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Abstract

A simple method for Monte Carlo source convergence acceleration was
demonstrated on a simple one-speed one-dimensional nuclear criticality
problem. The method used multiple eigenvalue estimates to achieve the
acceleration. This report demonstrates that the same multiple k eigen-
function method also accelerates convergence on a continuous energy het-
erogeneous three-dimensional problem in MCNP.

1 Introduction

In the past few years a number of papers [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] have exploited
the fact that the eigenvalue of a system can be computed at any point, or set
of points, one wishes. It is common to compute the eigenvalue from global
quantities, but the most basic definition of an eigenfunction and eigenvalue for
a linear operator A is:

Aψ(s) = kψ(s) (1)

Note that this eigenvalue/eigenfunction relation is a pointwise relation at every
s, rather than a global relation. Of course, one can derive a global relation for
the fundamental eigenvalue by integrating to obtain:

∫
Aψ1(s)ds = k

∫
ψ1(s)ds (2)

This paper uses the basic definition Eq. 1 of the eigenvalue as a pointwise
relation rather than the derived expression of Eq. 2. Because Eq. 1 can be
integrated over any region Ri,∫

Ri

Aψ1(s)ds = k

∫
Ri

ψ1(s)ds (3)

This allows one to compute k using any number of regions. That is,

kRi
= k =

∫
Ri

Aψ1(s)ds∫
Ri

ψ1(s)ds
(4)
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The multiple k source convergence acceleration method showed promising
results [10] on a simple problem in a toy transport code. In particular, the
method was demonstrated on a problem so simple that an analytic solution was
available.

Sometimes methods that work quite well on homogeneous one-speed and
one-dimensional problems do not work well when the problems get more com-
plicated. This paper shows that the multiple k method can also work for some
more complicated problems. Whether the method is currently practical enough
to implement for general MCNP eigenvalue calculations remains to be seen, but
this paper shows that the method is worth investigating further for potential
implementation.

The method is a modification of the power iteration method in which mul-
tiple eigenvalue estimates in multiple regions are used instead of one eigenvalue
estimate over the entire system. The eigenvalue estimates involve an unknown
weight multiplier in each region. These unknown weight multipliers are then
determined by requiring the eigenvalue estimates in all regions to be the same
because at any point s for which ψ(s) != 0, the definition of the eigenfunction
means that k1 = (Aψ)/ψ.

Note that no claim is made that the method herein is better than any existing
method.

2 Requiring that k be constant - the Weight

Multiplier Equation

This section uses the fact that k must be the same in all regions. In order to
enforce the requirement, the particles in Ri have an unknown weight multiplier
zi. The kj are then functions of the weight multipliers zi. One then solves for
a set of zi that produces k1 = k2 = k3 = · · · = kn. (Because the eigenvalue
relationship does not depend on the magnitude of the eigenvector, if zi produces
k1 = k2 = k3 = · · · = kn, then so will Zj = constant × zj .)

Before solving for the weight multipliers that equalize the kj , a few terms
need to be defined

1. Mj is the (unweighted) number of particles started in state j.

2. Mij is the (unweighted) number of fission particles produced in state i by
the Mj particles.

3. xi = ziMi is the weighted number of particles started in state j.

4. yi =
∑

j zjMij is the weighted number of fission particles produced in
state i.

The eigenvalue estimate in region i is

qi =

∑
j zjMij

ziMi

=
yi

xi

(5)
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Requiring equality of the eigenvalues

q =

∑
j zjMij

ziMi

=
yi

xi

i = 1, . . . , n (6)

This is a set of n equations for the n + 1 unknowns zi and q. Normalizing the
total resulting fission weight to some convenient value

W0 =
∑

j

zjMij (7)

provides the final equation necessary to solve for the weight multipliers zi.
After the zj are obtained, the Monte Carlo fission particle weights are up-

dated by multiplying the weight of each fission particle produced by zi corre-
sponding to the region Ri where the particle started. A new fission source can
then be produced for the next cycle (e.g. by combing) with the desired number
of source particles.

3 The Tenth Density Fuel Vault Problem

The standard benchmark fuel vault problem was too difficult to run on desktop
type computers and obtain statistically accurate weight multipliers, so I reduced
all densities to one tenth of their original densities so that the problem was
doable on a desktop computer. Appendix A gives the input file for the problem.

The problem was divided into 36 regions specified by
That is, there are 12 x regions, 1 y region, and 3 z regions. Figs. 1-4 show

some MCNP plots of the geometry. The boundaries of the 12 regions in x are

x0 = −13.5

x1 = 40.5

x2 = 94.5

x3 = 148.5

x4 = 202.5

x5 = 256.5

x6 = 310.5

x7 = 364.5

x8 = 418.5

x9 = 472.5

x10 = 526.5

x11 = 580.5
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x12 = 634.5

The boundaries of the single region in y are

y0 = −13.5

y1 = 67.5

The boundaries of the 2 regions in z are

z0 = −180

z1 = −60

z2 = 60

z3 = 180

4 Convergence Results for the Tenth Density

Fuel Vault Problem

At convergence, all the zi (weight multipliers) have to (within statistical errors)
be equal to one. Regions 1 to 12 are the twelve x regions for the bottom of
the fuel vault, regions 13 to 24 are the twelve x regions for the middle of the
fuel vault, and regions 25 to 36 are the twelve x regions for the top of the fuel
vault. A total of 10 million particles were used on each iteration. The initial
distribution (entering iteration 1) put 5 million particles at the single point (625,
27.5, -179) in region 12 and the other 5 million particles were started uniformly
over all regions.

Fig. 5 shows the iteration by iteration change for standard MCNP in the
weight multipliers in the 36 regions. Note that the required weight multipliers
do seem to be getting closer to 1.0 with each iteration. Fig. 6 shows the change
every 10 iterations. Again, the weight multipliers are getting closer to 1. (Note
the change in scale between Figs. 5 and 6.)

Fig. 7 shows the iteration by iteration change for the multiple k method in
the weight multipliers in the 36 regions. Note that the required weight multi-
pliers approach 1.0 far faster than in Fig. 5. Fig. 8 regraphs the same data in
Fig. 7, but on the same scale as Fig. 6. Note that just a few iterations with the
multiple k method achieve the results similar to a few tens of iterations with
the standard MCNP method. Fig. 9 emphasizes this point showing the weight
multipliers for the fourth iteration on the multiple k method against the 49-th
and 50-th iteration for standard MCNP.

It is also interesting to look at the source points in each region by iteration.
Although, unlike the weight multipliers, one does not know the correct value for
the converged source points, one does know that the source distribution should
become constant with iteration at convergence. Figs. 10 and 11 show the source
convergence for standard MCNP. Figs. 12 and 13 show the source convergence
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for the multiple k method. The spike in region 12 at the initial iteration is due
to the 5 million initial source particles started at the point (625, 27.5, -179)
in region 12. To see the accelerated convergence in the source distribution,
compare standard MCNP in Fig. 11 with the multiple k method in Fig. 13.

5 Summary and Future Work

The results presented here demonstrate that the multiple k source acceleration
method works on more than just toy problems. My intention is to try the
method on the full density fuel vault problem once I figure out why I am having
trouble with my patched version of MCNP on the high performance computers.
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6 Appendix: Tenth Density Fuel Vault MCNP

Input File

Problem fvf - Fuel storage vault
c
c CELLS
10 100 0.06925613e-1 -1 u=1 $ fuel
20 200 0.042910e-1 1 -2 u=1 $ clad
30 300 0.100059e-1 2 u=1 $ water
c =====> fuel lattice, infinite array of pins in water
40 0 -3 fill=1 lat=1 u=2
c =====> fuel element
50 0 -4 fill=2 u=3 $ fuel lattice
60 300 0.100059e-1 4 -5 u=3 $ water gap
70 400 0.083770e-1 5 u=3 $ Fe
c =====> water element
80 300 0.100059e-1 -5 u=4 $ water
90 400 0.083770e-1 5 u=4 $ Fe
c =====> element lattice, infinite
100 0 -6 u=5 lat=1 fill= 0:23 0:2 0:0

3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4
4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3
3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4

c =====> full model
110 0 -7 fill=5 $ lattice of elements
120 300 0.100059e-1 -8 7 $ outside water
130 500 0.0725757e-1 -9 8 $ outside concrete
140 0 9

c SURFACES
1 RCC 0. 0. -180. 0. 0. 360. 0.44
2 RCC 0. 0. -180. 0. 0. 360. 0.49
3 RPP -.7 .7 -.7 .7 -180. 180.
4 RPP -10.5 10.5 -10.5 10.5 -210. 210.
5 RPP -13.0 13.0 -13.0 13.0 -210. 210.
6 RPP -13.5 13.5 -13.5 13.5 -210. 210.
7 RPP -13.5 634.5 -13.5 67.5 -180. 180.
8 RPP -13.5 634.5 -43.5 67.5 -210. 210.
9 RPP -53.5 674.5 -43.5 107.5 -210. 210.

c DATA
imp:n 1 12r 0
c
kcode 10000000 .3 50 100 20000000
ksrc 0 0 0 0 0 0 0 0 0 0 0 0 295 0 0 301 0 0
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c
c =====> material cards
m100 92238 2.2380e-2 92235 8.2213e-4 8016 4.6054e-2 $ fuel
m200 40000 4.2910e-2 $ clad
m300 1001 6.6706e-2 8016 3.3353e-2 $ water
mt300 lwtr
m400 26000 8.3770e-2 $ Fe
m500 1001 5.5437e-3 6000 6.9793e-3 14000 7.7106e-3 $ concrete

20000 8.9591e-3 8016 4.3383e-2
mt500 lwtr
prdmp 1 1 1 1 j
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