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Introduction

Lee, et. al.[2] [3] have demonstrated the feasibility of applying a
Coarse Mesh Finite Difference (CMFD) acceleration technique to
accelerate fission source distribution (FSD) convergence in monte
carlo criticality calculations. Most of this work has been done in 1-
and 2-D with multigroup monte carlo. In this work, a CMFD solver
has been implemented in MCNP to facilitate FSD acceleration in
3-D with continuous-energy cross sections for more general
applications. Promising results have been obtained for full-core
reactor simulations.
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CMFD Formulation

Diffusion Equation

CMFD is based upon diffusion theory, represented (1-D) by the
equation

−D∇φ(x) + Σa(x)φ(x) =
1

k
νΣf (x)φ(x). (1)

Fick’s law is used to represent neutron current,

J = −D
dφ

dx
. (2)

Spatial discretization of the diffusion equation results in the Finite
Difference Method (FDM).
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CMFD Formulation

Spatial Discretization

“Box scheme” used for discretization

Σr,i

Di
Σr,i+1

Di+1

ϕ i

ϕ i+1

ϕ s ,Ji

hi

x i-1 x i x i+1

Solving for Js from both sides:

Js,l =
−Di (φs − φi )

hi/2
, and (3)

Js,r =
−Di+1(φi+1 − φs)

hi+1/2
. (4)

−Di (φs − φi )

hi/2
=
−Di+1(φi+1 − φs)

hi+1/2
(5)

Solving for φs [1]:

φs =

Di
hi

φi + Di+1

hi+1
φi+1

Di
hi

+ Di+1

hi+1

. (6)
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CMFD Formulation

Spatial Discretization

Defining relative diffusivity, βi = Di
hi

,

φs =
βiφi + βi+1φi+1

βi + βi+1
. (7)

Plug back into the current equation, (5) and after some goofy
algebra,

Ji = − 2βiβi+1

βi + βi+1
(φi+1 − φi ). (8)

Coupling Coefficient

D̃i =
2βiβi+1

βi + βi+1
(9)

Our current equation for surface i is now

Ji = −D̃i (φi+1 − φi ) (10)



Coarse Mesh Finite Difference in MCNP

CMFD Formulation

CMFD Correction

The interface current from a higher-order solution is now preserved
by applying following correction

Ji = −D̃i (φi+1 − φi ) + D̂i (φi + φi+1). (11)

Given the higher-order solution for φ and J, D̂ can be obtained
easily,

D̂i =
Ji + D̃i (φi+1 − φi )

φi+1 + φi
. (12)
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CMFD Formulation

Balance Equation

Multigroup neutron balance equation in 1D

Node i-1 Node i Node i+1

Ji-1J i

Fission source:

F i
g = hiχ

i
g

1

k

∑
g∈G

νΣi
fgφi

g (13)

Scattering source:

S i
g = hi

∑
g ′ 6=g

Σi
sg ′gφi

g ′ (14)

J i
g + Σi

rgφi
g = J i−1

g + F i
g + S i

g (15)

φi−1
g (−D̃ i−1

g − D̂ i−1
g ) + φi

g (hi Σ
i
r,g + D̃ i−1

g + D̃ i
g + D̂ i

g − D̂ i−1
g ) + φi+1

g (−D̃ i
g + D̂ i

g ) = S i
g + F i

g

(16)
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CMFD Formulation

Balance Equation

Extending balance equation to 3D

n

s

ew i

u

d

Current direction
conventions:

west→ east

north→ south

top→ bottom

Most terms remain the same except:

Use volume for source terms,

four more current-based coupling terms, and

interface area must be included in node coupling.
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CMFD Formulation

Balance Equation

3D Balance Equation for node i , group g

φw
g Ax(−D̃w

g − D̂w
g ) + φe

gAx(−D̃e
g + D̂e

g ) + φi
gAx(D̃

w
g + D̃e

g + D̂e
g − D̂w

g )+

φn
gAy (−D̃n

g − D̂n
g ) + φs

gAy (−D̃s
g + D̂s

g ) + φi
gAy (D̃

n
g + D̃s

g + D̂s
g − D̂n

g )+

φu
gAz(−D̃u

g − D̂u
g ) + φd

gAz(−D̃d
g + D̂d

g ) + φi
gAz(D̃

u
g + D̃d

g + D̂d
g − D̂u

g )+

Viφ
i
gΣ

i
r,g = S i

g + F i
g (17)

F i
g = Viχ

i
g
1

k

X
g∈G

νΣi
fgφi

g (18)

S i
g = Vi

X
g′ 6=g

Σi
sg′gφi

g′ (19)
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CMFD Formulation

Balance Equation

The previous balance equation is formed for each mesh region,
forming a large system of linear equations.

Power method is applied directly to the system

Mφ = (λF + S) φ (20)

to find the eigenvalue, λ = 1/k.

The F and S matrices contain the fission and scattering
sources.

The migration matrix, M contains the LHS of Eq. (17).

φ is a vector caintaining the flux in each node/group.
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Implementation

Obtaining Constants

To solve the CMFD equations we need

fluxes φ,
partial currents J,
diffusion coefficients D,
removal cross sections Σr ,
scattering cross sections Σsg ′g ,
fission neutron production cross section νΣf .

Scalar flux is obtained with a normal FMESH tally.

Partial currents are tallied using a modified FMESH.

Basic cross sections are obtained using tally multipliers for the
interation(s) of interest and forming the ratio

Σ =
reaction tally

flux tally
. (21)

Diffusion coefficients are calculated as 1/3Σt .
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Implementation

Obtaining Constants

For general multigroup calculations, a full scattering matrix
ΣS [g ′, g ] would be needed.

A two-group calculation is used instead, such that Σs12 can
be calculated from the group 2 balance equation,

Σs12φ1 = Σa2φ2 + J+
net,2 − J−net,2. (22)

Typically, Σrg ≡ Σtg − Σsgg . In the absence of Σsgg

Σr1 = Σa1 + Σs12 and
Σr2 = Σa2.
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Implementation

Solving the System

Nodes arranged in a “natural ordering” scheme.
The Migration matrix assumes the form below.

Matrices and flux vector sorted with group-major
scheme.

Energy group is major sort index.
Nodes sorted within each energy group.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

y

x

φ =

26666666666666666666666666666666666666666666666666664

.

.

.26666666664

.

.
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Implementation

Solving the System

Outer iterations are used to update fission and scattering
sources.

Gauss-Seidel method is used to solve fixed-source,
single-group system.

Four outer bands (n,s,u,d coupling) of M subtracted to LHS.
Previous estimate of flux is used for these couplings.
Several inner iterations are required to achieve convergence
within outer iterations.
The remaining RHS (tridiagonal matrix) represents a series of
strips along x-axis.
Each strip is solved directly using LU decomposition and
forward-backward substitution.
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Implementation

Solving the System
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Implementation

Resampling the Fission Source

New fission source distribution (FSD) must now be given to
MCNP for the next cycle.

Existing fission bank points are used.

Based on the FSD obtained from CMFD, points in some
regions are drawn more preferentially than others.

The resultant fission bank is made up of points from the old
fission bank, but with the corrected FSD.
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Using CMFD in MCNP

Modifications to the Input Deck

FMESH tallies must be added for the following:

Flux (no multiplier)
Total cross section
Absorption cross section (capture + fission)
Fission production (νΣf )
Partial current

All meshes must have the same geometric properties.

Mechanics of the current tally require a “halo” of ghost cells
to obtain incoming current at the domain boundary.

The meshes must be uniform in each direction.
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Using CMFD in MCNP

Modifications to the Input Deck

Example FMESH definition:

C nu-Sigma_f
FMESH24:n GEOM=xyz

ORIGIN=-203.49 -203.49 -211.8
IMESH=203.49 IINTS=19 $ 17 active mesh regions $
JMESH=203.49 JINTS=19 $ 17 active mesh regions $
KMESH=201.800 KINTS=22 $ 20 active mesh regions $
EMESH=1.e-6 20.0 EINTS=1 1 $ 2-group structure $

FM24 -1.0 0 -6 -7
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Using CMFD in MCNP

Modifications to the Input Deck

Table: Magic numbers and FM cards for each FMESH tally. Interaction
numbers assume continuous energy.

Interaction FMESH Number FM Card[4]

Partial current 1a None
Flux 4 None
Total 14 FM -1.0 0 -1
Absorption 34 FM -1.0 0 -2:-6
Fission 24 FM -1.0 0 -6 -7
a Any number ending in a 1 will result in a partial cur-

rent tally.
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Using CMFD in MCNP

Modifications to the Input Deck

IDUM Array

The MCNP IDUM array is used to provide several inputs to the
CMFD module:

1 KCODE cycle at which to implement CMFD,

2 number of inner iterations per outer iteration, and

3 the maximum number of outer iterations allowed.

IDUM [cycle] [inner] [outer]
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Results

Boxy Kord Smith Challenge

Problem

Blue = Water

Green = Core/Fuel

Red = Reactor vessel
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Results

Boxy Kord Smith Challenge
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Results

Boxy Kord Smith Challenge
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Conclusion

Pure FDM shown to greatly accelerate convergence of FSD,
though not perfectly accurate.

Still some issues with CMFD correction.

FDM solution tends to be close enough to significantly aid
convergence.

Discrete FSD sampling method results in over-concentrated
FSD.
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Conclusion

Future Work

Investigate other FSD re-sampling methods to more
accurately reproduce CMFD solution.

Debug CMFD correction.

Improve solver stability and error-handling capabilities.

Thoroughly examine applicability of method to other problems
types.
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Conclusion
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Questions

Questions?
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