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Abstract

Monte Carlo particle transport is often introduced primarily as a

method to solve linear integral equations such as the Boltzmann trans-

port equation. This paper discusses some common misconceptions about

Monte Carlo methods that are often associated with an equation-based fo-

cus. Many of the misconceptions apply directly to standard Monte Carlo

codes such as MCNP and some are worth noting so that one does not

unnecessarily restrict future methods.

1 Introduction

Many, perhaps most, Monte Carlo code users understand Monte Carlo methods
via linear integral equations. This is quite understandable as standard books
in the field usually emphasize the connection of Monte Carlo transport and the
transport equation. This connection has proven very useful both for teaching
about Monte Carlo and for developing and analyzing many variance reduction
methods. The success of the books also indicates that the readers have found the
transport equation approach to understanding Monte Carlo transport useful.
Indeed, the fact that so many Monte Carlo books emphasize the transport
equation indicates that the experts writing the books have found the transport
equation a very useful perspective both in practice as well as in teaching.

On the other hand, viewing Monte Carlo primarily as a way to solve the
transport equation gives rise to a number of common misconceptions in the
following areas

1. Solving a problem is synonymous with solving an equation.

2. Monte Carlo transport and solving “the” transport equation.

3. Monte Carlo and SN Boltzmann transport solutions can be combined to
get pulse height tally estimates.

4. Monte Carlo and probability of initiation estimates.

5. Monte Carlo particle transport is a Markov process.
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6. Weight represents a number of particles.

7. Weight is always positive.

8. A necessary condition for unbiased estimates is that the particle density
is preserved.

9. A sufficient condition for unbiased estimates is that the particle density is
preserved.

10. A particle has one weight.

11. Many ways to get a zero variance calculation.

12. Splitting and roulette concepts and information collection.

13. Zero variance, importance, and optimal weight windows.

2 Comments on “Analog” Monte Carlo and the

Transport Process

Probably most Monte Carlo transport practitioners understand and use the term
“analog Monte Carlo” in mostly the same way. That is, convenient probability
densities are abstracted from the physical transport process. These convenient
probability densities are then embedded in a transport code. For example,
the neutron distance to collision is sampled conveniently from an exponential
distribution without modeling the detailed interactions between the neutron and
each nuclide along its path.

For this paper, the term “analog” describes a direct sampling of these ab-
stracted probability densities. For the most part, people have abstracted very
similar probability densities from the physical transport process. Nonetheless,
it is probably worthwhile to note that an analog sampling in the context of this
paper refers to the particular probability densities that MCNP [1] has abstracted
from the physical transport process. Roughly speaking, an analog Monte Carlo
sampling of a particle transport problem in MCNP is what one gets when no
variance reduction techniques are used.

The term “transport process” is also used in the context of MCNP’s abstrac-
tion of the physical transport process. An analog transport process is an analog
simulation of the abstracted physical transport process. Similarly, a nonanalog
transport process is a nonanalog simulation of the abstracted physical transport
process.

3 The Educational Bias of Equation Solving

From junior high onward (10-15 years), solving a technical problem is usually
presented as almost synonymous with solving an equation. This conflation of
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“solving a problem” and “solving an equation” is unnecessary and often mis-
leading with respect to Monte Carlo transport calculations. There is nothing
wrong with noting the relationship of a Monte Carlo transport simulation to a
transport equation. The tendency in many Monte Carlo explanations, however,
is to make numerous assumptions that severely restrict the Monte Carlo tech-
niques considered. The restricted Monte Carlo simulation is then sometimes
unduly forced to look more similar to the transport equation than necessary
or prudent. The restricted Monte Carlo often is easier to explain because it
is simpler than without the assumptions. Usually, the assumptions are either
poorly discussed or not even explicitly mentioned. When mentioned at all, there
is often no indication that a Monte Carlo calculation can be done without the
assumptions.

The conflation of “solving a problem” and “solving an equation” is so preva-
lent that Monte Carlo is often misleadingly described simply as a way to solve
the transport equation rather than the broader set of transport problems that
the codes can solve. For example, comments from an introductory Los Alamos
lecture course slide are [2]

Two basic ways to approach the use of Monte Carlo methods for
solving the transport equation:

• Mathematical technique for numerical integration

• Computer simulation of a physical process

Each is “correct.”

• Mathematical approach is useful for: Importance sampling,
convergence, variance reduction, random sampling techniques,
eigenvalue calculation schemes, . . .

• Simulation approach is useful for: collision physics, tracking,
tallying, . . .

This slide is confusing for two reasons. First, there are many transport prob-
lems that Monte Carlo codes can solve that are not described by the transport
equation. Second, many people would erroneously conclude that the simulation
approach is not useful for

• Importance sampling, convergence, variance reduction, random sampling
techniques, eigenvalue calculation schemes, . . .

The simulation approach is useful for all of the items above. As an example,
the weight window and weight window generator approaches were developed [3]
solely via a simulation approach with no use of the transport equation. Another
slide [2] with the title “Monte Carlo & Transport Equation,” lists as one of
several assumptions

• Markovian - next event depends only on current (r,v, t), not
on previous events.
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Note that although the transport problem could be simulated with Markovian
Monte Carlo, there is no reason to restrict either the Monte Carlo, or the user’s
thinking, to Markovian Monte Carlo simply because the kernels in the trans-
port equation only depend on the current (r,v, t). Most Monte Carlo codes
allow non-Markovian techniques. One of the most commonly used and effec-
tive variance reduction techniques is the weight window and the sampling is
non-Markovian because the sampling depends on the particle weight as well as
(r,v, t). By default MCNP calculations are non-Markovian because a weight
cutoff (roulette) game is played as the default option.

Note that a Monte Carlo code can be written directly from the abstracted
physical process without ever even considering a transport equation. Average
particle behavior in the Monte Carlo process certainly is described by the trans-
port equation, just as a ball’s motion is described by Newton’s equation. But
as a philosophical matter, saying that Monte Carlo is “solving” the transport
equation seems a bit like saying that a ball is “solving” Newton’s equation.

4 Monte Carlo Transport and Solving “The”

Transport Equation

It is often said that Monte Carlo solves the transport equation. This is an inter-
esting statement because the transport equation is usually derived by averaging
over the abstracted transport process, which is just the analog Monte Carlo
process. The transport equation is farther removed from the physical transport
process because the transport equation is a specific average over the transport
process. There are many different possible averages over the transport process
that result in many different transport equations. One should understand “the”
transport equation as convenient, but loose, terminology and not associate any
special uniqueness because “the” precedes “transport equation”.

A lot of information is lost in the averaging process and, in most cases, Monte
Carlo codes allow estimation of quantities for which the transport equations
displayed in the literature do not apply. In particular, the typical transport
equations totally ignore the correlation between particles. Thus any estimate,
such as the pulse height tally in MCNP, that depends on the correlation between
particles is not described by the standard transport equation.

Transport equations, of course, can be written to include correlation between
particles, but authors typically choose not to display such equations. If a Monte
Carlo user wishes to use transport equations to analyze and/or improve his
Monte Carlo calculation, it is important to understand what transport equations
are relevant to the calculation. This last statement seems obvious, but people
have sometimes talked about the pulse height tally in MCNP in the same breath
as a transport equation that ignores the correlation between particles.
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5 The Transport Equation, Monte Carlo Codes,

and Collective Particle Estimates

As mentioned in the previous section, not all transport problems can be solved
by solving the transport equation. Any estimates that depend on a correlated
collection of particles cannot be obtained by solving the transport equation
because the transport equation does not consider the correlation. Even in Monte
Carlo codes, problems can arise if the physics modeled is not microscopically
correct.

In MCNP, for instance, when a neutron collides with a nuclide there is an
average gamma production distribution that is averaged over all possible neu-
tron interactions with the nuclide. Thus, the gamma production is uncorrelated
with which neutron interaction is sampled. Thus any estimate that depends on
the joint transport of the neutron and the induced photon cannot be correct
because the necessary correlation is absent. This averaging is an unbiased pro-
cedure when the desired estimates (e.g. photon fluences) do not depend on the
correlation between the neutron and the neutron-induced photons.

When the Monte Carlo simulation is microscopically correct, many collective
particle estimates can be made by analog Monte Carlo simulations in standard
Monte Carlo codes. Inasmuch as it is collections of particles that tally, any
statistical weights must be associated with the collections rather than individ-
ual particles. Doing a microscopically correct analog Monte Carlo simulation
amounts to assigning a statistical weight of 1 to the collection. Sometimes such
analog simulations are either simply impossible or too computer intensive.

5.1 Probability of Extinction

Estimating the probability of extinction is a good example of a simulation that is
impossible to do with analog Monte Carlo. In its simplest form, the probability
of extinction (poe) problem consists of dropping a neutron into a supercritical
system. There is some probability that an infinite (divergent) nuclear chain
results and some probability that the chain becomes extinct. Because it is im-
possible for a computer to ever finish simulating an infinite chain, some people
erroneously believed that Monte Carlo could not obtain statistically exact poe
estimates. It is worth noting that approximate Monte Carlo poe methods have
been implemented in Monte Carlo codes (e.g. [4–6]). It is not clear whether this
erroneous belief has always been the reason for terminating an apparently diver-
gent chain according to some approximate criterion (e.g. when the chain length
exceeds 10,000). Note that statistically exact poe estimates are possible [7, 8],
provided nonanalog Monte Carlo methods are applied to the neutron chains

rather than to the individual neutrons. The transport equation is irrelevant to
the poe problem.
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5.2 Pulse Height and Coincidence Tallies

Many estimates (e.g. pulse height tallies and coincidence tallies) that depend on
collections of particles, although theoretically possible to do with analog Monte
Carlo, are extremely computer intensive. Nonanalog Monte Carlo methods (e.g.
[9–15]) can often solve the computer time problem. The nonanalog methods
must be applied to the collections of particles that contribute to the desired
estimate. The transport equation is irrelevant to these collective particle tallies
(except in the special case when the collection consists of one particle.)

The insidious focus on “the” transport equation rather than the transport
problem sometimes produces interesting claims. Despite the fact that “the”
transport equation is not correct for pulse height tallies, there are claims (e.g.
see [16, 17]) that SN codes can be used to obtain pulse height tallies such as
the MCNP F8 tally. There appears to be no cautions about the approximations
made when pulse height tallies are obtained with Boltzmann transport codes
that do not have correlated particle information. Instead, there sometimes seems
to be a confusion about what Monte Carlo codes do and do not do. In particular,
[17] comments

Monte Carlo radiation transport codes solve the Boltzmann trans-
port equation by faithfully simulating the life histories of radia-
tion particles or photons as they interact in the underlying physical
medium.

This is a very curious statement because MCNP uses a non-Boltzmann transport
simulation to get the pulse height tally. That is, the MCNP pulse height tally
used in [17] as a basis for comparison does not use a Boltzmann transport
simulation.

A coupled SN to Monte Carlo approach is given in [16] and the entire calcu-
lation is an SN calculation in [17]. Sometimes these claims are even empirically
validated by direct comparison with the MCNP F8 tally. The problem is that
the pulse height tally depends on correlation between particles that the SN

codes ignore. Good comparisons with the F8 tally can be obtained only when
it is unlikely that two correlated particles will both reach the detector.

Consider a simple correlation example. MCNP needs to include the corre-
lation between photons (e.g. from pair production and double fluorescence) in
order to get theoretically correct (within statistics) estimates of pulse height
tallies. For instance, if both 0.511 MeV photons from pair production get ab-
sorbed in the detector then MCNP needs the correlation so that one hit in the
1.022 MeV energy bin is tallied (rather than two hits in the 0.511 MeV bin,
which would be physically incorrect). Neither [16] nor [17] make it clear what
happens in the deterministic calculations if both photons from a pair produc-
tion get absorbed in the detector. How does a deterministic Boltzmann code
distinguish between two correlated photons from a pair annihilation versus two
independent photons?
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6 Markov and Nonmarkov Processes and Ran-

dom Walks

In an analog simulation of nature, the next step of a particle’s random walk
depends only on its current phase space location P (usually position, direction,
energy, and time). That is, an analog Monte Carlo process, like the physical
process, is a Markov process.

Nonanalog simulations of particle transport depart, in one way or another,
from the analog process. Nonanalog methods are also known as variance reduc-
tion methods because the intent of using nonanalog methods is to reduce the
variance in the estimated mean for a given computer time. Note that nonanalog
simulations need not be Markov processes.

Most theoretical Monte Carlo discussions assume that a particle’s random
walk is independent of the particle’s weight. Under this assumption, a particle’s
score is directly proportional to its weight and the rth score moment for a
particle of weight w is wr times the rth score moment for a unit weight particle.
[18, page 163]. To give some idea of the common appeal of this wide-reaching
assumption, note that [18] first mentions this assumption in a footnote.

A cautionary note is perhaps worthwhile here. Because weight independent
(natural) Markov simulations are more tractable mathematically, they account
for almost all of the theoretical discussions in the Monte Carlo literature. One
should not be mislead into concluding that weight independent simulations are
more important, better, or more widely used than weight dependent simulations.
Many of the large production Monte Carlo codes allow weight dependent simu-
lation. MCNP, which is probably the most widely used Monte Carlo transport
code in the world, has always done weight dependent simulation as a default.

Once one breaks free of thinking about Monte Carlo as a way of simulating
equations with Markovian kernels, the types of possible nonanalog techniques
expand dramatically[19]. Of course, not all nonanalog techniques will reduce
variance, but it is worthwhile to understand the flexibility of nonanalog Monte
Carlo. Examples that surprise some people are now given. For simplicity, the
examples are weight independent nonmarkov processes, because the mathemat-
ics is easier. (Similar weight dependent examples are possible.)

Consider a simple slab penetration problem in a nonmultiplying medium and
score the particle weight w if the particle penetrates and 0 otherwise. Consider
a particle of weight w = 1 entering its fourth collision in a material composed
of two nuclides. Define

1. ρi = the probability of collision with nuclide i (ρ1 + ρ2 = 1).

2. bi = the biased probability of with nuclide i (b1 + b2 = 1).

3. pi(s, wi)ds = the probability that a particle of weight wi entering collision
with nuclide i will subsequently score in ds about s.
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The expected score for an analog sampling of the nuclide is

〈

Sanalog

〉

= ρ1

∫

p1(s, 1)s ds + ρ2

∫

p2(s, 1)s ds (1)

For a biased sampling of the collision nuclide, the particle weight is multiplied
by the ratio of the true probability to the sampled probability, so

wi =
ρi

bi

(2)

The expected score for this biased sampling of the nuclide is

〈

Sbias

〉

= b1

∫

p1(s, w1)s ds + b2

∫

p2(s, w2)s ds (3)

For this example, if one assumes weight independent random walks, then for
any random walk a particle of weight w scores w times what a particle of weight
1 scores. That is,

pi(s, w)ds = pi(s/w, 1)d(s/w) (4)

Using Eq. 4 in Eq. 3

〈

Sbias

〉

= b1

∫

p1(s/w1, 1)s d(s/w1) + b2

∫

p2(s/w2, 1)s d(s/w2) (5)

Letting si = s/wi and noting Eq. 1

〈

Sbias

〉

= b1

∫

p1(s1, 1)w1s1 ds1 + b2

∫

p2(s2, 1)w2s2 ds2

= ρ1

∫

p1(s, 1)s ds + ρ2

∫

p2(s, 1)s ds =
〈

Sanalog

〉

(6)

so that the mean score is preserved.
Other than being a discrete probability density, the bi are completely arbi-

trary. Suppose, for instance, that η was the random number used to select the
collision nuclide in the particle’s first collision and let

b1 = ηp1 (7)

b2 = 1 − b1 (8)

be the biased probabilities for selecting the nuclide i on the fourth collision.
Eq. 6 still shows that the mean score is preserved even though the sampling
is no longer Markovian because the sampling depends on more than just the
preceding collision.

Somewhat more interesting is that the sampling of the collision nuclide on the
fourth collision can be made to depend on the nuclide sampling for the seventh
collision. For example, suppose that before the fourth collision a random number
ξ is generated to be used later to sample the collision nuclide for the seventh
collision. (If there are fewer than seven collisions, then ξ will not, of course, be
used to sample the collision nuclide.) Because the distribution of scores at the
fourth collision now depends on ξ, define
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• pi(s, wi|ξ)ds = the probability that a particle of weight wi entering colli-
sion with nuclide i will subsequently score in ds about s, given that the
collision nuclide for the seventh collision is selected using ξ.

Now let the bi depend on ξ. For a biased sampling of the collision nuclide,
the particle weight is the ratio of the true probability to the sampled probability

wi(ξ) =
ρi

bi(ξ)
(9)

The expected score (conditional on ξ) for this biased sampling of the nuclide is

〈

Sbias|ξ
〉

= b1(ξ)

∫

p1(s, w1(ξ)|ξ)s ds + b2(ξ)

∫

p2(s, w2(ξ)|ξ)s ds (10)

If one assumes weight independent random walks, then for any random walk, a
particle of weight w scores w times what a particle of weight 1 scores. That is,

pi(s, w|ξ)ds = pi(s/w, 1|ξ)d(s/w) (11)

Using Eq. 11 in Eq. 10

〈

Sbias|ξ
〉

= b1(ξ)

∫

p1(s/w1(ξ), 1|ξ)s d(s/w1(ξ)) +

b2(ξ)

∫

p2(s/w2(ξ), 1|ξ)s d(s/w2(ξ)) (12)

Letting si = s/wi(ξ), Eq. 12 becomes

〈

Sbias|ξ
〉

= b1(ξ)

∫

p1(s1, 1|ξ)s1w1(ξ) ds1 +

b2(ξ)

∫

p2(s2, 1|ξ)s2w2(ξ) ds2 (13)

Using Eq. 9, Eq. 13 becomes

〈

Sbias|ξ
〉

= ρ1

∫

p1(s1, 1|ξ)s1 ds1 + ρ2

∫

p2(s2, 1|ξ)s2 ds2 (14)

Noting that

pi(si, 1) =

∫

pi(si, 1|ξ)dξ (15)

and integrating over ξ

〈

Sbias

〉

=

∫

〈

Sbias|ξ
〉

dξ = ρ1

∫

p1(s1, 1)s1 ds1 + ρ2

∫

p2(s2, 1)s2 ds2

=
〈

Sanalog

〉

(16)

so that the mean score is preserved. The fact that the fourth collision nuclide
sampling can depend on the sampling of the seventh collision nuclide surprises
many people (it even seems to bother some).
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7 Comments on Statistical Weight

From the standpoint of many, perhaps most, major Monte Carlo transport
codes, weight is a particle attribute, like energy and position. That is, the weight
is carried along with the particle, banked with the particle, and so forth. Weight
is simply a tally multiplier. It is often convenient to interpret the weight as the
number of physical particles represented by the computer particle. Heuristically,
one expects that if the Monte Carlo process preserves the expected weight at
each event, then the result will be an unbiased mean. For the most part, this is
a very useful view of the Monte Carlo process, but it is perhaps useful to point
out some cases for which this view needs some elaboration and/or modification.
The purpose here is to illustrate some of the subtleties in the concept of “par-
ticle weight.” Note that many of the examples are not very realistic, they are
contrived for simplicity.

7.1 Preserving the Expected Weight is not Always a Suf-

ficient Condition for an Unbiased Mean

Preserving the expected weight, by itself, will not ensure an unbiased estimate.
The estimator must depend on weight in a correct way also. As an obvious
example, if the number of particles crossing a surface is desired, then tallying
“1” (regardless of weight) every time a particle crosses the surface will give
the correct tally for an analog calculation, but will in general be wrong when
variance reduction techniques change the weight.

For deterministic (nonrandom) estimators, unbiasedness is normally assured
by making the tally function proportional to weight. Not all common estimators
are deterministic. The point detector in MCNP[1, 3-106] is a random estimator
because it plays roulette games when the optical path to the detector gets large.
For random estimators, one requires that the expected tally (rather than the
individual tally itself) be proportional to weight.

The conceptual mistake many people make is to separate the estimation
process from the transport process. These two processes can be tied rather
intimately in some unusual ways and one has to ensure that the combined
process is unbiased. Consider estimating the number of particles that cross the
cell shown in Fig. 1 without colliding.

A typical transport and estimation procedure is: with probability p =
exp(−ΣT ) the particle crosses the cell without collision and tallies w and with
probability 1− p the particle collides and no tally is made. The particle is then
followed from either the point where it crossed the surface or the point where it
collided.

Another possible way to estimate the number of collisionless flights across
the cell is shown in Fig. 2.

For Fig. 2, the tally is not dependent on whether the particle of weight w
collides or not. Instead, the estimation is done using a “pseudoparticle” that
only exists for the estimation procedure. (The pseudoparticle initially has the
same phase space coordinates as the transported particle.) The pseudoparticle
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is sampled using the same probabilities as the transported particle, but the
pseudoparticle is terminated after the estimation procedure is completed, it
is not transported. Hence the term pseudoparticle, because it is not part of
the transport. Transport then continues with the original particle. Thus the
particle might not cross the surface without colliding, but it might contribute
to the tally because the pseudoparticle did cross the surface without colliding.
Note that if the estimation process used on the pseudoparticle is not correct,
then the estimate can be erroneous despite the fact that the expected particle
weight has been preserved. It is often so obvious how the pseudoparticle should
be treated that the pseudoparticle’s role in maintaining an unbiased estimate is
not discussed. (One correct method tallies w when the pseudoparticle crosses
the surface without collision.)

7.2 Preserving the Expected Weight is not Always a Nec-

essary Condition for an Unbiased Mean

The previous subsection showed that preserving the expected weight is not al-
ways a sufficient condition for an unbiased mean. Now, it is shown that pre-
serving the expected weight is not always a necessary condition for an unbiased
mean. Experienced Monte Carlo practitioners correctly might suspect some leg-
erdemain here. Consider Fig. 2 again. Inasmuch as the tally depends (for the
current transport step) not on the particle’s weight, but on the weight associ-
ated with the pseudoparticle, the particle weight can be set to any arbitrary
value, provided the particle weight is returned to w when the particle collides or
crosses the surface. Thus, preserving the expected weight is not necessary for
this step in the transport process. With the tally not responding to the original
particle, one possible interpretation is that the particle weight is zero for that
step. Things will get even more curious in the next subsection.

7.3 Multiple Particle Weights

Particle weight is normally conceived of as a single value for each particle. Not
only can one conceive of particles having multiple weights, multiple weights are
used in some production transport codes. Before jumping to the practical uses
of multiple weights, two simple examples are discussed.

Building on the previous two subsections, suppose that the code uses two
different estimators for the number of particles crossing the surface. The first
estimator uses the original particle as in Fig. 1 and the second estimator uses
the pseudoparticle as in Fig. 2. In this case, the original particle should have
weight w so that the first estimator is correct, but it can still have zero weight
for the second estimator. That is, the particle can have a different weight for
each estimator.

For another simple example, suppose that a particle of weight w reaches a
surface as shown in Fig. 1. Upon crossing the surface, split the particle into
two particles each of the original weight w. The total expected weight is not
preserved by this split, but unbiased estimates can again be made by a bit
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of legerdemain with the estimators. Label the particles 1 and 2. Label the
estimators with positive integers. Let the odd numbered estimators respond
only to particle 1 and let the even numbered estimators respond only to particle
2. This can be viewed as follows. The presplit particle contributed to all tallies
and thus can be considered to have a weight vector (w,w). After the split,
particle 1 has weight vector (w, 0) and particle 2 has weight vector (0, w).

Turning to practical uses of multiple weights, note that perturbation and
correlated sampling methods use different weights for the reference system and
the perturbed system. For example, Ref. [18, page 307] explicitly uses a weight
vector in the discussion of correlated sampling.

The dxtran method in MCNP is very similar to the second example above.
Upon surviving a collision, a particle is partitioned into two particles. The “dx-
tran particle” represents the uncollided particles that arrive on a user specified
dxtran sphere. The “nondxtran particle” represents the remainder of the parti-
cles. Note that the nondxtran particle has the original weight, w, at the collision
exit point and the dxtran particle has a nonzero weight. Thus, the total parti-
cle weight is always larger than w at the collision exit point. The trick here is
that the dxtran particle has zero weight for any tallies made before crossing the
dxtran sphere and appropriate weight for any tallies afterward. Conversely, the
nondxtran particle has weight w for all tallies made before crossing the dxtran
sphere and zero weight for any tallies afterward.

Multiple weights can also be used to get low variance estimates for multiple
tallies. Consider a particle with a single weight in a slab penetration problem.
Suppose the numbers of particles exiting the slab in the three energy ranges
1.00 to 1.01, 1.01 to 1.02, and 1.02 to 1.03 MeV are desired. Note that a typical
zero variance sampling for the energy range 1.00 to 1.01 MeV means that every
particle has to exit the slab within this energy range. This means that no
particles exit in the other two energy ranges. Thus, a random walk process that
gives a zero variance estimate for one energy range gives an infinite variance
estimate for all other energy ranges. Most of the sampling to get a zero variance
solution in one interval is going to be very similar to the sampling to get a zero
variance solution in either of the other two intervals. It seems ridiculous that
a zero variance solution in one interval forces an infinite variance in the other
intervals. Reference [20] shows that it is possible to get zero variance solutions in
all three intervals at once using particles that carry three weights. The method
works by simultaneously applying several different importance functions, one for
each tally, in a correlated way. Although zero variance estimates are impractical
because the importance functions are not known exactly, low variance solutions
are possible with approximate importance functions. The method in [20] follows
a single particle with multiple nonzero weights until the correlation between
the importance functions decreases enough that the particle must, statistically,
execute different random walks for different tallies.
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7.4 Nonpositive Particle Weight

People often think of weight as a nonnegative number, but many nonanalog
techniques work with negative weights as well as mixtures of negative and pos-
itive weights. Indeed, even complex weights can in principle be used. A trivial,
if not especially useful, example concerns splitting. A particle track of weight w
crossing a surface can be split into pieces in a number of ways. A few possibilities
are (note i2 = −1)

1. two particles with weights w/2 and w/2

2. three particles with weights w/2, w/4, and w/4

3. four particles with weights w/2, w/2, w/4, and −w/4

4. four particles with weights w/2, w/2, iw/4, and −iw/4

Another more complicated splitting procedure, somewhat similar to item 3, will
be discussed later.

Although the splitting example is totally contrived, negative weights occur
much more naturally in nonfundamental mode eigenfunction estimates. In crit-
icality calculations, the first (fundamental ψ1) eigenfunction is everywhere pos-
itive, but the second eigenfunction (ψ2) must have some regions where ψ2 < 0
and some regions where ψ2 > 0 because the eigenfunctions are orthogonal and
require

∫

ψ1(P )ψ2(P )dP = 0. The regions where ψ2 < 0 are represented by
negative weight particles. Note that when the eigenfunctions are complex, then
complex particle weights can be used to represent the eigenfunctions.

In residual or “reduced source” methods, one uses Monte Carlo to estimate
the difference between the exact solution and an approximate solution. Let L
be a linear transport operator and Q(P ) be the source. That is,

L
[

ψ(P )
]

= Q(P ) (17)

Now suppose that one has an estimate, ψ0(P ), and one defines the difference
function D(P ) by

ψ0(P ) = ψ(P ) − D(P ) (18)

Inserting Eq. 18 into Eq. 17 yields

L
[

ψ0(P ) + D(P )
]

= Q(P ) (19)

L
[

D(P )
]

= Q(P ) − L
[

ψ0(P )
]

(20)

Defining a “reduced source”

R(P ) = Q(P ) − L
[

ψ0(P )
]

(21)

then the resulting new transport problem is

L
[

D(P )
]

= R(P ) (22)
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where now the source, R(P ), is partly positive and partly negative and is nat-
urally represented by positive and negative weight particles.

The author does not know of any standard transport code that uses the
following trick, but it might be useful for some difficult sampling issues. In any
case, it is possible and illustrates another case where negative weights might be
used. Suppose that one needs to sample an angle 0 ≤ θ ≤ 2π from a probability
density p(θ) that is very difficult and time consuming to sample. Define

1. p(θ) = true probability density that is difficult to sample

2. f(r, w|θ) = score produced by a particle at angle θ with the random walk
sampled from the random vector r selected from the unit random number
generator u(r) = 1.

3. q(θ) = probability density that approximates p(θ) and is easy to sample.

Suppose the average score generated from the current point onward over all
possible θ and subsequent random walks is desired. That is,

∫ ∫

f(r, w|θ)p(θ)dθdr (23)

is desired. The sampling can be split into two parts by noting

∫ ∫

f(r, w|θ)p(θ)dθdr =

∫ ∫

f(r, w|θ)q(θ)dθdr+

∫ ∫

f(r,w|θ)(p(θ)−q(θ))dθdr

(24)
An estimate of

∫ ∫

f(r, w|θ)q(θ)dθdr (25)

can be made with a particle of weight w by sampling θ from q(θ), sampling the
random walk specified by r, and and scoring f(r, w|θ).

For an unbiased mean, the expected score has to be proportional to the
particle weight. That is,

(1/w)

∫

f(r, w|θ)dr = (1/w′)

∫

f(r, w′|θ)dr =

∫

f(r, 1|θ)dr (26)

In particular,

∫

f(r, w)|θ)(p(θ) − q(θ))dr =

∫

f(r, w(p(θ) − q(θ)))|θ)dr (27)

so that the last term in Eq. 24 is

∫ ∫

f(r, w)|θ)(p(θ) − q(θ))dθdr =

∫ ∫

f(r, w(p(θ) − q(θ)))|θ)dθdr (28)

This can be estimated by sampling θ from the probability density 1/(2π) and
following a particle of weight w′ = w(p(θ)−q(θ)) along the random walk specified
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by r, and and scoring f(r, w(p(θ) − q(θ))|θ). Note that w′ will sometimes be
negative and sometimes be positive.

Alternatively, because q(θ) is easy to sample, one could alter the procedure.
Instead of sampling from the probability density 1/(2π) one could sample from
q(θ) and multiply by the additional weight factor

c(θ) =
1/(2π)

q(θ)
=

1

2πq(θ)
(29)

That is, with weight

w′(θ) = w
(p(θ) − q(θ)))

2πq(θ)
(30)

the right side of Eq. 27 can be expressed as

∫ ∫

f(r, w′(θ)|θ)q(θ)dθdr (31)

This can be estimated by sampling θ from the probability density q(θ) and
following a particle of weight w′(θ) along the random walk specified by r, and
and scoring f(r, w′|θ). Note that w′ will sometimes be negative and sometimes
be positive.

8 Zero Variance Misconceptions

Zero variance Monte Carlo schemes have been around almost since the beginning
of Monte Carlo. A fairly recent paper by Hoogenboom [21] both notes that the
schemes go as far back as Kahn’s [22] work and claims

We will prove that for a given estimator there is only one zero-
variance scheme possible with a unique biasing of the source function
and the transition and collision kernels.

Hoogenboom’s proof is an interesting and worthwhile result that follows in the
general tradition of zero variance proofs that make numerous assumptions about
what a Monte Carlo transport calculation must look like. Some typical, often
unstated, assumptions are:

1. If S is the set of possible random walks when no biasing is used, then S
is the set of possible random walks in the zero variance biasing schemes.
That is, the Monte Carlo techniques considered change only the probabili-

ties of the random walks. The set S of possible random walks is unaltered.

2. No splitting techniques can be used in the zero variance scheme.

3. None of the biased kernels can depend on particle weight.

4. The biased kernels are Markovian.
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5. The biased kernels depend solely on the state of a given particle. That is,
it is not allowed that biasing the kernels of track 20 of history N might
depend on the state of track 4 of history N .

6. Combing techniques that take K input tracks within history N and “comb”
them into M tracks within history N are not allowed.

7. There is only one track per history.

Hoogenboom’s uniqueness claim should be interpreted in the proper context
intended in [21]. By violating one or more of these assumptions, it is easy to
demonstrate another zero variance scheme. For instance, one can make a simple
alteration to the zero variance scheme in [21] by introducing a 2:1 split and then
sampling each of the split particles applying Hoogenboom’s same zero variance
sampling procedures to each of the split particles.

One negative consequence of tying zero variance procedures so closely to
particular froms of the transport equation is that the essential requirement for
zero variance procedures across many different Monte Carlo fields is obscured.
Each Monte Carlo field tends to use very special techniques in that field and
ignores the generalities both within and across Monte Carlo fields.

There is nothing special about a transport problem that requires playing
with transport equations to get zero variance solutions to transport problems.
Zero variance is a quite general property of linear Monte Carlo problems. Play-
ing with transport equations ignores this generality, just as playing with other
equations in other fields to get zero variance solutions ignores the commonality
with transport Monte Carlo.

The real key to zero variance solutions for any linear Monte Carlo calcu-
lation is to expected score weight all decisions. One specific simple example
of expected score weighting all decisions is given in [23]. Random numbers
determine decisions in a Monte Carlo code, so [23] shows that expected score
weighting the selection of random numbers produces a zero variance solution to
any linear Monte Carlo problem. For example, note that an MCNP calculation
using any set of MCNP variance reduction techniques and any tally is still a lin-
ear Monte Carlo problem, so score weighting the random numbers will produce
a zero variance solution.

Zero variance concepts and procedures are far richer and more general than
the way they are usually introduced in transport Zero variance procedures not
only exist for nonBoltzmann transport problems such as the probability of ini-
tiation problem [7], they exist for all linear Monte Carlo problems in any field,
and for any desired estimate.

9 Splitting and Rouletting

Many people view splitting and rouletting primarily in the context of an im-
portance function: split when the particle’s importance increases and roulette
when the particle’s importance decreases. This is often a useful view, but it
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helps to have a deeper conceptual insight to avoid instances when it is not a
useful view.

A Monte Carlo code collects information about desired quantities (i.e. tal-
lies) by following particle histories. Without the particles, very little can be
known about the tallies because it is the particles that are responsible for col-
lecting information. Variance reduction techniques are designed to collect more
information in the same amount of computer time. One can collect more infor-
mation by getting more information per history and/or by using more histories.
Splitting works by collecting more information per history. Roulette works by
terminating particles that are not collecting enough information and using the
time saved to increase the number of histories that can be run in a fixed com-
puter time.

Consider splitting first. A physical particle will have one next event. For
example, a physical particle in free-flight cannot have its next collision in three
locations. In an analog Monte Carlo simulation a particle can likewise only have
one next event. Splitting is a mathematical artifice that collects information on
more than one possible next event. For example, splitting a computer particle
about to undergo a distance to collision sampling into 3 identical particles allows
investigation of three possible outcomes of the sampling instead of one possible
outcome. That is, extra information is being collected because of the splitting.
The extra information collected usually reduces the sample variance, but having
to following the extra split particles decreases the number of histories that can
be run in a fixed computer time.

Now consider roulette. Roulette usually increases the sample variance (σ2)
because a terminated particle collects no further information. So, in what sense
is roulette a variance reduction technique? Roulette is intended to decrease the
variance of the mean

σ2

m =
σ2

N
(32)

by increasing the number of histories N that can be run in a fixed computer
time. (The distribution of means is known to be a normal distribution with
variance σ2/N via the central limit theorem.)

In summary, splitting hopes to decrease σ2 more than splitting decreases N
and roulette hopes to increase N more than roulette increases σ2 so that σ2

m will
decrease. Splitting will be counterproductive when there is not enough extra
information to be gained to justify the cost of following all the split particles.
This is the reason that Monte Carlo codes generally avoid splitting particles
going into a void even if the void has a relatively high importance. All split
particles crossing a void reach the other side of the void without collision, so
there is no information gained to justify the added time required. Roulette will
be counterproductive when the information lost is large compared with the time
saved. Note that when a particle is terminated by roulette that the information
lost is the same whether the survival probability is 1/10 or 1/100. Suppose that
continuing the particle track takes, on average, computer time t. Rouletting
1/10 saves 0.9t and rouletting 1/100 saves 0.99t. Note that the more aggressive
1/100 roulette game only saves 0.09t more time than the 1/10 roulette game yet
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increases the statistical weight by ten times over the 1/10 roulette game. This
often increases σ2 more than N increases.

10 Optimal Weight Windows, Zero Variance, and

Importance

The previous section explained the general workings of splitting and roulette.
This section discusses some of these ideas in the context of the weight window
technique.

The weight window is a splitting and roulette technique that depends on the
particle’s weight and phase-space location. A weight window consists of three
weight levels in each phase-space (e.g. space-energy) region

1. a lower weight bound wl

2. an upper weight bound wu (it is required that wu ≥ 2wl and here we
assume the default wu = 5wl)

3. a Russian roulette survival weight ws

Let a particle have weight w. The weight window does the following depending
on w.

1. If wl ≤ w ≤ wu then the particle is within the weight window and no
action is taken.

2. If w > wu then the particle is above the window and the particle is split
by the minimum integer k such that wl ≤ w/k ≤ wu, so that the split
particles are within the weight window

3. If w < wl then the particle is below the window and the particle is roulet-
ted with survival probability w/ws, so that if the particle survives, it will
have weight ws within the window.

A typical problem confronting an MCNP user is the selection of good weight
window lower bounds. (The upper bounds are usually defaulted to 5 times
the lower bounds.) Fortunately, the weight window method is not extremely
sensitive to the lower bounds and the weight window is usually nearly optimal
over a broad range. A good weight window can often be obtained by setting
the lower weight bound to be inversely proportional to the importance function.
The importance function may either be estimated by Monte Carlo (e.g. the
weight window generator) or provided by a deterministic code (e.g. see [24]).

In fact, using a weight window that is inversely proportional to the impor-
tance function has become so common that many (hopefully not most) users
believe that such a weight window is an optimal weight window. In general, it is
not optimal. On the other hand, because the weight window is nearly optimal
over a broad range, it is true that such a weight window is often nearly optimal.
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In fact, some people believe that if a perfect importance function were known,
then such a weight window would have to be optimal.

Part of the confusion seems to be connected with the fact that it is theo-
retically possible to do a zero variance Monte Carlo calculation using an exact
importance function. If the importance function is almost right, then a low
variance calculation results. As the importance function becomes better and
better the variance becomes smaller and smaller. The trouble is that the weight
window is not a zero variance technique and so:

1. Even with a pointwise weight window derived from a perfect pointwise
importance function, one cannot get a zero variance solution.

2. Because a zero variance sampling scheme, using a nearly perfect impor-
tance function, will produce a nearly optimal Monte Carlo solution, does
not mean that a weight window sampling scheme, using a nearly perfect
importance, function will produce nearly optimal Monte Carlo solution.

Using importance information to reduce the variance is interesting from a
philosophical viewpoint. The importance function is the first moment (mean
or M1(P )) of the score distribution and yet one is trying to reduce the second

moment (M2(P )), and thereby reduce the history variance σ2 = M2 − M2

1
.

Three questions that come to mind are

1. Why should one expect that nonanalog techniques that use M1(P ) infor-
mation would be useful for minimizing M2(P )?

2. When does using M1(P ) to minimize M2(P ) work?

3. When does using M1(P ) to minimize M2(P ) not work?

A possible reason that one might expect that nonanalog techniques that
use M1(P ) information would be useful for minimizing M2(P ) is that for zero
variance schemes, using the importance function (M1(P )) does minimize M2(P ).
For nonzero variance techniques, such as the weight window, this procedure of
using importance information to achieve nearly optimal weight windows is often
problematical. Sometimes the procedure works well and sometimes it does not.

From a particle perspective, variance reduction efforts should focus on the
high scoring particles. But, using importance information to bias the random
walks is a focus on the average particle behavior. An analysis of why this pro-
cedure works well for some problems and not for others starts with an analysis
of the zero variance scheme. In a zero variance scheme, the set of particles
that contributes most of the second moment is identical to the set of particles
that contributes most to the first moment. Stated mathematically, zero vari-
ance implies that M2(P ) = M2

1
(P ). This means that first moment (importance)

information can essentially be used as a standin for second moment information.
For low variance situations, M2(P ) still looks fairly similar to M2

1
(P ) and

importance information still can be used roughly as a standin for second moment
information. From a particle perspective, if the set of particles contributing
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most to M2 is similar to the set of particles contributing most to M1, then a
low variance calculation results. In such cases, one can expect that a weight
window inversely proportional to the importance function will be somewhere in
the window’s broad nearly optimum region. Particle penetration of a simple
concrete slab is a typical example where an importance based weight window
works very well. The random walks of the high scoring particles are not too
different from the random walks of typical particles.

On the other hand, there are many cases where there is no set of weight
window parameters for which the random walks of the high scoring particles
are somewhat similar to the random walks of typical particles. In some cases,
even if a user had an optimal weight window (perhaps obtained empirically by
testing a huge number of possible weight windows), the particles that contribute
most to M2 may contribute little to M1. For example, 90% of the variance may
be due to particles that contribute only 0.01% of the mean. In these cases,
trying to minimize variance by considering average particle scoring (importance)
information cannot succeed because the high scoring particles are extremely
different from the average scoring particles. Stated mathematically, these cases
have M2(P ) >> M2

1
(P ) and so M2 looks nothing like M2

1
and thus importance

information cannot be used as as a standin for M2(P ) information.
Particle penetration of a concrete slab with a small diameter void duct is a

typical example of a problem for which for all possible sets of weight windows
the variance is dominated by the extremely rare particles that stream directly
through the duct and score. Most of the mean will come from particles that
slog their way through the concrete but most of the variance will come from
particles that stream through the duct. The essential variance problem is that
a particle that streams up the duct goes from a very low importance region to a
very high importance region in one step. If the window is based on importance
information, the particle’s weight window region might change by 106 from the
bottom of the duct to the top of the duct. Splitting by 106 : 1 will be ineffective
because splitting works by collecting information on different possible random
walks. Once the particle is near the tally surface, there are not really 106

different things for a particle to do.
In fact, the essential problem is that the sampling of the special direction

up the duct has introduced a huge amount of variance in the sampling process.
One can reduce the variance introduced after the direction sampling to zero
by splitting ∞ : 1, but any variance introduced before the split is not affected
by the splitting. To make an importance based weight window effective in
this situation, another technique that biases the direction sampling up the pipe
has to be used. Because of the direction biasing, the particle’s weight will be
greatly reduced and then be more consistent with the weight window region it
has entered and huge splits will not occur.

As a practical matter, a weight window inversely proportional to the impor-
tance seems to work well when the particle weight is always roughly consistent
with the weight window and no large splits are required. In this case, there are
enough different things for the split particles to do to make splitting effective.
The required splits can be small either because the problem is such that no
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transition from one region to another has a large weight window change (e.g.
the simple slab example) or because the transition between regions with a large
weight window change (e.g. the duct example) is biased so that the bias modi-
fied weight is roughly consistent with the weight window. Mathematically, large
splits are an indication that M2(P ) >> M2

1
(P ) and that the second moment

information looks nothing like the first moment information.
There are potential traps for unwary weight window users who blindly take

the importance function output from an SN code and produce a weight window
from this importance function. Although this will work well in some cases, it will
be problematic in other cases for the reasons indicated above. It is particulary
worrisome to have source weights near unity and weight windows of 1020. As
explained in the previous section, roulette saves time but increases the variance.
What is the extra time saved by using windows going all the way up to 1020

instead of say, allowing no weight windows larger than 100? Using a window
of 1020 is an instance of focusing too much on the mean and too little on the
variance aspects of the problem. What is truely worrisome is that such harsh
roulette games may totally prevent some random walks from occuring and one
will never see an instance of a huge weight (say W ) particle scoring. When this
happens the mean may be low because it is totally missing any representative
sample of the some random walks. That is, the mean may be low because it is
missing large W contributions. Worse still, the true error may be substantially
larger than the estimated error because the estimated M2 may be low because
it is missing the large W 2 contributions. The variance of the variance may be
wildly low because it is missing W 4 contributions. Thus the calculation may
pass statistical tests even though the calculation is not converged.

In short, caveat emptor using weight windows spanning 20 orders of mag-
nitude just because the SN importance function spans 20 orders of magnitude.
The SN is supplying information about the first moment and this is not always
a good way to minimize the second moment. The time saved is usually small
and not commensurate with the dangers inherent in using such weight windows.

Though not discussed here, it is worth noting that there are methods that
determine M1, M2 and computer time T as a function of some variance reduction
parameters, Vi, and then choose the optimal Vi that minimize (M2 −M2

1
)T . A

nonexhaustive list of references include [25–28]. (Burn [25], in particular, has
many related publications.)

11 Summary

Monte Carlo methods can be extremely useful, diverse, clever, and intricate.
Viewing Monte Carlo primarily as a way to solve an equation that describes
some average over the transport process is inappropiate for two reasons. First,
there is a richness of information that is available in a Monte Carlo calculation
but the averaging process removes much of this richness. Second, there is a
tendency to think about Monte Carlo methods in terms of what one sees in the
equations. Thus much of the discussion about transport Monte Carlo is in terms
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of simulating terms in an equation rather than simulating the transport process.
This tends to result in a very restricted view about Monte Carlo methods and
theoretical claims whose assumptions are not properly identified.

I once talked at great length, confusion, and frustration with somebody
who did not understand the richness in the variety of ways one could apply
Monte Carlo methods. The confusion finally went away when he exclaimed
in astonishment “you mean that you simulate a naturally occuring Markov
process with a nonMarkov process!” He was looking at the equations and the
transition kernels in the equations were Markovian objects like K(P ′ → P ), so
his mind was fixed on using biased Monte carlo transition probabilities of the
form K̃(P ′ → P ) that were also Markovian. There is, of course, no reason to
limit the Monte Carlo playground to the tiny space of Markovian random walks,
but that seems to be many people’s natural inclination.

In addition to the tendency to make unstated assumptions about what a
Monte Carlo calculation must look like, these assumptions slow the progress of
Monte Carlo methods development by unnecessarily limiting the Monte Carlo
playground. This paper discussed some of the more common misconceptions in
practical Monte Carlo calculations in hopes of correcting them. Additionally,
this paper discussed some more theoretical misconceptions in hopes of broad-
ening peoples’ view of Monte Carlo.

Acknowledgement Thanks to Avneet Sood and ***** for reading and com-
menting on a draft of this paper.
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