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1 Introduction

In the thermal energy region, translational, vibrational and other quantum effects affect
the thermal neutron double-differential scattering cross sections. This makes the cal-
culation of the bound thermal scattering cross section more complicated than the free
scattering cross section. The cross section for bound isotopes depends on the material it
is bound. The bound and free cross sections are the same at high energies, but vary below
< 4 eV . At thermal energies, scattering may result in either a gain or loss in neutron
energy. In discussing the cross section, we are interested in both energy and angle varying
continuously during these scattering events. Also, interference effects involving different
atomic spacings between the target and neutron are ignored. Thus, in the discussion
of scattering for bound isotopes at thermal energies, the focus is on incoherent inelastic
scattering. This paper goes through the derivation of the double differential scattering
cross section for incoherent inelastic scattering in terms of a scattering law, which con-
tains the details of the scattering process. Then, a procedure for sampling the scattering
law in Monte Carlo software is outlined.

2 Derivation

To examine the interactions of neutrons with atoms, we must first look at the relative size
of each. The neutron diameter is on the order of a femtometer (1 fm = 10−15 m) whereas
the diameter of an atom is on the order of an Angstrom (1 Å = 10−10 m). Therefore,
because the neutron is small by comparison, it can be regarded as a point-like particle.
We then define the energy of the incident and scattered neutron [1] in non-relativistic

1



wave form in order to assess the interference effects that occur during the scattering
process,

E =
�p 2

2m
=

h̄2|ki|2

2m
and E � =

�p�
2

2m
=

h̄2|kf |2

2m
, (1)

where �p is the momentum vector, h̄ is the modified Planck’s constant and k is the wave
vector. The wave vector is related to the wavelength, λ, by |k| = 2π

λ . In describing the
neutron-nucleus interactions, we must consider a potential V (r), where r represents the
neutron position. To simplify the derivation, the so-called Born Approximation [2] is
used which simplifies the determination of the wave function by using the fact that the
scattering probability is small because of the small size of the neutron. The problem,
however, is that the nuclear potential is strong and the Born Approximation is not valid
here. To compensate for this, a modified potential, the Fermi Pseudopotential [3], is
used. This fictitious potential can be used in place of the actual potential because, in
our derivation, we are only interested in the scattering length, which depends only on the
volume integral of the potential,

b =
1

Λ2kT

�
d3r V ∗(r), (2)

where b is the scattering length, Λ is the de Broglie wavelength, kT is the ambient
temperature and V ∗(r) is the Fermi Pseudopotential. The de Broglie wavelength is

commonly expressed as Λ = h̄
�

2π
mkT . Substituting this definition of the de Broglie

wavelength into Eq.(2) yields

b =
m

2πh̄2

�
d3r V ∗(r). (3)

Because the de Broglie wavelength is larger than the length scale of the neutron-nucleus
interaction, it cannot resolve the structure of the bound material. To the neutron, the
potential is just an impulse and the interaction can be treated as a delta function, where

�
d3r δ(r) = 1. (4)

Hence, by Eq.(4), we conclude that

V ∗(r) =
2πh̄2

m
b δ(r). (5)

For a target with N nuclei, Eq.(5) is expressed as

V ∗(r) =
2πh̄2

m

N�

i=1

bi δ(r −Ri), (6)
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where r is the neutron position and Ri is the position of the ith nucleus. Next, the double
differential scattering cross section is defined as the number of neutrons scattered into a
solid angle interval (Ω, Ω+dΩ) with energy transfer interval (E, E +dE). In other words,

σ(E → E �, Ω → Ω�) =
flux of neutrons in the solid angle dΩ per unit energy

flux of incoming neutrons
. (7)

For this analysis, we consider only plane wave solutions for the incident and scattered
neutrons.

Figure 1: Wave vector pre- and post-collision

The momentum transfer is expressed by

h̄κ = h̄ki − h̄kf , (8)

and the energy transfer is expressed by

h̄ω =
h̄2

2m
(k2

i − k2
f ). (9)

Considering scatter from an initial state λiki to a final state λfkf , the double differential
scattering cross section of Eq.(7) is expressed as

σ(E → E �, Ω → Ω�) =
Pkiλi→kf λf

φ0 dΩ
, (10)

where Pkiλi→kf λf
is the transition probability from the initial state to the final state and

φ0 is the incoming flux. The incoming flux is a ratio of the neutron velocity through a
volume. From Fig.1, we consider a cubic target with volume Vcube [4]. Then, the incoming
flux is expressed as

φ0 =
h̄ki

Vcubem
. (11)
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The transition probability is found using Fermi’s Golden Rule, which determines the
transition rate from one energy eigenstate of a quantum system into a continuum of
energy eigenstates. Without the details of Fermi’s Golden Rule, the transition probability
is expressed as

Pkiλi→kf λf
=

2π

h̄

���kfλf |V ∗| kiλi

���2 ρkf
(E) δ(h̄ω + Eλi − Eλf

), (12)

In Eq.(12), ρkf
(E) represents the density of final quantum states. It is the number of

final states with momentum kf within dΩ per unit energy range. The number of final
neutron states with momentum kf within dΩ with energy between E � and E � + dE � is
given by ρkf

(E)dE �. It is the ratio of the number of wavevector points within the unit
cell volume,

ρkf
(E)dE � =

k2
f dkf dΩ

(2π)3
Vcube. (13)

Using Eq.(1), the derivative of E � with respect to kf is determined,

dE � =
h̄2kf

m
dkf . (14)

Substituting Eq.(14) into Eq.(13) and simplifying yields

ρkf
(E) =

Vcube

(2π)3

mkf

h̄2 dΩ. (15)

In Eq.(12), the delta function ensures that energy is conserved during the scattering
process. Substituting Eq. (15) into Eq. (12) and then substituting this result along with
Eq. (11) into Eq.(10) yields

σ(E → E �, Ω → Ω�) = V 2
cube

�
m

2πh̄2

�2 kf

ki

���kfλf |V ∗| kiλi

���2 . (16)

Next, the matrix element in Eq. (16) is rewritten in integral form,

�
kfλf |V ∗| kiλi

�
=

�
ψ∗

kf
φ∗λf

V ∗ ψki
φλi d3r d3NR, (17)

In Eq. (17), d3NR = d3R1 d3R2 · · · d3RN . The neutron wavefunctions, ψkf
and ψki

are
expressed as

ψkf
=

1√
Vcube

eikf ·r and ψki
=

1√
Vcube

eiki·r. (18)

Substituting Eq. (18) into Eq. (17) yields
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�
kfλf |V ∗| kiλi

�
=

1

Vcube
�λf |V ∗| λi� eiκ·r, (19)

where κ is defined by Eq. (8). Substituting Eq. (19) into Eq. (16) and simplifying yields

σ(E → E �, Ω → Ω�) =
kf

ki

�������

N�

i=1

bi

�
λf

�������

∞�

−∞

δ(r −Ri)e
iκ·r dr

�������
λi

��������

2

δ(h̄ω + Eλi − Eλf
).

(20)

This equation can be simplified further by taking the Fourier Transform of the delta
function,

∞�

−∞

N�

i=1

δ(r −Ri)e
iκ·r dr =

N�

i=1

eiκ·Ri . (21)

Substituting Eq. (21) into Eq. (20) yields

σ(E → E �, Ω → Ω�) =
kf

ki

�����

�
λf

�����

N�

i=1

bi eiκ·Ri

����� λi

������

2

δ(h̄ω + Eλi − Eλf
). (22)

In Eq.(22), consideration must be given to the fact that there is a range of initial states
that can be used with weight pλ. Also, averages of nuclear spin and orientation must be
considered. Hence, Eq.(22) is rewritten as

σ(E → E �, Ω → Ω�) =
kf

ki

�

λi

pλi

�����

�
λf

�����

N�

i=1

bi eiκ·Ri

����� λi

������

2

δ(h̄ω + Eλi − Eλf
). (23)

Next, the delta function is expressed in integral form,

δ(h̄ω + Eλi − Eλf
) =

1

2πh̄

∞�

−∞

dt exp

�
−it

h̄ω + Eλi − Eλf

h̄

�
. (24)

Substituting Eq.(24) into Eq.(23), suppressing the average bar and rearranging yields

σ(E → E �, Ω → Ω�) =
kf

ki

1

2πh̄

∞�

−∞

dt e−iωt
�

λiλf

pλiC1 C2, (25)
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where

C1 =

�
λf

������
eit

Eλf
h̄

N�

i�=1

bi� eiκ·R�
ie−it

Eλi
h̄

������
λi

�
, (26)

C2 =

�
λi

������

N�

i=1

bi∗ e−iκ·Ri

������
λf

�
. (27)

The completeness relation states

�

λ

|λ��λ| = 1 (28)

Using this in Eq.(25) yields

σ(E → E �, Ω → Ω�) =
kf

ki

1

2πh̄

∞�

−∞

dt e−iωt
�

i,i�

bi∗bi�
�
e−iκ·Rieiκ·Ri�

�
. (29)

In Eq.(29), the following relations apply:

bi∗bi� =
��b

��2 + δi,i�

�
|b|2 −

��b
��2

�
, (30)

bcoh = b, (31)

binc =
�

|b|2 − |b|2, (32)

σ = 4πb2. (33)

Substituting Eqs.(30) through (33) into Eq.(29) yields

σ(E → E �, Ω → Ω�) =
kf

ki

1

2πh̄

�σcoh
4π

+ δi,i�
σinc
4π

��

i,i�

∞�

−∞

dt e−iωt
�
e−iκ·Rieiκ·Ri�

�
. (34)

By Eq.(1), the wave vector is related to energy by
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kf

ki

=

�
E �

E
, (35)

where E is the initial energy and E � is the scattered energy. Because interference effects
are insignificant in inelastic scattering, we ignore the coherent term. Applying this and
Eq.(35) to Eq.(34) yields

σ(E → E �, Ω → Ω�) =
σinc
4πh̄

�
E �

E

1

2π

∞�

−∞

dt e−iωt
�
e−iκ·Rieiκ·Ri�

�
. (36)

Next, a relation between
�
e−iκ·Rieiκ·Ri�

�
and a self-correlation function is determined,

�
e−iκ·Rieiκ·Ri�

�
= eiκ·rG (r, t) , (37)

where G (r, t) is the probability that, given a nucleus at the origin at time zero, the same
nucleus will be in dr about r at time t. Substituting Eq.(37) into Eq.(36) yields

σ(E → E �, Ω → Ω�) =
σinc
4πh̄

�
E �

E

1

2π

∞�

−∞

dt ei(κ·r−ωt)G (r, t) . (38)

Next, we simplify Eq.(38) by using Fourier Transforms. This is done by defining the
intermediate scattering function [5] χ(κ, t), which is the spatial Fourier Transform of
G(r, t), and the dynamic structure factor S(κ, ω), which is the time Fourier Transform
of G(r, t),

χ(κ, t) =

�
dr eiκ·rG(r, t), (39)

S(κ, ω) =
1

2π

�
dt e−iωtχ(κ, t). (40)

Substituting Eqs.(39) and (40) into Eq.(38) yields

σ(E → E �, Ω → Ω�) =
σinc
4πh̄

�
E �

E
S(κ, ω). (41)

Next, we examine further the structure factor S(κ, ω) by applying the detailed balance
relation to Eq.(41). Detailed balance always holds in a close and isolated system. The
detailed balance relation is

φ(E)σ(E → E �, Ω → Ω�) = φ(E �)σ(E � → E,−Ω� → −Ω), (42)
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where the flux, φ(E), is the Maxwellian flux,

φ(E) =
E

(kT )2
exp

�
− E

kT

�
. (43)

Substituting Eq.(41) and (43) into Eq.(42) yields

E

(kT )2
exp

�
− E

kT

�
σinc
4πh̄

�
E �

E
S(κ, ω) =

E �

(kT )2
exp

�
− E �

kT

�
σinc
4πh̄

�
E

E �S(−κ,−ω). (44)

Simplifying Eq.(44) yields

exp

�
E � − E

2kT

�
S(κ, ω) = exp

�
E − E �

2kT

�
S(−κ,−ω). (45)

We can define a dimensionless parameter that describes the energy transfer, β,

β =
E − E �

kT
. (46)

Substituting Eq.(46) into Eq.(45) yields

S(κ, ω) = eβS(−κ,−ω). (47)

One notices that S(κ, ω) is an even function of eβ. Likewise, we can define a dimensionless
parameter, α, that describes the momentum transfer,

α =
E + E � − 2µ

√
EE �

AkT
. (48)

Next, a change of variables is performed between S(κ, ω) and S(α, β), keeping an expo-
nential term for symmetry,

S(κ, ω) = exp

�
−β

2

� ����
dβ

dω

���� S(α, β). (49)

To solve Eq.(49), we note that β and ω are related by

β =
h̄ω

kT
. (50)

Thus,

����
dβ

dω

���� =
h̄

kT
. (51)
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Substituting Eq.(51) into Eq.(49) yields

S(κ, ω) =
h̄

kT
exp

�
−β

2

�
S(α, β). (52)

Substituting Eq.(52) into Eq.(41) yields the double-differential thermal scattering cross
section in terms of the scattering law, S(α, β),

σ(E → E �, Ω → Ω�) =
σinc

4πkT

�
E �

E
exp

�
−β

2

�
S(α, β). (53)

Expressing the angle in terms of µ in Eq.(53) is done by integrating over the azimuthal
angle, 2π,

σ(E → E �, µ) =
σinc
2kT

�
E �

E
exp

�
−β

2

�
S(α, β) . (54)

3 Sampling the Scattering Law

Unlike sampling for the free gas, where a rejection scheme is implemented because of
the presence of relative speed, the sampling for S(α, β) is more direct because α and β
can be directly determined. The following procedure [6,7] is likely the method used in
pre-processing codes such as NJOY to determine distribution functions for energy and
angle. To sample in terms of the variables α and β, the first step is to convert the double-
differential thermal scattering cross section from E, E � and µ to α and β. This is done
using a transformation matrix,

B =

�
dα
dE

dα
dµ

dβ
dE

dβ
dµ

�
. (55)

The change of variables is of the form

σ(E → E �, µ) = σ(α, β) det(B), (56)

where det(B) is the determinant of the transformation matrix B. Using Eqs.(46) and

(48), we know

dα

dE
=

1− µ
�

E�

E

AkT
and

dα

dµ
=
−2
√

EE �

AkT
, (57)

dβ

dE
=

1

kT
and

dβ

dµ
= 0. (58)
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Substituting Eqs.(57) and (58) into Eq.(55) and taking the determinant yields

det(B) =
2
√

EE �

A(kT )2
. (59)

Substituting Eq.(59) into Eq.(56) and solving for σ(α, β) yields

σ(α, β) =
A(kT )2

2
√

EE �
σ(E → E �, µ). (60)

Substituting Eq.(54) into Eq.(60) yields

σ(α, β) = C exp

�
−β

2

�
S(α, β), (61)

where

C =
AkT

4E
σinc = const. (62)

To get the scattering cross section as a function of incident energy, E, an integration over
Eq.(61) is performed,

σs(E) =

β+�

β−

α+�

α−

dα dβ σ(α, β). (63)

The scattered neutron energy equal to zero, E � = 0, corresponds to the maximum value
of β and the minimum value is when the incident and scattered neutron energies are
equal. Thus,

β+ =
E

kT
, (64)

β− = 0. (65)

Likewise, the maximum momentum transfer occurs for reverse scattering (when µ = − 1)
and the minimum momentum transfer occurs for forward scattering (when µ = 1). Ap-
plying this to Eq.(48) yields

α+ =

√
E +

√
E �

AkT
, (66)

α− =

√
E −

√
E �

AkT
. (67)
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In the sampling procedure, σ(α, β) is divided by the total scattering cross section at the
initial energy. Doing this and rewriting yields

σ(α, β)

σs(E)
=





α+�

α−

dα σ(α, β)

σs(E)





·





σ(α, β)
α+�

α−

dα σ(α, β)





, (68)

where





α+�

α−

dα σ(α, β)

σs(E)





= M(β |E), (69)





σ(α, β)
α+�

α−

dα σ(α, β)





= C(α | β, E). (70)

In Eqs.(69) and (70), M(β |E) is the probability that a downscatter will result in an
energy change of less than β and C(α | β, E) is the probability that a downscatter will
result in a momentum-squared change of less than α. In sampling, the integral of the
distributions (69) and (70) are determined and set to random numbers, ζ and ξ,

M̂(β |E) =

β�

0

dβ M(β |E) = ζ, (71)

Ĉ(α | β, E) =

α+�

α−

dα C(α | β, E) = ξ. (72)

The problem in storing these pdfs is that Ĉ(α | β, E) is a three-dimensional matrix. To
simplify this, a function is defined,
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F (α, β) =

α�

0

dα exp

�
−β

2

�
S(α, β). (73)

Using Eq.(73), Eqs. (71) and (72) are rewritten,

M̂(β |E) =

β�

0

dβ [F (α+, β)− F (α−, β)]

E/kT�

0

dβ [F (α+, β)− F (α−, β)]

, (74)

Ĉ(α | β, E) =
F (α, β)− F (α−, β)

F (α+, β)− F (α−, β)
. (75)

Since Eq.(75) is a three-dimensional matrix, we choose not to store it. Instead, we store
F (α, β), a two-dimensional matrix, and solve for α from

F (α, β) = ξF (α+, β) + (1− ξ)F (α−, β). (76)

So, E is given and β is determined from M̂(β |E). Then, α is determined from F (α, β).
The same procedure is done for upscattering by redefining β as a positive quantity using
detailed balance, i.e.,

S(−α,−β) = S(α, β). (77)

To summarize, β is found by storing M̂(β |E) for both upscattering and downscattering
and then α is found by storing F (α, β). All three matrices are two-dimensional.

4 Summary

In the thermal energy range, quantum effects are significant to the scattering physics,
which complicates the cross-section derivation. The derivation of the double-differential
thermal scattering cross section for bound incoherent inelastic scattering is a function of
many quantum effects. An approximation to the wavefunction was made by defining an
alternate potential, which did not change the scattering problem. Also, a symmetric form
of the scattering law was used for the double-differential cross section through detailed
balance.

The sampling method outlined (proposed by Kady in 1966) is an effective way to deter-
mine discrete exiting energies and angles from the initial energy. By defining an alternate
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function, F (α, β), fewer data are stored in the sampling while preserving the details of
initial energy, angle and exiting energy. A procedure similar to this is what is used in
pre-processing codes for the creation of cross-section data.
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