 27 to 28	0.6706		4 th	0.590298
	bits 26 to 27	0.8068		5 th	0.572463
	bits 25 to 26	0.2783		6 th	0.071982
	bits 24 to 25	0.2221		7 th	0.819442
	bits 23 to 24	0.3046		8th	0.027568
	bits 22 to 23	0.2447		9th	0.340551
	bits 21 to 22	0.4573		10th	0.092718
	bits 20 to 21	0.2230		K-S test for $10 p$-values	0.849052
	bits 19 to 20	0.0770	MDIST		0.701685
	bits 18 to 19	0.0650	SPHERE	1st	0.26858
	bits 17 to 18	0.6280		2nd	0.18854
	bits 16 to 17	0.0930		3 rd	0.38634
	bits 15 to 16	0.3223		4 th	0.99945
	bits 14 to 15	0.1800		5 th	0.79293
	bits 13 to 14	0.2283		6 th	0.95899
	bits 12 to 13	0.1862		7 th	0.05618
	bits 11 to 12	0.2117		8th	0.91957
	bits 10 to 11	0.1297		9th	0.89502
	bits 9 to 10	0.0532		10th	0.94405
	bits 8 to 9	0.2392		11th	0.79461
	bits 7 to 8	0.9184		12 th	0.25310
	bits 6 to 7	0.3223		13th	0.72640
	bits 5 to 6	0.8888		14th	0.31612
	bits 4 to 5	0.8432		15 th	0.21110
	bits 3 to 4	0.2636		16 th	0.84962
	bits 2 to 3	0.7746		17 th	0.87688
	bits 1 to 2	0.1870		18th	0.27824
COUNT1S	1st	0.455242		19th	0.56252
	2nd	0.153778		20th	0.92306
COUNT1B	bits 1 to 8	0.964345	K-S test for $20 p$-values		0.954129
	bits 2 to 9	0.826983	SQUEEZE		0.519053
	bits 3 to 10	0.140691	OSUMS	1st	0.601707
	bits 4 to 11	0.648583		2nd	0.632279
	bits 5 to 12	0.671401		3nd	0.153232
	bits 6 to 13	0.483024		4nd	0.688688
	bits 7 to 14	0.580038		5 nd	0.096181
	bits 8 to 15	0.203769		6 nd	0.787407
	bits 9 to 16	0.154869		7 nd	0.001462
	bits 10 to 17	0.669677		8nd	0.149491
	bits 11 to 18	0.445223		9 nd	0.789830
	bits 12 to 19	0.142196		10nd	0.217253
	bits 13 to 20	0.893441	K-S test for $10 p$-values		0.731558
	bits 14 to 21	0.845237	RUNS	UP 1st	0.297063
	bits 15 to 22	0.837701		DOWN 1st	0.776076
	bits 16 to 23	0.722837		UP 2nd	0.349017
	bits 17 to 24	0.970731		DOWN 2nd	0.026262
	bits 18 to 25	0.746586	CRAPS	No. of wins	0.153014
	bits 19 to 26	0.749700		Throws/game	0.224485

Table 45: DIEHARD test results for $\operatorname{LCG}\left(9219741426499971445,1,2^{63}\right)$

Table 46: DIEHARD test results for $\operatorname{LCG}\left(2806196910506780709,1,2^{63}\right)$

	Test	p-value	Test	p-value
	bits 5 to 9	0.5090	bits 20 to 27	0.384261
	bits 4 to 8	0.3862	bits 21 to 28	0.519709
	bits 3 to 7	0.1860	bits 22 to 29	0.636321
	bits 2 to 6	0.0566	bits 23 to 30	0.450539
	bits 1 to 5	0.0400	bits 24 to 31	0.100168
DNA	bits 31 to 32	0.1754	bits 25 to 32	0.527464
	bits 30 to 31	0.7584	PARKING 1st	0.753306
	bits 29 to 30	0.9544	2nd	0.045562
	bits 28 to 29	0.8346	3 rd	0.625377
	bits 27 to 28	0.5826	4 th	0.323972
	bits 26 to 27	0.1480	5 th	0.445521
	bits 25 to 26	0.5594	6 th	0.071982
	bits 24 to 25	0.1584	7 th	0.192812
	bits 23 to 24	0.3046	8th	0.723613
	bits 22 to 23	0.6522	9 th	0.117571
	bits 21 to 22	0.2283	10th	0.232514
	bits 20 to 21	0.3949	K-S test for $10 p$-values	0.816693
	bits 19 to 20	0.2092	MDIST	0.550287
	bits 18 to 19	0.6770	SPHERE 1st	0.22300
	bits 17 to 18	0.5791	2nd	0.97539
	bits 16 to 17	0.0483	3 rd	0.49749
	bits 15 to 16	0.8003	4th	0.18686
	bits 14 to 15	0.2025	5 th	0.75159
	bits 13 to 14	0.9244	6 th	0.52404
	bits 12 to 13	0.2933	7 th	0.25847
	bits 11 to 12	0.8076	8th	0.30720
	bits 10 to 11	0.9032	9 th	0.75467
	bits 9 to 10	0.4445	10th	0.48761
	bits 8 to 9	0.0572	11th	0.21015
	bits 7 to 8	0.0020	12 th	0.87452
	bits 6 to 7	0.5629	13 th	0.29798
	bits 5 to 6	0.4422	14th	0.00117
	bits 4 to 5	0.1136	15 th	0.30458
	bits 3 to 4	0.4468	16 th	0.07232
	bits 2 to 3	0.9574	17th	0.38712
	bits 1 to 2	0.1967	18th	0.88621
COUNT1S	1st	0.389222	19th	0.48029
	2nd	0.142584	20th	0.58626
COUNT1B	bits 1 to 8	0.987528	K-S test for $20 p$-values	0.385851
	bits 2 to 9	0.033604	SQUEEZE	0.991716
	bits 3 to 10	0.122700	OSUMS 1st	0.767464
	bits 4 to 11	0.077063	2nd	0.050108
	bits 5 to 12	0.284149	3 nd	0.939012
	bits 6 to 13	0.133220	4nd	0.141600
	bits 7 to 14	0.883507	5nd	0.006633
	bits 8 to 15	0.837384	6 nd	0.625941
	bits 9 to 16	0.290986	7 nd	0.257937
	bits 10 to 17	0.122840	8nd	0.657818
	bits 11 to 18	0.448345	9 nd	0.843215
	bits 12 to 19	0.894082	10nd	0.004834
	bits 13 to 20	0.937465	K-S test for $10 p$-values	0.883658
	bits 14 to 21	0.082221	RUNS UP 1st	0.528307
	bits 15 to 22	0.984670	DOWN 1st	0.514689
	bits 16 to 23	0.647900	UP 2nd	0.636428
	bits 17 to 24	0.745915	DOWN 2nd	0.909636
	bits 18 to 25	0.654630	CRAPS No. of wins	0.911708
	bits 19 to 26	0.519226	Throws/game	0.665904

Table 47: DIEHARD test results for $\operatorname{LCG}\left(3249286849523012805,1,2^{63}\right)$

	Test	p-value		Test	p-value
	bits 5 to 9	0.1149		bits 20 to 27	0.093004
	bits 4 to 8	0.1278		bits 21 to 28	0.137280
	bits 3 to 7	0.0614		bits 22 to 29	0.077813
	bits 2 to 6	0.7779		bits 23 to 30	0.552101
	bits 1 to 5	0.1789		bits 24 to 31	0.743590
DNA	bits 31 to 32	0.7481		bits 25 to 32	0.908625
	bits 30 to 31	0.8019	PARKING	1st	0.554479
	bits 29 to 30	0.0361		2nd	0.276387
	bits 28 to 29	0.6313		3 rd	0.463618
	bits 27 to 28	0.1649		4 th	0.914635
	bits 26 to 27	0.2872		5 th	0.819442
	bits 25 to 26	0.7782		6 th	0.218799
	bits 24 to 25	0.0970		7 th	0.276387
	bits 23 to 24	0.5768		8th	0.590298
	bits 22 to 23	0.5314		9th	0.842447
	bits 21 to 22	0.3881		10th	0.642555
	bits 20 to 21	0.8980		K-S test for $10 p$-values	0.300768
	bits 19 to 20	0.9086	MDIST		0.963428
	bits 18 to 19	0.9282	SPHERE	1st	0.37958
	bits 17 to 18	0.0210		2nd	0.39040
	bits 16 to 17	0.8397		3 rd	0.43940
	bits 15 to 16	0.3680		4th	0.08448
	bits 14 to 15	0.4006		5 th	0.96621
	bits 13 to 14	0.0804		6 th	0.35165
	bits 12 to 13	0.1328		7 th	0.00055
	bits 11 to 12	0.8905		8th	0.64554
	bits 10 to 11	0.7657		9th	0.09126
	bits 9 to 10	0.4831		10th	0.06005
	bits 8 to 9	0.8616		11th	0.10416
	bits 7 to 8	0.4749		12 th	0.76144
	bits 6 to 7	0.5617		13th	0.53002
	bits 5 to 6	0.7151		14th	0.95829
	bits 4 to 5	0.5524		15 th	0.29646
	bits 3 to 4	0.6302		16 th	0.85687
	bits 2 to 3	0.1613		17 th	0.29163
	bits 1 to 2	0.0980		18th	0.65482
COUNT1S	1st	0.803964		19th	0.14456
	2nd	0.473314		20th	0.29321
COUNT1B	bits 1 to 8	0.314205	K-S test for $20 p$-values		0.763644
	bits 2 to 9	0.271624	SQUEEZE		0.921072
	bits 3 to 10	0.598896	OSUMS	1st	0.448758
	bits 4 to 11	0.421438		2nd	0.787182
	bits 5 to 12	0.113834		3nd	0.931507
	bits 6 to 13	0.118614		4nd	0.787418
	bits 7 to 14	0.343508		5 nd	0.157620
	bits 8 to 15	0.619938		6 nd	0.652882
	bits 9 to 16	0.852324		7 nd	0.636972
	bits 10 to 17	0.232142		8nd	0.153021
	bits 11 to 18	0.968922		9 nd	0.676151
	bits 12 to 19	0.303762		10nd	0.261674
	bits 13 to 20	0.407089	K-S test for $10 p$-values		0.207865
	bits 14 to 21	0.115875	RUNS	UP 1st	0.830472
	bits 15 to 22	0.915336		DOWN 1st	0.008008
	bits 16 to 23	0.026976		UP 2nd	0.675384
	bits 17 to 24	0.417301		DOWN 2nd	0.025304
	bits 18 to 25	0.599062	CRAPS	No. of wins	0.699833
	bits 19 to 26	0.566468		Throws/game	0.610991

5 Conclusion

We summarized the principle and features of LCGs that are frequently used in particle-transport Monte Carlo methods and tests used to investigate the quality of the LCGs. We also performed the spectral test, Knuth's standard tests and Marsaglia's DIEHARD tests for the MCNP RNG, 63-bit LCGs extended from the MCNP RNG and 63-bit LCGs proposed by L'Ecuyer.

The MCNP RNG fails the OPSO, OQSO and DNA tests in the DIEHARD test suite, whereas it passes the spectral test, the standard tests and other tests in DIEHARD. However less significant bits fail the tests and thus it does not matter in the practical use.

The 63-bit LCGs extended from the MCNP RNG fail the spectral test, whereas they pass the spectral and DIEHARD tests. We have found that we cannot simply extend the current MCNP RNG to a 63 -bit LCG.

L'Ecyer's 63 -bit LCGs pass all the tests and their multipliers are excellent judging from the spectral test. Therefore, it is considered that they are the most promising LCGs for the next version of the RNG package.

References

[1] D. H. Lehmer, "Mathematical methods in large-scale computing units," Proc. of the Second Symp. on Large Scale Digital Computing Machinery, Harvard University Press, Cambridge, Massachusetts, pp.141-146 (1949).; Ann. Comp. Lab. Harvard University, 26 (1951).
[2] P. L'Ecuyer, "Tables of Linear Congruential Generators of Different Sizes and Good Lattice Structure," Math. Comp., 68, 249-260 (1999).
[3] D. E. Knuth, "The Art of Computer Programming, Vol.2: Seminumerical Algorithms," 3rd edition, Addison Wesley Longman (1998).
[4] G. Marsaglia, Diehard software package.
http://stat.fsu.edu/~geo/diehard.html
[5] R. R. Coveyou and R. D. MacPherson, "Fourier analysis of uniform random number generators," J. Assoc. Comp. Mach., 14, pp. 100-119 (1967).
[6] U. Dieter, "How to calculate shortest vectors in a lattice," Math. Comput., 29, pp. 827-833 (1975).
[7] D. E. Knuth, "The Art of Computer Programming, Vol.2: Seminumerical Algorithms," 2nd edition, Addison Wesley (1981).
[8] T. R. Hopkins, "A Revised Algorithm for the Spectral Test," Applied Statistics, 32, pp. 328-335.
[9] G. Marsaglia, "Random Numbers Fall Mainly in the Planes," Proc. National Academy of Sciences, U.S.A., 61, pp.25-28 (1968).
[10] J. W. S. Cassels, "Introduction to the Geometry of Numbers," Springer (1959); Reprint of the 1971 edition (1997).
[11] G. S. Fishman and L. R. Moore, "An exhaustive analysis of multiplicative congruential random number generators with modulus $2^{31}-1$," SIAM J. Sci. and Statist. Comput., 7, pp. 129-136 (1986).
[12] G. S. Fishman, "Multiplicative Congruential Random Number Generators with Modulus 2^{β} : An Exhaustive Analysis for $\beta=32$ and a Partial Analysis for $\beta=48$," Math. Comp., 54, 331-344 (1990).
[13] P. L'Ecuyer, "Efficient and Portable Combined Random Number Generators," Comm. ACM, 31, 742 (1988).
[14] Free Software Foundation, http://www.gnu.org/software/bc/bc.html
[15] G. Marsaglia, "The structure of linear congruential sequences," in $A p$ plications of Number Theory to Numerical Analysis, S.K. Zaremba ed., Academice Press, pp. 249-285 (1972).
[16] G. S. Fishman, "Monte Carlo, concept, Algorithm, and Applications," Springer (1995).
[17] M. Mascagni and A. Srinivasan, SPRNG: a scalable library for pseudorandom number generation. http://sprng.cs.fsu.edu/
[18] J. E. Gentle, "Random Number Generation and Monte Carlo Methods," Springer (1998).
[19] L'Ecuyer, "Random Number Generation", Chapter 4 of the Handbook on Simulation, Jerry Banks Ed., Wiley, pp.93-137 (1998).
[20] Z. W. Birnbaum and F. H. Tingey, "One-sided Confidence Contours for Probability Distribution Functions," Annals Math. Stat., 22, pp.592-596 (1951).
[21] W. H. Press, "Numerical Recipes in C, The Art of Scientific Computing Second Edition," CAMBRIDGE UNIVERSITY PRESS, Chapter14 (1992).
[22] I. Vattulainen, et. al., "A comparative study of some pseudorandom number generators," Comp. Phys. Comm., 86, 209 (1995).
[23] M. Mascagni and A. Srinivasan, "Parameterizing Parallel Multiplicative Lagged-Fibonacci Generators," submitted to Parallel Computing.
[24] G. Marsaglia," A Current View of Random Number Generators," Proc. of Computer Science and Statistics: 16th Symposium on the Interface, Atlanta, 1984 (1984).

[^0]: ${ }^{1}$ It seems that a car occupies a square of side 1 in the DIEHARD program.

