
Form 836 (7/06)

LA-UR-
Approved for public release;
distribution is unlimited.

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC
for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By acceptance
of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the
published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests
that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National
Laboratory strongly supports academic freedom and a researcher’s right to publish; as an institution, however, the Laboratory does not
endorse the viewpoint of a publication or guarantee its technical correctness.

Title:

Author(s):

Intended for:

11-04834

Coarse Mesh Finite Difference in MCNP5

Mitchell T.H. Young, Forrest B. Brown,
Brian C. Kiedrowski, William R. Martin

MCNP References

Coarse Mesh Finite Difference in MCNP5

Mitchell T.H. Young F.B. Brown* B.C. Kiedrowski*

W.R. Martin

The University of Michigan–Ann Arbor

Department of Nuclear Engineering & Radiological Sciences

2355 Bonisteel Boulevard, Ann Arbor, MI 48109, USA

youngmit@umich.edu, wrm@umich.edu

*Los Alamos National Laboratory

X-Computational Physics Division, Monte Carlo Codes Group

P.O. Box 1663, MS A143

Los Alamos, NM 87545, USA

fbrown@lanl.gov, bckiedro@lanl.gov

August 18, 2011

Abstract

Lee, et. al.[4] [5] have demonstrated the feasibility of applying a Coarse Mesh Finite Difference
(CMFD) acceleration technique to accelerate fission source distribution (FSD) convergence in monte carlo
criticality calculations. Most of these implementations have been done in 1- and 2-D with multigroup
monte carlo. In this work, a CMFD solver has been implemented in MCNP to facilitate FSD acceleration
in 3-D with continuous-energy cross sections for more general applications. Some promising results have
been obtained for full-core reactor simulations in which pure finite difference techniques have been able
to accelerate FSD convergence. CMFD results have proved less robust and require further investigation.

1

Contents

1 Introduction 3

2 CMFD Theory 3
2.1 Multigroup Cross Sections . 3
2.2 CMFD Formulation . 4

2.2.1 CMFD Correction . 5
2.2.2 Extension to 3D . 6
2.2.3 Boundary Conditions . 6

3 Functionality 7
3.1 Module Installation . 7
3.2 Module Initialization . 7
3.3 FMESH Tallies . 7
3.4 Updating . 8
3.5 CMFD Calculation . 9
3.6 Fission Source Redistribution . 10

4 Results 12
4.1 Boxy Kord Smith Challenge . 12

4.1.1 Pure FDM Results . 12
4.1.2 CMFD Results . 12

5 Conclusions 16

A Subroutine and Function Reference 17
A.1 cmfd init . 17
A.2 cmfd update . 17
A.3 cmfd solve . 17
A.4 cmfd lu . 18
A.5 cmfd bank . 18
A.6 cmfd test . 19

B Source Code 19

2

1 Introduction

A new module, cmfd mod is added to the MCNP5 source code to provide coarse mesh finite difference
(CMFD) functionality for k-eigenvalue calculations. CMFD can be used to accelerate the convergence of the
fission source distribution in critical systems with high dominance ratios, such as certain large reactors or
larger systems like spent fuel pools.

The CMFD solver uses the data from several mesh tallies to generate 2-group cross sections of interest
(see section 2) and uses these cross sections to solve a set of linear equations to converge the fission source
deterministically on a coarse mesh. If the fission source distribution is significantly more accurate than the
current state of the Monte Carlo-determined fission source, acceleration of the fission source convergence can
be achieved.

2 CMFD Theory

The CMFD implementation in MCNP operates by inserting an extra step in between the KCODE cycles
that performs the following tasks:

1. Compute multigroup cross sections within each mesh region,

2. initialize the CMFD equations,

3. solve the system iteratively, and

4. resample the fission source bank using CMFD results.

How each of these tasks are performed will be described from a theoretical standpoint below.

2.1 Multigroup Cross Sections

While in most cases, MCNP operates on continuous-energy cross-section data, the CMFD equations are
multigroup and therefore require multigroup cross sections. More specifically, while the solution routines have
been generalized for an arbitrary number of energy groups, a two-group formulation is presently employed.
Two-group cross sections are much simpler to implement, since the scattering matrix only contains an entry
for Σs12, which in the absence of upscattering can be calculated using a balance equation with already
available data. Obtaining a full multigroup scattering matrix would require additional modifications to the
MCNP code to tally each inter-group scattering event. A simple balance equation for group 2 neutrons is
instead used to solve for Σs12 directly,

Σs12φ1 = Σa2φ2 + J+
net,2 − J−net,2, (1)

where Σa2 is the absorption cross section in the thermal group; φ1 and φ2 are the fast and thermal fluxes,
respectively; J+

net,2 is the net outgoing thermal current from a control volume; and J−net,2 is the net incoming
thermal current.

The other cross sections of interest in the CMFD equations are the removal cross section, Σr, the fission
production cross section νΣf , and the diffusion coefficient, D. In this analysis the diffusion coefficient is
approximated by assuming isotropic scatter, giving the definition

D =
1

3Σt
(2)

In the two-group case it is assumed that all fission neutrons are born into group 1, and therefore a χ
distribution is not needed.

Cross section values are determined within each mesh region of the CMFD problem domain using FMESH
tallies and corresponding tally multipliers for the reactions of interest (total, νΣf , absorption). The associ-
ated tally scores are accessed directly from the corresponding fm array internal to MCNP. Since these tally

3

r,i

Di
r,i+1

Di+1

i

i+1

s ,Ji

hi

x i-1 x i x i+1

Figure 1: Box scheme in 1 [3]

scores have not been normalized by volume or source particle weight at the time of cross section calculation,
the quantity contained in the score is

tally =
�

V
φΣdV, (3)

where Σ is a cross section of interest and φ is the scalar flux within region V .
It is possible to calculate a cross section of interest as a ratio of the un-normalized tally scores for an FM

multiplied reaction rate tally and an un-multiplied flux tally,

Σ =
reaction tally

flux tally
. (4)

The removal cross section in the context of the CMFD equations is defined as Σt − Σsgg. Since MCNP
does not collect scattering matrix data, an alternate formulation is used which considers absorption and
out-scattering as

Σr1 = Σa1 + Σs12 (5)
Σr2 = Σa2. (6)

2.2 CMFD Formulation

CMFD is a method derived from standard finite difference diffusion theory, which uses neutron currents
obtained from a higher-order solution to improve the fidelity of the finite difference (FDM) solution. In
standard FDM, Fick’s Law is used to determine the current between two elements in the problem domain.
Figure 1 depicts a one-dimensional representation of the box scheme used below.

Current at the interface between the ith and i + 1th can be expressed using Fick’s Law from the left and
right sides as

Js,l =
−Di(φs − φi)

hi/2
, and (7)

Js,r =
−Di+1(φi+1 − φs)

hi+1/2
. (8)

By imposing equality between the surface currents as determined from the right and left sides, the
expression

−Di(φs − φi)
hi/2

=
−Di+1(φi+1 − φs)

hi+1/2
(9)

4

is obtained. Solving for φs [3] yields

φs =
Di
hi

φi + Di+1
hi+1

φi+1

Di
hi

+ Di+1
hi+1

. (10)

Defining a new term, relative diffusivity β as

βi =
Di

hi
, (11)

and rearranging the expression for Ji gives the result

Ji = − 2βiβi+1

βi + βi+1
(φi+1 − φi). (12)

Finally a coupling coefficient, D̃i is defined as

D̃i =
2βiβi+1

βi + βi+1
, (13)

which is a quantity that relates the surface current, Ji to the flux difference between the i- and i− 1th mesh
regions. With the above definitions in place, it is straightforward to develop a neutron balance equation
in one dimension is developed by considering loss and source terms. In the multigroup case, the balance
equation for a mesh region with neighbors to the left and right are expressed as

hiΣi
r,gφ

i
g − D̃i

g(φ
i+1
g − φi

g) = F i
g + Si

g − D̃i
g(φ

i
g − φi−1

g), (14)

where Si
g and F i

g are the total scattering and fission sources for the ith region within group g, respectively:

Si
g = Vi

�

g� �=g

Σi
sg�gφ

i
g� (15)

F i
g = Vi

χi
g

k

�

g�∈G

νΣi
fg�φi

g� . (16)

In the one-dimensional case, the mesh volumes, Vi are treated as mesh widths, hi.

2.2.1 CMFD Correction

The concept of CMFD is introduced into the standard FDM equations. CMFD operates by introducing an
extra term, D̂ to the current equation to produce

Ji = −D̃i(φi+1 − φi) + D̂i(φi + φi+1). (17)

The value of D̂ is obtained from a higher-order solution. Rewriting Eq. (14) with the inclusion of the D̂
correction, and performing some rearrangement yields

φi−1
g (−D̃i−1

g − D̂i−1
g) + φi

g(hiΣi
r,g + D̃i−1

g + D̃i
g + D̂i

g − D̂i−1
g) + φi+1

g (−D̃i
g + D̂i

g) = Si
g + F i

g. (18)

The above equation is arranged so that all terms corresponding to each flux value are collected. This
formulation is more similar to the matrix representation of the system, which is presented elsewhere in this
document.

5

2.2.2 Extension to 3D

For use in real-world applications, it is necessary to extend equation (18) to three dimensions. Fortunately,
this is quite simple, since all that is needed is the addition of extra coupling coefficients to account from mesh
interfaces in the y and z directions. From here on, different notation is used to reference neighboring nodes
in each direction; each neighbor will be referenced as north/south (y direction), east/west (x direction),
and up/down (z direction). For neutron current conventions, the positive direction is considered to be
west→east, north→south, and top→bottom. The subscripts n, s, e, w, u,and d are used to denote these
directions. Incorporating all three dimensions results in the balance equation

φw
g Ax(−D̃w

g − D̂w
g) + φe

gAx(−D̃e
g + D̂e

g) + φi
gAx(D̃w

g + D̃e
g + D̂e

g − D̂w
g)+

φn
g Ay(−D̃n

g − D̂n
g) + φs

gAy(−D̃s
g + D̂s

g) + φi
gAy(D̃n

g + D̃s
g + D̂s

g − D̂n
g)+

φu
gAz(−D̃u

g − D̂u
g) + φd

gAz(−D̃d
g + D̂d

g) + φi
gAz(D̃u

g + D̃d
g + D̂d

g − D̂u
g)+

Viφ
i
gΣ

i
r,g = Si

g + F i
g, (19)

where Ax, Ay and Az are the cross sectional areas of the mesh elements perpendicular to the x, y and z-axes,
respectively.

Equation (19) is solved iteratively in a large coupled system of equations by the cmfd solve routine.

2.2.3 Boundary Conditions

The boundary of the spatial domain is handled using an albedo boundary condition. In this formulation the
albedo, α is defined as

α =
−Js

φs
, (20)

where Js is the incoming current at a boundary surface and φs is the flux on the boundary surface. By
employing Fick’s Law to represent the Js in terms of the the flux in the mesh region containing the boundary
surface, the following expression is obtained:

Js = −αsφs = −Di
φi − φs

hi
2

, (21)

where Di, φi and hi are the diffusion coefficient, flux and width of the boundary mesh region, respectively.
Solving for φs yields

φs = φi

�
2Di
hi

2Di
h1

+ αs

�
. (22)

Dividing the numerator and denominator by two allows the use of our definition βi ≡ Di
hi

to assume a more
familiar form. Defining a boundary diffusivity, βs = αs

2 results in

φs = φi

�
Di
hi

Di
hi

+ αs
2

�
= φi

�
βi

βi + βs

�
. (23)

Inserting the above expression for φs into Eq. (21) produces

Js = −αs
βi

βi + βs
φi =

2βsβi

βs + βi
. (24)

The above result looks suspiciously like our previous definition of D̃, allowing us to treat boundary surfaces
similarly to interior surfaces by calculating D̃ for the boundary using the modified definition for the surface
diffusivity, βs. Once the coupling coefficients, D̃s have been generated, the only difference in treatment from
interior surfaces is that only the flux of the boundary mesh region is used to calculate the current;

Js = D̃sφi. (25)

6

3 Functionality

3.1 Module Installation

Building MCNP5 with CMFD support is relatively simple. Following the steps below and rebuilding MCNP
will result in a new MCNP build with the CMFD functionality.

1. Copy the cmfd mod.F90 module file to the src/ directory.

2. Copy the updated fmesh mod.F90 module file into the src/ directory.

3. Replace the Depends file with the included version. This adds the cmfd mod module as a dependency
to several other source files.

4. Edit crit1 mod.F90 to include

(a) a USE statement for the CMFD module (USE :: cmfd mod, ONLY cmfd test) in the preamble,
(b) a call to the cmfd test subroutine in the location shown in Listing 1.

Listing 1: Calling cmfd test
293 ! reorder fso by history number if threading requires it.
294 if(ntasks >1) then
295 ! fission bank data in fso_src , use fso_bnk for scratch
296 call fso_reorder(fso_max_items ,fso_max_count , fso_src_count , fso_src , fso_bnk)
297 endif
298
299 call cmfd_test (1.0)
300
301 ! turn off flag if settling cycles are all done.
302 if(kcy==ikz .and. kcheck ==0) cpk = cts
303 call ra_iichck(mcheck)
304 if(kcheck >0 .and. kcy -1== lsav .and. mcheck ==0) cpk = cts
305 if(ksdef /=0) ksdef = -1
306 endif

3.2 Module Initialization

Every time the CMFD solution routine is called, it checks the value of a logical variable that indicates the
initialization status of the module. If the module is uninitialized, the subroutine cmfd init is called. The
purpose of the subroutine is to collect basic information about the MCNP problem that is being run and to
allocate memory for all of the internal variably-sized arrays.

The cmfd init subroutine first sweeps through the fm array (the primary storage location for FMESH
tallies), searching for internal IDs of the FMESH tallies that are needed for cross section generation and
partial currents. Once all of the FMESH tallies have been located, the geometric characteristics of the meshes
are inspected to determine the geometry of the CMFD problem domain. The number of mesh elements in
each direction as well as the size of each mesh region along each axis is determined from the mesh used to
determine partial currents. MCNP assumes that all other meshes are geometrically identical, and there is
currently no error checking functionality to verify this.

3.3 FMESH Tallies

The correct implementation of FMESH tallies in the MCNP input deck is essential to the proper functionality
of the CMFD module. FMESH tallies are needed for

partial currents,

7

Table 1: Magic numbers and FM cards for each FMESH tally. Interaction numbers assume continuous
energy.

Interaction FMESH Number FM Card[6]
Partial current 1 a None
Flux 4 None
Total 14 FM -1.0 0 -1
Absorption 34 FM -1.0 0 -2:-6
Fission 24 FM -1.0 0 -6 -7
a Any number ending in a 1 will result in a partial

current tally.

un-multiplied neutron flux,

total interactions,

absorption interactions, and

fission-neutron generation (νΣf).

Since the partial current FMESH tally only tallies outward currents for each mesh element, it is necessary
to specify the mesh to include a “halo” of inactive elements surrounding the active problem domain in
order to properly capture incoming current at the boundary of the problem domain. The CMFD module
automatically discards the data in these ghost mesh elements. In order to maintain consistency between the
current mesh and the other meshes, this halo should be incorporated into the the other meshes as well. In
the end, all FMESH cards should have the exact same geometric specifications.

While this functionality may be changed in the future, the CMFD module’s initialization subroutine
currently uses several “magic numbers” to locate the necessary mesh tallies. The numbers used for each
mesh tally are presented in Table 1.

3.4 Updating

Following initialization, the CMFD module has no values for the multigroup cross sections. It is necessary to
run the cmfd update subroutine to obtain values from the mesh tallies and calculate necessary cross sections.
The update routine sweeps through each active mesh element interface and stores the value in the associated
current mesh tally and normalizes it by the total source particle weight and the area of the interface current.
The resultant current value is calculated with

J = FM/(AWtot), (26)

where FM is the tally score, A is the interface area and Wtot is the total source particle weight.
Another sweep is then performed to calculate cross sections within each region. The raw tally score from

each mesh tally is divided by the raw score of the un-multiplied flux tally to produce the cross section for
the interaction of interest. Once the tallied cross sections are calculated, the downscattering cross section,
Σs12 is generated using

Σs12 =
A2 + Jout

2 − J in
2

Φ1
, (27)

where A2 is the un-normalized absorption-multiplied tally score for the thermal group and Φ1 is the un-
normalized fast group flux. This formula is adapted from Eq. (1).

The removal cross sections for the fast and thermal group are calculated as described in Eqs. (5) and
(6).

8

Figure 2: Structure of the migration matrix, M. Bold lines indicate non-zero entries, while horizontal and
vertical lines are included to show structure.

With all group constants accounted for, the update routine proceeds to calculate the relative diffusivities,
β. Surfaces at the boundary of the mesh are treated differently, using a surface albedo (see section 2.2.3),

βbound =
J in

bound

2φ
. (28)

The D̃ and D̂ values associated with each mesh interface are then calculated using these β values. The
expression for D̂ is a simple rearrangement of Eq. (17), giving

D̂ =
J + D̃(φR − φL)

φR + φL
, (29)

where φR and φL correspond to the flux in the mesh elements to the right and left (with respect to positive
current conventions) of the surface for which D̂ is being calculated.

Finally, the update subroutine constructs a migration matrix (discussed more in section 3.5) by calculating
each of the terms in Eq. (19) multiplied by each flux. Terms corresponding to neighboring fluxes are stored
in the coup array, as they comprise the off-diagonals of the migration matrix. The diagonal of the migration
matrix, which contains all terms multiplied by the local mesh region flux, is stored in a separate vector called
diag.

3.5 CMFD Calculation

Solution of the CMFD equations is carried out by applying the power method to the matrix equation

Mφ = (λF + S) φ, (30)

where M is the migration matrix defined by the left-hand side of Eq. (19), F and S are the fission and
scattering matrices represented on the right-hand side of Eq. (19). As it is implemented, the solution mech-
anism of the CMFD module employs a group-major ordering scheme, in which the flux vector and matrices

9

use energy group as the primary ordering index, and node index as the secondary index. Furthermore, the
nodes are indexed using the “natural” ordering scheme, in which the node index, i is determined using

i = xmaxymaxzi + xmaxyi + xi, (31)

where xmax and ymax are the number of nodes along the x- and y-axes, respectively, and xi, yi, and zi are the
coordinates of node i. With these definitions, the migration matrix has the form of the banded septi-diagonal
matrix shown in Fig 2. The main diagonal contains the terms multiplied by the current mesh region flux,
and the off-diagonals contain the coupling coefficients between the current mesh region and its neighbors.
Gaps in the migration matrix occur at nodes which lie on the boundary of the mesh, since they are not
coupled to any neighboring node. Leakage through the boundary of the problem domain is accounted for in
the diagonal term of the matrix. In its natural form, this system would be very computationally challenging
to solve. To help simplify the problem, the far off-diagonals (north, south, up, and down coupling) are
subtracted to the right hand side of the equation and incorporated into the solution routine using a previous
iteration flux value. The remaining block tri-diagonal matrix is then solved directly using LU decomposition
with forward-backward substitution to compute the flux in the current group along a single strip of mesh
regions along the x-axis.

The sweep along the y- and z-axes which performs this operation on the entire domain is referred to
as the inner iteration, which is repeated several times to achieve partial convergence for the current fission
and scattering sources that are fixed for the duration of the inner iterations. Following the series of inner
iterations, the next energy group is selected and the inner iterations are performed for that group. Once all
groups have been operated upon, the fission and scattering sources are updated and the process is repeated.
This level of repetition is called the outer iteration, and is repeated until the k and the flux distribution
have converged, or a maximum number of outer iterations have been performed. The entire soution routine
is depicted in Fig. 3.

3.6 Fission Source Redistribution

Following the convergence of the flux distribution from the power method, the solution is used to redistribute
the fission source bank that MCNP uses to sample source neutrons in the following cycle. A fission source
distribution is first calculated using the multi-group flux distribution using

ψi =
�

g∈G

νΣi
fgφ

i
g, (32)

where ψi is the fission source within mesh region i. Once the fission source is calculated, the relative strengths
are used as sampling weights to bias the selection of the fission neutrons already contained within the fso bnk

array. To perform this weighting the fso bnk array is swept to determine the source point population within
each mesh element. A weighting vector (one entry per entry in fso bnk) is then generated by taking the
ratio of the fission source strength to the source point population of the mesh region,

W i =
ψi

N i
, (33)

where N i is the number of fission source points located in the i-th node of the monte carlo-generated fission
source bank and ψi is the fission source strength determined from the CMFD calculation.

Following the generation of the weight vector, the subroutine cmfd sample is used to perform weighted
sampling of the existing fso bnk array. A single-pass method is used to draw source points from fso bnk

and store them in fso src based on their weights. The sampling routine uses a random process to sample
each point in fso bnk a number of times consistent with that point’s weight. The output of the routine is
a list of indexes corresponding to entries in fso bnk. This list is used to construct fso src with the new
fission source distribution.

10

Figure 3: Simplified solution routine.

11

Figure 4: Top view of the boxy Kord Smith Challenge problem.

4 Results

4.1 Boxy Kord Smith Challenge

An adaptation of the “Kord Smith Challenge” problem [2] was created to test the functionality and effective-
ness of the CMFD method. The original benchmark describes a full-core system with a cylindrical reactor
vessel, which results in several regions of the solution mesh to lie in void regions, which present difficulties
to the CMFD solver. To avoid issues related to these void mesh elements, the problem was modified to have
a square-shaped reactor vessel with water filling the extra space. A top view of the modified problem is
depicted in Fig. 4.

4.1.1 Pure FDM Results

It was found that the D̂ term used for CMFD correction is highly sensitive to stochastic noise. To achieve a
stable solution with fewer histories, pure FDM (no CMFD correction) was used to obtain the following results.
The calculation used 400,000 particles per cycle, and 10 cycles before performing the FDM calculation.

Values of the Shannon entropy of the fission source distribution at each cycle are plotted in Fig. 5 for
both the FDM-accelerated case and the natural case, in which no acceleration technique is used. At cycle
10, the adjustment of the fission source results in a distribution that it much closer to the converged FSD.
There is an undershot of the converged source entropy from which the fission source must recover, however
source convergence is accelerated significantly nonetheless. The FDM case appears to have converged after
about 50 cycles, while the natural case requires upwards of 100 cycles to converge.

Figure 6 depicts the thermal flux distribution on a plane normal to the z-axis in the middle of the core
before and after FDM correction. By the 10th cycle, the flux distribution is still very flat from the initial
guess and has yet to develop the center-peaked distribution that is anticipated. Immediately after the FDM
correction, the flux distribution assumes this shape.

4.1.2 CMFD Results

Analyzing the same problem using the same KCODE settings (400,000 particles per cycle and 10 cycles
before CMFD) with the CMFD correction enabled appeared highly sensitive to stochastic noise in the tally
data. Figure 7 presents the CMFD solution for thermal flux from six independent runs using different
random number seeds. Clearly the solution is highly variant, which implies that the values for D̂ are not
fully converged. Direct comparison of the D̂ values from 10 independent runs showed an average relative

12

 5.45

 5.5

 5.55

 5.6

 5.65

 5.7

 5.75

 5.8

 5.85

 5.9

 5.95

 0 10 20 30 40 50 60 70 80 90 100

So
ur

ce
 E

nt
ro

py

Cycle

CMFD Cycle 10
No CMFD

Figure 5: Shannon entropy convergence of the fission source distribution with the FDM solver invoked
between the 10th and 11th cycles.

13

1e-08
2e-08
3e-08
4e-08
5e-08
6e-08
7e-08
8e-08
9e-08
1e-07
1.1e-07

X

Y

’plane_f2’

0 2 4 6 8 10 12 14 16 18
0

2

4

6

8

10

12

14

16

18

(a) Before FDM

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

X

Y

’plane_fs2’

0 2 4 6 8 10 12 14 16 18
0

2

4

6

8

10

12

14

16

18

(b) After FDM

Figure 6: Thermal flux distribution before and after FDM correction for a plane halfway up the z-axis.

14

0

5e-06

1e-05

1.5e-05

2e-05

2.5e-05

3e-05

’1/plane_fs2’

0 2 4 6 8 10 12 14 16 18
0

2

4

6

8

10

12

14

16

18

0
2e-06
4e-06
6e-06
8e-06
1e-05
1.2e-05
1.4e-05
1.6e-05
1.8e-05

’2/plane_fs2’

0 2 4 6 8 10 12 14 16 18
0

2

4

6

8

10

12

14

16

18

0

5e-06

1e-05

1.5e-05

2e-05

2.5e-05

3e-05

3.5e-05

’3/plane_fs2’

0 2 4 6 8 10 12 14 16 18
0

2

4

6

8

10

12

14

16

18

0

5e-06

1e-05

1.5e-05

2e-05

2.5e-05

3e-05

3.5e-05

’4/plane_fs2’

0 2 4 6 8 10 12 14 16 18
0

2

4

6

8

10

12

14

16

18

0
2e-06
4e-06
6e-06
8e-06
1e-05
1.2e-05
1.4e-05
1.6e-05
1.8e-05
2e-05

’5/plane_fs2’

0 2 4 6 8 10 12 14 16 18
0

2

4

6

8

10

12

14

16

18

0

5e-06

1e-05

1.5e-05

2e-05

2.5e-05

3e-05

’6/plane_fs2’

0 2 4 6 8 10 12 14 16 18
0

2

4

6

8

10

12

14

16

18

Figure 7: CMFD solution flux distributions from several independent runs.

standard deviation of 2.0479. From these results, D̂ appears to be much more variant than the most other
group constants, which have average relative standard deviations in the range of several percent.

Using many more particles per cycle and accumulating 30 cycles worth of tallies resulted in a much better
result, though still obviously incorrect. Figure 8 depicts the fast flux and net leakage from the CMFD solution
using 800,000 particles per cycle and 30 cycles of tally data before calculation. While the result is much closer
to the right solution than the previous case, there still appear to be inconsistencies. The cross-shaped flux
peaking is non-physical and appears to be an artifact of the current tally. Figure 8b shows the net leakage
from each mesh element, with positive values representing a loss of neutrons to the element’s surroundings
and negative values representing a source of neutrons from the element’s surroundings. Since the CMFD
correction aims to preserve this current scenario, it is not surprising to see flux peaking in elements with
abnormally high incoming current.

15

0
0.5
1
1.5
2
2.5
3
3.5
4

x

y

’plane_fs1’

0 2 4 6 8 10 12 14 16 18
0

2

4

6

8

10

12

14

16

18

(a) Fast flux

-0.0001
-8e-05
-6e-05
-4e-05
-2e-05
0
2e-05
4e-05
6e-05
8e-05
0.0001
0.00012

x

y

’plane_jl1’

0 2 4 6 8 10 12 14 16 18
0

2

4

6

8

10

12

14

16

18

(b) Fast leakage

Figure 8: CMFD solution for fast flux and net leakage.

5 Conclusions

Results obtained with the pure FDM methods appear promising for the case that was examined. The FSD
produced by the solver was significantly closer to being fully converged than the original distribution, aiding
in the rate of convergence. In most cases however, the fission source sampling routine tended to chronically
over-concentrate the FSD when building the fission source bank for the next cycle. This behavior results
in a sampled FSD that has a notably lower Shannon entropy than the actual solution obtained from the
FDM/CMFD solver. This behavior is undesirable, since it impairs the efficiency of the method and prevents
the effectiveness of using the method multiple times throughout the inactive cycles.

Implementation of the CMFD correction was found to be very sensitive to stochastic noise, exhibiting
much higher variance than other group constants used to solve the FDM system.

Future work should involve further investigation of the sensitivity of the CMFD correction, and analysis
of the potential payoff of using the number of particles needed to accurately employ the method. A more
broad survey of the types of problems in which the CMFD method is applicable or beneficial would also be
helpful. Other methods of sampling the FSD for use as a monte carlo source should also be explored in the
hopes of more accurately portraying the deterministic solution with the fission source bank.

In the case of 3D, continuous-energy monte carlo it is possible that CMFD is simply not an effective
method. Instead, investigation of the FDM without CMFD correction could lead to a more promising
technique. Without the CMFD correction it would likely be necessary to employ a similarly coarse mesh
for obtaining group constants, but a finer mesh for calculating a solution in order to minimize discretization
error.

References

[1] Bruce A. Finlayson. LU decomposition of a tridiagonal matrix. http: // faculty. washington. edu/
finlayso/ ebook/ algebraic/ advanced/ LUtri. htm .

[2] J.E. Hogenboom, W.R. Martin, and B. Petrovic. Monte carlo performance benchmark for detailed power
density calculation in a full size reactor core. OECD/NEA, 2009.

[3] H. G. Joo. Solution of one-dimensional, one-group neutron diffusion equation. NERS 561 Lecture Notes.
University of Michigan., 2011.

[4] Min-Jae Lee, Han Gyu Joo, Deokjung Lee, and Kord Smith. Investigation of cmfd accelerated monte
carlo eigenvalue calculationi with simplified low dimensional multigroup formulation. PHYSOR, 2010.

16

http://faculty.washington.edu/finlayso/ebook/algebraic/advanced/LUtri.htm
http://faculty.washington.edu/finlayso/ebook/algebraic/advanced/LUtri.htm

[5] Min-Jae Lee, Han Gyu Joo, Deokjung Lee, and Kord Smith. Multigroup monte carlo reactor calculation
with coarse mesh finite difference formulation for real variance reduction. Joint International Conference
on Supercomputing in Nuclear Applications and Monte Carlo, 2010.

[6] X-5 Monte Carlo Team. MCNP A General Monte Carlo N-Particle Transport Code, Version 5 Volume
II: Users Guide. Los Alamos National Laboratory, LA-CP-03-0245, February 2008.

A Subroutine and Function Reference

A.1 cmfd init

This subroutine initializes the CMFD module. All work that must be done only once per MCNP run is
performed in this subroutine. The following tasks are performed in order:

1. Locate the IDs of the necessary mesh tallies to perform CMFD,

2. analyze the mesh geometry and check for errors,

3. allocate memory for the structures needed during the CMFD analysis.

Since the required memory allocation takes place within cmfd init, it is important that this subroutine
be called prior to calling any other subroutines or functions in the CMFD module. The logical variable,
initialized stores the initialization status of the module. Whenever a call to cmfd update is made a check
for logical == .true. is made, and in the event that the module is uninitialized, a call to cmfd init is
made.

A.2 cmfd update

The cmfd update subroutine is called every time it is desired to incorporate new monte carlo tally data into
the estimates for the partial currents or multi-group cross sections. Generally, cmfd update would be called
each time before calling cmfd solve.

The tally IDs that were located by cmfd init are used to calculate all of the group constants necessary
for bulding the FDM/CMFD system. Partial currents are stored in the j array after being normalized by
the source neutron weight, sp norm and the corresponding mesh surface area.

After storing all partial currents, the other group constants are calculated as per Eq. (4) and flux is
stored after normalizing by sp norm and the mesh volume. Removal cross sections are generated using Eq.
(5) and Σs12 is calculated using Eq. (1).

cmfd update then proceeds to calculate the diffusivities, β for each mesh region. In the event of a
boundary region, β is calculated using the definition of βs from section 2.2.3. Coupling coefficients are then
generated using these β values.

With all D̃ and D̂ defined, the migration matrix is constructed from the balance equation (19). The off-
diagonals of the migration matrix are stored in the coup(dir,x,y,z,grp) array, which stores the coupling
terms between the node at x,y,z in the direction dir for energy group grp. Diagonal terms of the migration
matrix are stored in the diag(x,y,z,grp) array. To avoid branching statements, entries are calculated for
coup along the boundaries of the physical problem domain which should technically be zero. These elements
are corrected by an additional sweep along each face of the domain to remove these non-zero entries.

A.3 cmfd solve

After setting up the equations in cmfd update, the cmfd solve subroutine performs the power method on
the system to achieve convergence. This process is carried out by first taking the LU decomposition of the
migration matrix with the four outer-most off-diagonals removed via a call to the cmfd lu subroutine. Since
this process is contained in the cmfd lu subroutine it is discussed in section A.4. By LU decomposing just

17

the main diagonal and the two closest off-diagonals, application of the Gauss-Seidel is facilitated, since in
effect the outer off-diagonals have been removed to the other side of the equation.

An initial, uniform flux distribution is guess of keff = 1 is assumed and cmfd solve enters the outer
iteration. A sweep is performed across all mesh regions to solve for a fission source which will be fixed during
the inner iterations. Each energy group is now treated independently, starting with the higher energy groups
and moving down. For each group, a scattering source is accumulated using the flux solution from the energy
groups above the group of interest. Upscattering is not treated. This scattering source is now added to the
fraction of the fission source emitted in the current group and stored in the src(x,y,z) array, which is also
fixed for the duration of the inner iterations.

Inner iterations are now used to achieve partial convergence given the fixed source provided by the outer
iteration. A sweep is performed along the Y and Z directions, and flux is solved along strips in the X direction.
Coupling from the north, south, top and bottom, which were previously removed from the migration matrix
to facilitate the LU decomposition are added to the right hand side of the system using the flux in these
neighboring nodes from the previous inner iteration. This process is repeated for the number of iterations
defined by IDUM(2).

Once the inner iterations have been performed for each energy group, the eigenvalue, keff is calculated
as

keff =
�
φl,φl

�
�
φl,φ(l−1)

� , (34)

where φl is the flux distribution for the l-th outer iteration. Estimates of the convergence of keff and φ are
calculated using

∆k = |kl − k(l−1)|and (35)

∆φ = | �φ,φ�l − �φ,φ�(l−1) |. (36)

If these error estimates are below the convergence criteria defined in the module parameters, the subroutine
returns. Otherwise, the outer iteration is repeated.

A.4 cmfd lu

The cmfd lu subroutine performs an LU decomposition of the block matrices which describe the west-
east-coupled strips of mesh elements along the x axis. The matrix being operated upon is the result of
subtracting the four outer diagonals of the matrix depicted in Fig. 2. The remaining matrix contains a series
of tridiagonal matrices along the diagonal. Each of these tridiagonal blocks correspond to a strip along the
x-axis at a particular (y, z) position and are treated independently.

The LU decomposition is carried out using an algorithm specific to tridiagonal matrices [1] for efficiency.
The resultant matrices, L and U preserve the tridiagonal structure of the original matrix, allowing them to
be stored as three vectors which define the lower diagonal of L and the main and upper diagonals of U. The
main diagonal of L is all ones.

A.5 cmfd bank

Once a fission source distribution has been obtained from the CMFD solution, cmfd bank adjusts the fission
source, fso src to reflect the CMFD solution. The final fso src is constructed from source particles which
are already stored in the fso src array. cmfd bank starts by sweeping through the existing fission bank
to determine how many source particles exist in each mesh element. The FSD obtained from the CMFD
calculation is then used to build a vector of sampling weights corresponding to each source particle in
fso src, defined by

wgt =
ψ

N
, (37)

where ψ is the fission source strength in the mesh element of the source particle from the CMFD solution
and N is the number of source particles which reside in the mesh element.

18

Once the weight vector has been constructed, it is passed to cmfd sample which samples particles from
fso src based on the weights in the weight vector. cmfd sample returns a list of particle indexes correspond-
ing to entries in the fso src array. These indexes are then used to build fso bnk by copying the associated
entries from fso src.

A.6 cmfd test

This subroutine is the main point of access to the CMFD module and its functionality. Typically, cmfd test

is called from outside of the CMFD module (for instance, between KCODE cycles), and contains function
and subroutine calls which control the progression of the CMFD calculation.

B Source Code

Listing 2: Module Source Code
1
2 module cmfd_mod
3
4 use mcnp_params , only: dknd ,zero ,one ,two ,three ,FSO_XXX ,FSO_YYY ,FSO_ZZZ
5 use mcnp_global , only: nps ,fpi ,kcy ,nsrck ,ikz ,fso_src ,fso_src_count ,fso_bnk ,fso_max_count1 ,

idum ,ntasks ,kct
6 use fmesh_mod , only: nmesh ,fm
7 use varcom , only: kcy
8
9 implicit none

10 private
11
12 logical :: initialized = .false.
13
14 character *40 :: ch40 ,chtemp
15
16 integer ,parameter :: &
17 & g = 2, & ! number of energy groups to treat
18 & mesh_t = 14, & ! mesh id for total interactions
19 & mesh_nsf = 24, & ! mesh id for nu -fission
20 & mesh_flux = 4, & ! mesh id for scalar flux
21 & mesh_abs = 34, & ! mesh id for absorptions
22 & mesh_f = 44 ! mesh id for fission
23
24 real(dknd) :: &
25 & k_eps = 1.e-5, & ! convergence criteria for keff
26 & flux_eps =1.e-4 ! convergence criteria for flux distribution
27
28 integer :: &
29 & nx, & ! Number of nodes in the X direction.
30 & ny, & ! Number of nodes in the Y direction.
31 & nz, & ! Number of nodes in the Z direction.
32 & n, & ! Total number of mesh points.
33 & mesh_t_id , &
34 & mesh_nsf_id , &
35 & mesh_flux_id , &
36 & mesh_abs_id
37
38 integer ,dimension (6) :: j_mesh_id ! mesh IDs for the current tallies
39
40 integer ,allocatable :: nghbr (:,:,:,:) ! map of neighboring regions in each direction
41
42 ! Number of nodes in the Z direction
43 real(dknd) :: &
44 & hx, & ! width of nodes in X direction.
45 & hy, & ! width of nodes in Y direction.

19

46 & hz, & ! width of nodes in Z direction.
47 & ax, & ! surface area in X direction.
48 & ay, & ! surface area in Y direction.
49 & az, & ! surface area in Z direction.
50 & v, & ! volume of mesh cells.
51 & alb_xl =1.e30 , &
52 & alb_xr =1.e30 , &
53 & alb_yl =1.e30 , &
54 & alb_yr =1.e30 , &
55 & alb_zl =1.e30 , &
56 & alb_zr =1.e30 , &
57 & keff
58
59 real(dknd),dimension (3) :: mesh_orig
60
61 real(dknd),allocatable :: &
62 & flux(:,:,:,:), & ! flux in each node (x,y,z)/group.
63 & flux_old (:,:,:,:), & ! flux from previous iteration.
64 & flux_old_out (:,:,:,:), &
65 & d(:,:,:,:), & ! Diffusion coefficient in each node/group.
66 & nu_sf (:,:,:,:), & ! nu -fission " ".
67 & j(:,:,:,:,:), & ! currents in each direction/face/energy. Starts at the zero -th

face.
68 & sigt(:,:,:,:), & ! total cross section.
69 & siga(:,:,:,:), & ! absorption cross section.
70 & sigscat (:,:,:,:,:), & ! scattering matrix (g ,g,x,y,z). Groups come first for cache

eff.
71 & sigr(:,:,:,:), & ! Removal cross section.
72 & d_tilde_x (:,:,:,:), & !
73 & d_tilde_y (:,:,:,:), &
74 & d_tilde_z (:,:,:,:), &
75 & beta_x (:,:,:,:), & ! Relative diffusivity in X direction.
76 & beta_y (:,:,:,:), & ! Relative diffusivity in Y direction.
77 & beta_z (:,:,:,:), & ! Relative diffusivity in Z direction.
78 & diag(:,:,:,:), & ! diagonal vector of the migration matrix
79 & lu_ud (:,:,:,:), & !
80 & lu_uu (:,:,:,:), &
81 & lu_ll (:,:,:,:), &
82 & psi(:,:,:), &
83 & psi_old (:,:,:), &
84 & lu_b (:), &
85 & lu_y (:), &
86 & src(:,:,:), &
87 & chi(:,:,:,:), &
88 & coup_x (:,:,:,:), & !
89 & coup_y (:,:,:,:), &
90 & coup_z (:,:,:,:), &
91 & d_hat_x (:,:,:,:), &
92 & d_hat_y (:,:,:,:), &
93 & d_hat_z (:,:,:,:), &
94 & coup(:,:,:,:,:), &
95 & fso_new (:,:,:,:), &
96 & sample_wgt (:), & ! list of weights provided to sampling routine
97 & flux_avg (:), &
98 & egrp (:), &
99 & scat_tal (:,:,:,:,:,:), &

100 & diag2 (:,:,:,:), &
101 & fsrc_pop (:)
102
103
104 integer ,allocatable :: &
105 & fsrc_pos (:), &
106 & fsrc_ind (:)
107
108 public :: cmfd_test

20

109
110
111 contains
112 ! ===
113 ! initialize the cmfd module with problem gemometry , etc.
114 subroutine cmfd_init ()
115 integer :: i,x,y,z,k
116
117 open(unit =999, file= junk)
118
119 ! locate the IDs of the mesh current tallies.
120 do i=1,nmesh
121 k = mod(fm(i)%id ,100)
122 write (*,*)"id: ", fm(i)%id,k
123 ! write (*,*)"fm info:",fm(i)%
124 select case(k)
125 case (11)
126 j_mesh_id (1) = i
127 case (21)
128 j_mesh_id (2) = i
129 case (31)
130 j_mesh_id (3) = i
131 case (41)
132 j_mesh_id (4) = i
133 case (51)
134 j_mesh_id (5) = i
135 case (61)
136 j_mesh_id (6) = i
137 end select
138 end do
139 ! locate the other tallies neccesary for calculating MG cross sections
140 do i=1,nmesh
141 select case(fm(i)%id)
142 case(mesh_t)
143 mesh_t_id = i
144 case(mesh_nsf)
145 mesh_nsf_id = i
146 case(mesh_flux)
147 mesh_flux_id = i
148 case(mesh_abs)
149 mesh_abs_id = i
150 end select
151 end do
152
153
154 ! TODO do error checking on the tally specs to make sure they all match
155 ! look at the tallies to get the geom info
156 nx = fm(j_mesh_id (1))%nxrb - 3
157 ny = fm(j_mesh_id (1))%nyzb - 3
158 nz = fm(j_mesh_id (1))%nztb - 3
159 !Set up geometry
160 n = nx*ny*nz
161 hx = fm(j_mesh_id (1))%xrbin (2)-fm(j_mesh_id (1))%xrbin (1)
162 hy = fm(j_mesh_id (1))%yzbin (2)-fm(j_mesh_id (1))%yzbin (1)
163 hz = fm(j_mesh_id (1))%ztbin (2)-fm(j_mesh_id (1))%ztbin (1)
164 ax = hy*hz
165 ay = hx*hz
166 az = hx*hy
167 v = hx*hy*hz
168
169 ! find the origin of the ACTIVE region of the mesh
170 mesh_orig (1) = fm(mesh_flux_id)%xrbin (2)
171 mesh_orig (2) = fm(mesh_flux_id)%yzbin (2)
172 mesh_orig (3) = fm(mesh_flux_id)%ztbin (2)
173

21

174 write (*,*)"fso_src_count:",fso_src_count
175
176 write (*,*)"mesh diemensions"
177 write (*,*)"meshes: ", nx,ny ,nz
178 write (*,*)"mesh widths: ",hx ,hy,hz
179 write (*,*)"mesh volume: ",v
180 write (*,*)"more ids: ",mesh_t_id
181 ! allocate memory
182 allocate(flux(nx ,ny,nz ,g))
183 allocate(sigt(nx ,ny,nz ,g))
184 allocate(d(nx ,ny ,nz,g))
185 allocate(nu_sf(nx ,ny ,nz,g))
186 allocate(j(6,0:nx ,0:ny ,0:nz,g))
187 allocate(siga(nx ,ny,nz ,g))
188 allocate(sigr(nx ,ny,nz ,g))
189 allocate(sigscat(g,g,nx,ny ,nz))
190 allocate(beta_x (0:(nx+1),ny,nz ,g))
191 allocate(beta_y(nx ,0:(ny+1),nz ,g))
192 allocate(beta_z(nx ,ny ,0:(nz+1),g))
193 allocate(d_tilde_x (0:nx,ny ,nz,g))
194 allocate(d_tilde_y(nx ,0:ny ,nz,g))
195 allocate(d_tilde_z(nx,ny ,0:nz,g))
196 allocate(lu_ll(nx ,ny ,nz,g))
197 allocate(lu_ud(nx ,ny ,nz,g))
198 allocate(lu_uu(nx ,ny ,nz,g))
199 allocate(flux_old(nx ,ny,nz ,g))
200 allocate(flux_old_out(nx ,ny,nz ,g))
201 allocate(psi(nx ,ny ,nz))
202 allocate(psi_old(nx,ny ,nz))
203 allocate(lu_b(nx))
204 allocate(lu_y(nx))
205 allocate(src(nx ,ny ,nz))
206 allocate(chi(nx ,ny ,nz,g))
207 allocate(diag(nx ,ny,nz ,g))
208 allocate(coup(6,nx ,ny,nz ,g))
209 allocate(d_hat_x (0:nx,ny ,nz,g))
210 allocate(d_hat_y(nx ,0:ny ,nz,g))
211 allocate(d_hat_z(nx,ny ,0:nz,g))
212 allocate(fsrc_pop(n))
213 allocate(sample_wgt(fso_max_count1))
214 allocate(fsrc_pos(fso_max_count1))
215 allocate(fsrc_ind(fso_max_count1))
216 allocate(flux_avg(g))
217 allocate(egrp(g))
218 allocate(scat_tal (0:ntasks -1,g,g,nx,ny ,nz))
219 allocate(diag2(nx ,ny ,nz,g))
220
221
222 ! zero out some stuff that might not get initialized
223 sigscat = 0.0
224 j = 0.0
225
226 write (*,*)"kct",kct
227
228 write (*,*)"tally ids:"
229 write (*,*) j_mesh_id
230
231 ! flag the module as initialized
232 initialized = .true.
233 call cmfd_update
234
235
236 end subroutine cmfd_init
237 ! ===
238 ! update material properties for each node

22

239 subroutine cmfd_update
240 integer :: node ,grp ,x,y,z,ig ,i
241 integer :: xp ,yp,zp
242 real(dknd) :: sp_norm ,tempr1 ,tempr2 ,phi_l ,phi_r ,avg_flux_1 ,avg_flux_2
243 real(dknd) :: flux_tal ,siga_tal ,sigt_tal ,nsf_tal
244
245 ! collect tally data from nodes
246 ! call fmesh_msgcon
247
248 ! tally normalization based on source histories
249 sp_norm = (kcy -ikz)*nsrck
250 do grp=1,g
251 ! reverse the group order to follow high ->low convention
252 ig = g-grp+1
253 ! grab the surface currents from the mesh tally. this gets kind of goofy , so
254 ! we will do it one direction at a time.
255 ! X direction
256 do x=0,nx
257 do y=1,ny
258 do z=1,nz
259 j(1,x,y,z,ig) = fm(j_mesh_id (1))%fmarry(x+1,y+1,z+1,grp ,1)/(sp_norm*ax) ! x+
260 j(2,x,y,z,ig) = fm(j_mesh_id (2))%fmarry(x+2,y+1,z+1,grp ,1)/(sp_norm*ax) ! x-
261 end do ! z
262 end do ! y
263 end do ! x
264 do y=0,ny
265 do x=1,nx
266 do z=1,nz
267 j(3,x,y,z,ig) = fm(j_mesh_id (3))%fmarry(x+1,y+1,z+1,grp ,1)/(sp_norm*ay) ! y+
268 j(4,x,y,z,ig) = fm(j_mesh_id (4))%fmarry(x+1,y+2,z+1,grp ,1)/(sp_norm*ay) ! y-
269 end do ! z
270 end do ! x
271 end do ! y
272 do z=0,nz
273 do x=1,nx
274 do y=1,ny
275 j(5,x,y,z,ig) = fm(j_mesh_id (5))%fmarry(x+1,y+1,z+1,grp ,1)/(sp_norm*az) ! z+
276 j(6,x,y,z,ig) = fm(j_mesh_id (6))%fmarry(x+1,y+1,z+2,grp ,1)/(sp_norm*az) ! z-
277 end do ! y
278 end do ! x
279 end do ! z
280 ! calculate cross sections and fetch important data for each node/group
281 do z=1,nz
282 do y=1,ny
283 do x=1,nx
284 xp = x+1
285 yp = y+1
286 zp = z+1
287 ! get the raw tally values for the current region/group
288 flux_tal = fm(mesh_flux_id)%fmarry(xp ,yp ,zp,grp ,1)
289 siga_tal = fm(mesh_abs_id)%fmarry(xp ,yp ,zp ,grp ,1)
290 sigt_tal = fm(mesh_t_id)%fmarry(xp ,yp ,zp ,grp ,1)
291 nsf_tal = fm(mesh_nsf_id)%fmarry(xp ,yp ,zp ,grp ,1)
292 flux(x,y,z,ig) = fm(mesh_flux_id)%fmarry(xp ,yp,zp ,grp ,1)/(sp_norm*v) ! Flux
293 ! nu -fission
294 nu_sf(x,y,z,ig) = nsf_tal/flux_tal
295 ! total macroscopic cross section
296 sigt(x,y,z,ig) = sigt_tal/flux_tal
297 ! absorption cross section
298 siga(x,y,z,ig) = siga_tal/flux_tal
299 ! calculate diffusion coefficient
300 d(x,y,z,ig) = one/(three*sigt(x,y,z,ig))
301
302 chi(x,y,z,1) = 1.0
303 chi(x,y,z,2) = 0.0

23

304 end do ! x
305 end do ! y
306 end do ! z
307 end do ! group
308 ! sweep back through to calculate scattering (1->2) and removal cross sections
309 do z=1,nz
310 do y=1,ny
311 do x=1,nx
312 xp = x+1
313 yp = y+1
314 zp = z+1
315 siga_tal = fm(mesh_abs_id)%fmarry(xp ,yp ,zp ,1,1)
316 flux_tal = fm(mesh_flux_id)%fmarry(xp ,yp ,zp ,2,1)
317 ! Calculate the in -scattering cross section (Sig_s12).
318 sp_norm = 0
319 tempr1 = (siga_tal + sp_norm *(cmfd_jout(x,y,z,2) - cmfd_jin(x,y,z,2)))/flux_tal
320
321 sigscat (1,2,x,y,z) = tempr1
322 ! if(sigscat (1,2,x,y,z) <0.0) then
323 ! sigscat (1,2,x,y,z) = 0.0
324 ! end if
325 ! calculate the removal cross section
326 sigr(x,y,z,1) = siga(x,y,z,1) + sigscat(1,2,x,y,z)
327 sigr(x,y,z,2) = siga(x,y,z,2)
328 end do ! x
329 end do ! y
330 end do ! z
331
332 ! store the group boundaries
333 do grp=2,g
334 egrp(grp) = fm(mesh_flux_id)%enbin(grp)
335 end do
336
337 ! print out the jin and jout
338 open(file="plane_jin1" ,unit =500)
339 open(file="plane_jout1",unit =501)
340 open(file="plane_jin2",unit =502)
341 open(file="plane_jout2",unit =503)
342 open(file="plane_jl1",unit =504)
343 open(file="plane_jl2",unit =505)
344
345 do y=1,ny
346 do x=1,nx
347 write (500 ,*)x,y,cmfd_jin(x,y,nz/2,1)
348 write (501 ,*)x,y,cmfd_jout(x,y,nz/2,1)
349 write (502 ,*)x,y,cmfd_jin(x,y,nz/2,2)
350 write (503 ,*)x,y,cmfd_jout(x,y,nz/2,2)
351 write (504 ,*)x,y,(cmfd_jout(x,y,nz/2,1)-cmfd_jin(x,y,nz/2,1))
352 write (505 ,*)x,y,(cmfd_jout(x,y,nz/2,2)-cmfd_jin(x,y,nz/2,2))
353 end do
354 write (500 ,*)
355 write (501 ,*)
356 write (502 ,*)
357 write (503 ,*)
358 write (504 ,*)
359 write (505 ,*)
360 end do
361
362 close (500)
363 close (501)
364 close (502)
365 close (503)
366 close (504)
367 close (505)
368

24

369 do grp=1,g
370 flux_avg(grp) = SUM(flux(:,:,:,grp))/REAL(COUNT(flux(:,:,:,grp).ge.0),dknd)
371 end do
372
373 ! check for zero flux
374 do grp=1,g
375 do z=1,nz
376 do y=1,ny
377 do x=1,nx
378 if (flux(x,y,z,grp)==0) then
379 write (*,*)"Zero flux in region:",x,y,z,grp
380 ! put in some placeholder numbers to keep the solver from crashing
381 ! use an average value of flux
382 flux(x,y,z,grp) = flux_avg(grp)
383 ! set D to be the average of hx ,hy ,hz to get a beta of one -ish
384 d(x,y,z,grp) = (hx+hy+hz)/three
385 ! zero out everything else
386 siga(x,y,z,grp) = 0
387 sigr(x,y,z,grp) = 0
388 sigscat (:,:,x,y,z) = 0
389 nu_sf(x,y,z,grp) = 0
390 end if
391 end do
392 end do
393 end do
394 end do
395
396 ! hard code some cross sections for testing
397 ! d(:,:,:,1) = 0.1666667
398 ! d(:,:,:,2) = 0.1111111
399 ! sigr(:,:,:,1) = 1.5
400 ! sigr(:,:,:,2) = 2.0
401 ! nu_sf (:,:,:,1) = 0.375
402 ! nu_sf (:,:,:,2) = 4.5
403 ! sigscat = 0.0
404 ! sigscat (1,2,:,:,:) = 0.5
405
406
407 diag = 0.0
408 diag2 = 0.0
409
410 ! calculate relative diffusivity , beta
411 do grp=1,g
412 ! interior regions
413 do z=1,nz
414 do y=1,ny
415 do x=1,nx
416 beta_x(x,y,z,grp) = d(x,y,z,grp)/hx
417 beta_y(x,y,z,grp) = d(x,y,z,grp)/hy
418 beta_z(x,y,z,grp) = d(x,y,z,grp)/hz
419 end do ! x
420 end do ! y
421 end do ! z
422 ! define the extremities using albedo.
423
424 ! X direction (east/west faces)
425 do z=1,nz
426 do y=1,ny
427 beta_x(0,y,z,grp) = 0.5* ABS(j(1,0,y,z,grp)-j(2,0,y,z,grp))/flux(1,y,z,grp)
428 beta_x(nx+1,y,z,grp) = 0.5* ABS(j(2,nx+1,y,z,grp)-j(1,nx+1,y,z,grp))/flux(nx ,y,z,

grp)
429 ! beta_x(0,y,z,grp) = alb_xl *0.5
430 ! beta_x(nx+1,y,z,grp) = alb_xr *0.5
431 end do ! y
432 end do ! z

25

433 ! Y direction (north/south faces)
434 do z=1,nz
435 do x=1,nx
436 beta_y(x,0,z,grp) = 0.5* ABS(j(3,x,0,z,grp)-j(4,x,0,z,grp))/flux(x,1,z,grp)
437 beta_y(x,ny+1,z,grp) = 0.5* ABS(j(4,x,ny+1,z,grp)-j(3,x,ny+1,z,grp))/flux(x,ny ,z,

grp)
438 ! beta_y(x,0,z,grp) = alb_yl *0.5
439 ! beta_y(x,ny+1,z,grp) = alb_yr *0.5
440 end do ! x
441 end do ! z
442 ! Z direction (top/bottom faces)
443 do y=1,ny
444 do x=1,nx
445 beta_z(x,y,0,grp) = 0.5* ABS(j(5,x,y,0,grp)-j(6,x,y,0,grp))/flux(x,y,1,grp)
446 beta_z(x,y,nz+1,grp) = 0.5* ABS(j(6,x,y,nz+1,grp)-j(5,x,y,nz+1,grp))/flux(x,y,nz ,

grp)
447 ! beta_z(x,y,0,grp) = alb_zl *0.5
448 ! beta_z(x,y,nz+1,grp) = alb_zr *0.5
449 end do ! x
450 end do ! y
451 end do ! grp
452
453 ! Calculate d_tilde and d_hat.
454 do grp=1,g
455 ! X direction
456 do z=1,nz
457 do y=1,ny
458 do x=0,nx
459 d_tilde_x(x,y,z,grp) = two*beta_x(x,y,z,grp)*beta_x(x+1,y,z,grp)&
460 & /(beta_x(x,y,z,grp)+beta_x(x+1,y,z,grp))
461 ! define flux to the left and right of the surface
462 if (x==0) then
463 phi_l = 0.0
464 else
465 phi_l = flux(x,y,z,grp)
466 end if
467 if (x==nx) then
468 phi_r = 0.0
469 else
470 phi_r = flux(x+1,y,z,grp)
471 end if
472 ! d_hat x+ x-
473 d_hat_x(x,y,z,grp) = ((j(1,x,y,z,grp)-j(2,x,y,z,grp))+d_tilde_x(x,y,z,grp)&
474 & *(phi_r -phi_l))/(phi_r+phi_l)
475 end do ! x
476 end do ! y
477 end do ! z
478 ! Y direction
479 do z=1,nz
480 do y=0,ny
481 do x=1,nx
482 d_tilde_y(x,y,z,grp) = two*beta_y(x,y,z,grp)*beta_y(x,y+1,z,grp)&
483 & /(beta_y(x,y,z,grp)+beta_y(x,y+1,z,grp))
484 ! define flux to the left and right of the surface
485 if (y==0) then
486 phi_l = 0.0
487 else
488 phi_l = flux(x,y,z,grp)
489 end if
490 if (y==ny) then
491 phi_r = 0.0
492 else
493 phi_r = flux(x,y+1,z,grp)
494 end if
495 ! d_hat

26

496 d_hat_y(x,y,z,grp) = ((j(3,x,y,z,grp)-j(4,x,y,z,grp))+d_tilde_y(x,y,z,grp)&
497 & *(phi_r -phi_l))/(phi_r+phi_l)
498 end do ! x
499 end do ! y
500 end do ! z
501 ! Z direction
502 do z=0,nz
503 do y=1,ny
504 do x=1,nx
505 d_tilde_z(x,y,z,grp) = two*beta_z(x,y,z,grp)*beta_z(x,y,z+1,grp)&
506 & /(beta_z(x,y,z,grp)+beta_z(x,y,z+1,grp))
507 ! define flux to the left and right of the surface
508 if (z==0) then
509 phi_l = 0.0
510 else
511 phi_l = flux(x,y,z,grp)
512 end if
513 if (z==nz) then
514 phi_r = 0.0
515 else
516 phi_r = flux(x,y,z+1,grp)
517 end if
518 ! d_hat
519 d_hat_z(x,y,z,grp) = ((j(5,x,y,z,grp)-j(6,x,y,z,grp))+d_tilde_z(x,y,z,grp)&
520 & *(phi_r -phi_l))/(phi_r+phi_l)
521 end do ! x
522 end do ! y
523 end do ! z
524
525 if (idum (4) /=0) then
526 write (*,*)"Turning off CMFD."
527 d_hat_x = 0
528 d_hat_y = 0
529 d_hat_z = 0
530 end if
531
532 write(chtemp ,*) kcy
533 chtemp = adjustl(chtemp)
534 write(ch40 ,*) plane_dhat ,trim(chtemp)
535 open (223, file=ch40)
536 z = nz/2
537 do y=1,ny
538 do x=1,nx
539 write (223 ,*)x,y,d_hat_x(x,y,z,1)
540 end do
541 write (223 ,*)
542 end do
543 close (223)
544
545 do z=1,nz
546 do y=1,ny
547 do x=1,nx
548 coup(1,x,y,z,grp) = ax * (-d_tilde_x(x,y,z,grp) + d_hat_x(x,y,z,grp)) ! east
549 coup(2,x,y,z,grp) = ax * (-d_tilde_x(x-1,y,z,grp) - d_hat_x(x-1,y,z,grp)) ! west
550 coup(3,x,y,z,grp) = ay * (-d_tilde_y(x,y,z,grp) + d_hat_y(x,y,z,grp)) !

south
551 coup(4,x,y,z,grp) = ay * (-d_tilde_y(x,y-1,z,grp) - d_hat_y(x,y-1,z,grp)) !

north
552 coup(5,x,y,z,grp) = az * (-d_tilde_z(x,y,z,grp) + d_hat_z(x,y,z,grp)) ! down
553 coup(6,x,y,z,grp) = az * (-d_tilde_z(x,y,z-1,grp) - d_hat_z(x,y,z-1,grp)) ! up
554 end do
555 end do
556 end do
557
558

27

559 ! Form the diagonal of the migration matrix
560 do z=1,nz
561 do y=1,ny
562 do x=1,nx
563 diag(x,y,z,grp) = &
564 & ax*(d_tilde_x(x,y,z,grp)+d_tilde_x(x-1,y,z,grp)+d_hat_x(x,y,z,grp)-d_hat_x(x

-1,y,z,grp)) + &
565 & ay*(d_tilde_y(x,y,z,grp)+d_tilde_y(x,y-1,z,grp)+d_hat_y(x,y,z,grp)-d_hat_y(x,

y-1,z,grp)) + &
566 & az*(d_tilde_z(x,y,z,grp)+d_tilde_z(x,y,z-1,grp)+d_hat_z(x,y,z,grp)-d_hat_z(x,

y,z-1,grp))
567 do i=1,6
568 diag2(x,y,z,grp) = diag2(x,y,z,grp)-coup(i,x,y,z,grp)
569 end do
570 diag(x,y,z,grp) = diag(x,y,z,grp) + sigr(x,y,z,grp)*v
571 diag2(x,y,z,grp) = diag2(x,y,z,grp) + sigr(x,y,z,grp)*v
572 end do ! x
573 end do ! y
574 end do ! z
575
576 ! calculate coupling coefficients using d-hat ,d-tilde and area
577 ! clean up the boundary
578 ! east/west face
579 do z=1,nz
580 do y=1,ny
581 coup(1,nx ,y,z,grp) = 0.0
582 coup(2,1,y,z,grp) = 0.0
583 end do
584 end do
585 ! north/south faces
586 do z=1,nz
587 do x=1,nx
588 coup(3,x,ny ,z,grp) = 0.0
589 coup(4,x,1,z,grp) = 0.0
590 end do
591 end do
592 ! top/bottom faces
593 do y=1,ny
594 do x=1,nx
595 coup(5,x,y,nz ,grp) = 0.0
596 coup(6,x,y,1,grp) = 0.0
597 end do
598 end do
599 end do ! grp
600
601 ch40 = plane_f1
602 call print_plane_z (2,1,flux ,ch40)
603
604 open(unit =998, file= plane_s12)
605 do x=1,nx
606 do y=1,ny
607 write (998, (i4 ,2x,i4 ,2x,e12 .5))x,y,sigscat(1,2,x,y,2)
608 end do
609 write (998 ,*)
610 end do
611 close (998)
612 ch40 = plane_r1
613 call print_plane_z (2,1,sigr ,ch40)
614 ch40 = plane_r2
615 call print_plane_z (2,2,sigr ,ch40)
616
617 ch40 = plane_t1
618 call print_plane_z (2,1,sigt ,ch40)
619 ch40 = plane_nsf1
620 call print_plane_z (2,1,nu_sf ,ch40)

28

621 ch40 = plane_a1
622 call print_plane_z (2,1,siga ,ch40)
623 ch40 = plane_d1
624 call print_plane_z (2,1,d,ch40)
625 ch40 = plane_f2
626 call print_plane_z (2,2,flux ,ch40)
627 ch40 = plane_t2
628 call print_plane_z (2,2,sigt ,ch40)
629 ch40 = plane_nsf2
630 call print_plane_z (2,2,nu_sf ,ch40)
631 ch40 = plane_a2
632 call print_plane_z (2,2,siga ,ch40)
633 ch40 = plane_d2
634 call print_plane_z (2,2,d,ch40)
635
636 open(unit =998, file= stuff)
637 write (998 ,*)"two: ",two
638 write (998 ,*)"three: ",three
639 write (998 ,*)
640 write (998 ,*)"coup:"
641 do x=1,nx
642 write (998 ,*) coup(:,x,ny/2,nz/2,1)
643 write (998 ,*)
644 end do
645 ! write (998 ,*)"flux"
646 ! write (998 ,*) flux
647 ! write (998 ,*)
648 write (998 ,*)
649 write (998 ,*)"diag:"
650 write (998 ,*) diag
651 write (998 ,*)"diag2:"
652 write (998 ,*) diag2
653 write (998 ,*)
654 write (998 ,*)"d_tilde_x"
655 write (998 ,*) d_tilde_x
656 close (998)
657
658 open(unit =998, file="migration")
659 write (998 ,*)"# west east north south up down diag"
660 do grp=1,g
661 do z=1,nz
662 do y=1,ny
663 do x=1,nx
664
665 if(x>1) then
666 write (998, (1p,e12.5,1x) ,advance= no)coup(2,x,y,z,grp)
667 else
668 write (998, (1p,e12.5,1x) ,advance= no)0.
669 end if
670
671 if(x<nx)then
672 write (998, (1p,e12.5,1x) ,advance= no)coup(1,x,y,z,grp)
673 else
674 write (998, (1p,e12.5,1x) ,advance= no)0.
675 end if
676 if(y>1) then
677 write (998, (1p,e12.5,1x) ,advance= no)coup(4,x,y,z,grp)
678 else
679 write (998, (1p,e12.5,1x) ,advance= no)0.
680 end if
681 if(y<ny)then
682 write (998, (1p,e12.5,1x) ,advance= no)coup(3,x,y,z,grp)
683 else
684 write (998, (1p,e12.5,1x) ,advance= no)0.
685 end if

29

686 if(z>1) then
687 write (998, (1p,e12.5,1x) ,advance= no)coup(6,x,y,z,grp)
688 else
689 write (998, (1p,e12.5,1x) ,advance= no)0.
690 end if
691 if(z<nz)then
692 write (998, (1p,e12.5,1x) ,advance= no)coup(5,x,y,z,grp)
693 else
694 write (998, (1p,e12.5,1x) ,advance= no)0.
695 end if
696
697 write (998, (1p,e12.5,1x))diag(x,y,z,grp)
698
699 end do
700 end do
701 end do
702 end do
703 close (998)
704
705 end subroutine cmfd_update
706 ! ===
707 ! do some stuff to see if we are working
708 subroutine cmfd_test(kin)
709 real(dknd) :: kin
710 integer :: i,fsrc_tot ,x,y,z
711
712 keff = kin
713
714 if(idum (1) ==0) then
715 return
716 end if
717
718 if(initialized.eq..false .) then
719 ! initialize CMFD module
720 write (*,*)"Initializing CMFD module."
721 call cmfd_init
722 else
723 if (kcy.eq.idum (1)) then
724 ! do an update
725 call cmfd_update
726 call cmfd_solve(idum (3),idum (2)) ! outer_it ,inner_it
727 call cmfd_bank
728 end if
729 if (kcy==idum (1)+1) then
730 call cmfd_update
731 ! print flux
732 ch40 = plane_fd1
733 call print_plane_z(nz/2,1,flux ,ch40)
734 ch40 = plane_fd2
735 call print_plane_z(nz/2,2,flux ,ch40)
736 end if
737 if (kcy==kct -1) then
738 ! take the residual of the fission source to the converged FSD
739 call cmfd_pop
740 fsrc_tot = SUM(fsrc_pop)
741 ! normalize psi
742 psi = psi/SUM(psi)
743 open(unit =444, file= plane_psierr)
744 z = nz/2
745 do y=1,ny
746 do x=1,nx
747 i = nx*ny*(z-1)+nx*(y-1)+x
748 write (444 ,*)x,y,(((fsrc_pop(i)/fsrc_tot) - psi(x,y,z))/psi(x,y,z))
749 end do
750 write (444 ,*)

30

751 end do
752 close (444)
753 end if
754 end if
755 end subroutine cmfd_test
756 ! ===
757 subroutine cmfd_normalize
758
759 end subroutine cmfd_normalize
760 ! ===
761 ! Returns the outgoing current for the mesh region at x,y,z for neutrons in
762 ! group grp.
763 function cmfd_jout(x,y,z,grp)
764 integer :: x,y,z,grp
765 real :: cmfd_jout
766
767 cmfd_jout = 0.0 ! initialize output variable
768 ! add contributions for each face
769 cmfd_jout = j(2,x-1,y,z,grp)*ax ! x- direction at west face
770 cmfd_jout = cmfd_jout + j(1,x,y,z,grp)*ax ! x+ direction at east face
771 cmfd_jout = cmfd_jout + j(4,x,y-1,z,grp)*ay ! y- direction at north face
772 cmfd_jout = cmfd_jout + j(3,x,y,z,grp)*ay ! y+ direction at south face
773 cmfd_jout = cmfd_jout + j(6,x,y,z-1,grp)*az ! z- direction at top face
774 cmfd_jout = cmfd_jout + j(5,x,y,z,grp)*az ! z+ direction at bottom face
775
776 end function cmfd_jout
777 ! ===
778 ! Returns the incomming current for the mesh region at x,y,z for neutrons in
779 ! group grp.
780 function cmfd_jin(x,y,z,grp)
781 integer :: x,y,z,grp
782 real :: cmfd_jin
783
784 cmfd_jin = 0.0 ! initialize output variable
785 ! add contributions for each face
786 cmfd_jin = j(1,x-1,y,z,grp)*ax ! x+ direction at west face
787 cmfd_jin = cmfd_jin + j(2,x,y,z,grp)*ax ! x- direction at east face
788 cmfd_jin = cmfd_jin + j(3,x,y-1,z,grp)*ay ! y+ direction at north face
789 cmfd_jin = cmfd_jin + j(4,x,y,z,grp)*ay ! y- direction at south face
790 cmfd_jin = cmfd_jin + j(5,x,y,z-1,grp)*az ! z+ direction at top face
791 cmfd_jin = cmfd_jin + j(6,x,y,z,grp)*az ! z- direction at bottom face
792
793 end function cmfd_jin
794 ! ===
795 subroutine print_plane_z(z,grp ,arry ,filename)
796 integer :: x,y,z,grp
797 character *40 :: filename
798 real(dknd),allocatable :: arry(:,:,:,:)
799 open(file=filename ,unit =888)
800 do x=1,nx
801 do y=1,ny
802 write (888, (i4 ,2x,i4 ,2x,e12 .5))x,y,arry(x,y,z,grp)
803 end do ! y
804 write (888 ,*)
805 end do ! z
806 close (888)
807 end subroutine
808 ! ===
809 subroutine cmfd_solve(outer_it ,inner_it)
810 integer :: x,y,z,grp ,outer_it ,inner_it ,i
811 integer :: outer ,inner
812 real(dknd) :: lambda ,k_old ,tempd1 ,k_err ,flux_err ,flux_dot ,flux_dot_old
813
814 ! we should have updated cross sections. lu decompose:
815 call cmfd_lu

31

816
817 ! start with uniform flux
818 flux = 1.0
819 flux_old = 1.0
820 flux_old_out = 1.0
821 keff = 1.0
822
823 ! open the convergence file , write header
824 open (111, file= converge)
825 write (111 ,*)"# iteration k k_err flux_err"
826
827 do outer=1,outer_it
828 ! store old flux distribution
829 flux_old_out = flux
830 lambda = 1.0/ keff
831
832 ! calculate fission source (psi) at each node
833 psi_old = psi
834 do z=1,nz
835 do y=1,ny
836 do x=1,nx
837 psi(x,y,z) = 0.0
838 do grp=1,g
839 psi(x,y,z) = psi(x,y,z)+nu_sf(x,y,z,grp)*flux(x,y,z,grp)*v
840 end do
841 end do ! x
842 end do ! y
843 end do ! z
844 ! begin the group major portion
845 do grp=1,g
846 ! set up the source
847 do z=1,nz
848 do y=1,ny
849 do x=1,nx
850 src(x,y,z) = psi(x,y,z) * chi(x,y,z,grp) * lambda
851 ! consider scattering (assuming downscatter only)
852 ! TODO: implement upscattering?
853 tempd1 = 0.0
854 do i=1,grp -1
855 tempd1 = tempd1 + sigscat(i,grp ,x,y,z)*flux_old(x,y,z,i)
856 end do ! scattering group
857 src(x,y,z) = src(x,y,z) + tempd1*v ! add scattering to source
858 end do ! x
859 end do ! y
860 end do ! z
861
862 ! now solve this one group problem with Gauss -Seidel
863 do inner=1,inner_it
864 flux_old (:,:,:,grp) = flux(:,:,:,grp)
865 do z=1,nz
866 do y=1,ny
867 ! transfer appropriate values from src (:) to lu_b (:),
868 ! then add N,S,U,D coupling to lu_b (:)
869 do x=1,nx
870 lu_b(x) = src(x,y,z)
871 ! Add in external sources as needed. This branching is kinda gross ,
872 ! but oh well.
873 if (y>1) then
874 lu_b(x) = lu_b(x) - flux(x,y-1,z,grp)*coup(4,x,y,z,grp) ! north
875 end if
876 if (y<ny) then
877 lu_b(x) = lu_b(x) - flux(x,y+1,z,grp)*coup(3,x,y,z,grp) ! south
878 end if
879 if (z>1) then
880 lu_b(x) = lu_b(x) - flux(x,y,z-1,grp)*coup(6,x,y,z,grp) ! up

32

881 end if
882 if (z<nz) then
883 lu_b(x) = lu_b(x) - flux(x,y,z+1,grp)*coup(5,x,y,z,grp) ! down
884 end if
885 end do ! x
886 ! the RHS is now set up. begin forward -backward substitution
887 ! forward substitution
888 lu_y (1) = lu_b (1)
889 do x=2,nx
890 lu_y(x) = lu_b(x) - lu_ll(x,y,z,grp)*lu_y(x-1)
891 end do
892 ! Do backwards substitution
893 flux(nx ,y,z,grp) = lu_y(nx)/lu_ud(nx ,y,z,grp)
894 if (flux(nx ,y,z,grp) <0.0) then
895 flux(nx ,y,z,grp) = 0.0
896 end if
897 do x=nx -1,1,-1
898 ! east
899 flux(x,y,z,grp) = (lu_y(x)-coup(1,x,y,z,grp)*flux(x+1,y,z,grp))/lu_ud(x,y,z,

grp)
900 if (flux(x,y,z,grp) <0.0) then
901 flux(x,y,z,grp) = 0.0
902 end if
903 end do
904 end do ! y (gauss -seidel beams)
905 end do ! z (gauss -seidel planes)
906
907 ch40 = plane_fs1
908 call print_plane_z(nz/2,1,flux ,ch40)
909 ch40 = plane_fs2
910 call print_plane_z(nz/2,2,flux ,ch40)
911
912 end do ! inner iteration
913 end do ! major group
914 ! solve for k and check for convergence.
915 k_old = keff
916 tempd1 = 0.0
917 flux_dot_old = flux_dot
918 flux_dot = 0.0
919 ! loop through all the nodes and take <flux ,flux > and <flux ,flux_old >
920 do grp=1,g
921 do z=1,nz
922 do y=1,ny
923 do x=1,nx
924 tempd1 = tempd1 + flux(x,y,z,grp)*flux(x,y,z,grp)
925 flux_dot = flux_dot + flux(x,y,z,grp)*flux_old_out(x,y,z,grp)
926 end do
927 end do
928 end do
929 end do
930 keff = k_old *(tempd1/flux_dot)
931 flux_err = flux_dot -flux_dot_old
932 ! write (*,*)"k: ",keff
933 k_err = keff -k_old
934 ! print out the convergence info
935 write (111, (1p,i6 ,1x,e12.5,1x,e12.5,1x,e12 .5))outer ,keff ,k_err ,flux_err
936 if (mod(outer ,10) ==0) then
937 write (*,*) outer
938 end if
939 ! convergence?
940 if(ABS(k_err)<k_eps.and.ABS(flux_err)<flux_eps) then
941 ! converged!
942 write (*,*)"CMFD converged in ",outer ," iterations! :-D"
943 write (*,*)"k=",keff
944 ch40 = plane_fs1

33

945 call print_plane_z(nz/2,1,flux ,ch40)
946 ch40 = plane_fs2
947 call print_plane_z(nz/2,2,flux ,ch40)
948
949 ! plot the fission source
950 open(unit =444, file= plane_psi)
951 z = nz/2
952 do y=1,ny
953 do x=1,nx
954 write (444 ,*)x,y,psi(x,y,z)
955 end do
956 write (444 ,*)
957 end do
958 close (444)
959 return
960 end if
961 end do ! outer iteration
962
963 ! We didnt converge in outer_it iterations
964 write (*,*)"crap ... we didnt converge in ", outer_it , "iterations. : -("
965 write (*,*)"k_err: ",k_err ,"flux error: ",flux_err
966 write (*,*)"k=",keff
967
968 end subroutine cmfd_solve
969 ! ===
970 subroutine cmfd_lu
971 integer :: x,y,z,grp
972 real(dknd) :: m
973 ! perform an LU decomposition for each strip along the x direction.
974 do grp=1,g
975 do z=1,nz
976 do y=1,ny
977 x=1
978 lu_ud(x,y,z,grp) = diag(x,y,z,grp)
979 do x=2,nx
980 m = coup(2,x,y,z,grp)/lu_ud(x-1,y,z,grp)
981 ! west
982 lu_ll(x,y,z,grp) = m
983 ! east
984 lu_ud(x,y,z,grp) = diag(x,y,z,grp)-m*coup(1,x-1,y,z,grp)
985 end do ! x
986 do x=1,nx -1
987 ! east
988 lu_uu(x,y,z,grp) = coup(1,x,y,z,grp)
989 end do ! x
990 end do ! y
991 end do ! z
992 end do ! group
993 end subroutine cmfd_lu
994 ! ===
995 subroutine cmfd_bank
996 integer :: i,ix ,iy,iz ,ii ,pos ,nsrci ,x,y,z,zeros
997 logical :: point_out ,out_any
998 real(dknd) :: xx,yy ,zz,psi_sum ,h_cmfd ,h_sample ,log2
999 real(dknd),allocatable :: h_temp (:,:,:)

1000
1001 allocate(h_temp(nx ,ny,nz))
1002
1003 point_out = .false.
1004 out_any = .false.
1005
1006 log2 = log(two)
1007
1008 fsrc_pop = 0
1009 sample_wgt = 0.0

34

1010 nsrci = 0 ! number of source points inside the active mesh
1011
1012
1013 ! loop through all source points
1014 write (*,*)"origin: ",mesh_orig
1015
1016 ! open a file for plotting the fission source
1017 open (222, file= fso_old)
1018 open (223, file= fso_new)
1019
1020 do i=1, fso_src_count
1021 ! grab x,y,z position
1022 xx = fso_src(FSO_XXX ,i)
1023 yy = fso_src(FSO_YYY ,i)
1024 zz = fso_src(FSO_ZZZ ,i)
1025 ! locate the source position in mesh
1026 ix = int((xx -mesh_orig (1)) / hx) + 1
1027 iy = int((yy -mesh_orig (2)) / hy) + 1
1028 iz = int((zz -mesh_orig (3)) / hz) + 1
1029 ii = ix + (iy -1)*nx + (iz -1)*nx*ny
1030 ! ensure that the point is inside the
1031 if (ix <1 .or. ix >nx) then
1032 point_out = .true.
1033 out_any = .true.
1034 end if
1035 if (iy <1 .or. iy >ny) then
1036 point_out = .true.
1037 out_any = .true.
1038 end if
1039 if (iz <1 .or. iz >nz) then
1040 point_out = .true.
1041 out_any = .true.
1042 end if
1043 if (point_out .eq. .false .) then
1044 fsrc_pop(ii) = fsrc_pop(ii) + 1
1045 fsrc_pos(i) = ii
1046 else
1047 fsrc_pos(i) = -1
1048 end if
1049 point_out = .false.
1050 end do
1051 if (out_any .eq. .true.) then
1052 write (*,*)"Warning: there were fission source points outside of the mesh used for CMFD

."
1053 end if
1054
1055 ! plot fso_old
1056 iz = nz/2
1057 do iy=1,ny
1058 do ix=1,nx
1059 ii=nx*ny*(iz -1)+nx*(iy -1)+ix
1060 write (222 ,*)ix ,iy ,fsrc_pop(ii)
1061 end do
1062 write (222 ,*)
1063 end do
1064
1065 ! sweep through again to build wgt vector
1066 do i=1, fso_src_count
1067 pos = fsrc_pos(i)
1068 ii=pos
1069 if (pos .eq. -1) then
1070 sample_wgt(i) = 0
1071 cycle
1072 end if
1073 iz = int(pos/(nx*ny))

35

1074 pos = pos - iz*nx*ny
1075 iy = int(pos/nx)
1076 ix = pos - iy*nx
1077 if (fsrc_pop(ii) >0) then
1078 sample_wgt(i) = psi(ix ,iy ,iz)/fsrc_pop(ii)
1079 else
1080 sample_wgt(i) = psi(ix ,iy ,iz)
1081 end if
1082 end do
1083
1084 ! now actually sample the nsrck points from the fission bank using the
1085 ! weights determined above
1086 call cmfd_sample(nsrck ,fso_src_count ,sample_wgt (1: fso_src_count),fsrc_ind)
1087 ! now do some Ministry of Truth work on the fso_src array
1088 fso_bnk = 0
1089 do i=1,nsrck
1090 fso_bnk(:,i) = fso_src(:,fsrc_ind(i))
1091 end do
1092 ! I think that s it. store fso_bnk back to fso_src , tell MCNP how many
1093 ! points are in there and call it good.
1094 fso_src_count = nsrck
1095 fso_src = fso_bnk
1096
1097 ! determine the new source distribution and normalize
1098 call cmfd_pop ()
1099
1100 ! plot fso_new
1101 iz = nz/2
1102 do iy=1,ny
1103 do ix=1,nx
1104 ii=nx*ny*(iz -1)+nx*(iy -1)+ix
1105 write (223 ,*)ix ,iy ,fsrc_pop(ii)
1106 end do
1107 write (223 ,*)
1108 end do
1109
1110 fsrc_pop = fsrc_pop/sum(fsrc_pop)
1111
1112 ! calculate the source entropy of the actual and sampled fission source
1113
1114 ! normalize psi
1115 psi = psi/sum(psi)
1116
1117 where(psi /= 0)
1118 h_temp = psi*log(psi)
1119 else where
1120 h_temp = zero
1121 end where
1122
1123 where(fsrc_pop /= 0)
1124 fsrc_pop = fsrc_pop*log(fsrc_pop)
1125 else where
1126 fsrc_pop = zero
1127 end where
1128 h_sample = -sum(fsrc_pop)/log2
1129 h_cmfd = -sum(h_temp)/log2
1130
1131 deallocate(h_temp)
1132
1133 write (*,*)"FSD Entropy: ",h_cmfd
1134 write (*,*)"Sampled Entropy: ",h_sample
1135
1136 ! check for regions with zero source points
1137 zeros = 0
1138 do i=1,n

36

1139 if(fsrc_pop(i)==0) then
1140 zeros = zeros +1
1141 end if
1142 end do
1143 if(zeros >0) then
1144 write (*,*)"There were",zeros ," out of",n,"mesh regions with no source points sampled."
1145 end if
1146
1147 return
1148 end subroutine cmfd_bank
1149 ! ===
1150 subroutine cmfd_sample(N, M, wgt , indx)
1151 !
1152 ! sample N items from M items with weights ,
1153 ! save the indices of N selected items in array indx
1154 !
1155 ! range of N: 1...N
1156 ! range of M: 1...M
1157 ! The i-th of the M items has weight wgt(i), where the
1158 ! normalization of the weights is arbitrary
1159 ! indx(N): N items , with indices in range 1..M
1160 !
1161
1162 use mcnp_random , only: rang
1163
1164 implicit none
1165
1166 integer , intent(in) :: N * number items needed
1167 integer , intent(in) :: M * number items available
1168 real(dknd),intent(in) :: wgt(M) * weights for available items
1169 integer , intent(out):: indx(N) * indices of selected items
1170
1171 real(dknd) :: prob , cum , wtot
1172 integer :: i, knt , k
1173
1174 wtot = sum(wgt)
1175 knt = 0
1176 cum = 0
1177 do i=1,M
1178
1179 prob = wgt(i) * real(N-knt ,dknd) / (wtot -cum)
1180 k = prob + rang()
1181
1182 indx(knt +1:knt+k) = i
1183 knt = knt + k
1184 cum = cum + wgt(i)
1185 end do
1186 if(knt==N-1) then
1187 ! in case of roundoff , may have to replicate last item
1188 knt = knt + 1
1189 indx(knt) = M
1190 endif
1191 if(knt /= N) then
1192 write (*,*) "***** count error in sample_N_from_M_weighted"
1193 stop
1194 endif
1195 return
1196 end subroutine cmfd_sample
1197 ! ===
1198 subroutine cmfd_pop ()
1199 integer :: ix ,iy,iz ,ii,i
1200 real(dknd) :: xx,yy ,zz
1201 logical :: point_out ,out_any
1202
1203 point_out = .false.

37

1204 out_any = .false.
1205
1206 fsrc_pop = 0
1207 do i=1, fso_src_count
1208 ! grab x,y,z position
1209 xx = fso_src(FSO_XXX ,i)
1210 yy = fso_src(FSO_YYY ,i)
1211 zz = fso_src(FSO_ZZZ ,i)
1212 ! locate the source position in mesh
1213 ix = int((xx -mesh_orig (1)) / hx) + 1
1214 iy = int((yy -mesh_orig (2)) / hy) + 1
1215 iz = int((zz -mesh_orig (3)) / hz) + 1
1216 ii = ix + (iy -1)*nx + (iz -1)*nx*ny
1217 ! ensure that the point is inside the
1218 if (ix <1 .or. ix >nx) then
1219 point_out = .true.
1220 out_any = .true.
1221 end if
1222 if (iy <1 .or. iy >ny) then
1223 point_out = .true.
1224 out_any = .true.
1225 end if
1226 if (iz <1 .or. iz >nz) then
1227 point_out = .true.
1228 out_any = .true.
1229 end if
1230 if (point_out .eq. .false .) then
1231 fsrc_pop(ii) = fsrc_pop(ii) + 1
1232 fsrc_pos(i) = ii
1233 else
1234 fsrc_pos(i) = -1
1235 end if
1236 point_out = .false.
1237 end do
1238 end subroutine cmfd_pop
1239 end module

38

	report_2011-08-18.pdf
	Introduction
	CMFD Theory
	Multigroup Cross Sections
	CMFD Formulation
	CMFD Correction
	Extension to 3D
	Boundary Conditions

	Functionality
	Module Installation
	Module Initialization
	FMESH Tallies
	Updating
	CMFD Calculation
	Fission Source Redistribution

	Results
	Boxy Kord Smith Challenge
	Pure FDM Results
	CMFD Results

	Conclusions
	Subroutine and Function Reference
	cmfd_init
	cmfd_update
	cmfd_solve
	cmfd_lu
	cmfd_bank
	cmfd_test

	Source Code

