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ABSTRACT

Four tests are developed to assess the statistical reliability of collections of tallies that number
in thousands or greater. To this end, the relative variance density function is developed and
its moments are studied using simplified, non-transport models. The statistical tests are
performed upon the results of MCNP calculations of three different transport test problems
and appear to show that the tests are appropriate indicators of global statistical quality.
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1. INTRODUCTION

The Monte Carlo method is being used increasingly often to collect high-resolution data about
radiation flux or dose distributions as functions of space and energy. The resolutions are such
that millions of tallies and associated uncertainties are being collected in a single simulation.
Metrics for statistical assessment have been developed and are successfully applied to small
numbers of tally scores [1]; however, these same tests do not scale well given that the available
computational memory resources are often already expended upon the tally data itself. To
this end, new metrics need to be developed to assess the quality of the statistics of an entire
distribution of tally results rather than the individuals separately with the primary requirement
of limiting the memory footprint.

For statistical assessment, the relative variance density function is defined and certain useful
properties are obtained. As proof of concept, simplified statistical (non-radiation transport)
models are developed and the tests are performed upon the results. The statistical tests are
implemented in a research version of MCNP [2] (prerelease version of MCNPG6) and tested on
three non-trivial, continuous-energy problems: fusion neutrons in a block of water, a three-legged
duct benchmark [3, 4], and a modified k-effective of the World problem [5, 6]. The latter of these
two problems require global weight-window maps [7] that are generated by an iterative linear
tally combination (LTC) technique [8] coupled with the MCNP weight-window generator [9]
(WWG).
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2. THE RELATIVE VARIANCE DENSITY FUNCTION

2.1 Definition

A metric that is commonly used for assessing calculational efficiency is analyzing a cumulative
distribution of relative uncertainties (ratio of a tally’s sample standard deviation to sample
mean) corresponding to the fraction of mesh elements with a relative uncertainty less than some
value [10]. Often curves of the cumulative distribution are plotted for different variance reduction
parameters given a fixed computational time. By taking values of the cumulative distribution
(typically at ten percent), the efficiency of each calculation can be assessed.

A related distribution can be employed for statistical assessment as well. First define v as the
relative variance or the square of the relative uncertainty (range of zero to one). The rationale for
using the relative variance as opposed to the relative uncertainty relates to convenient additive
properties of variances. There is a density function f(v; N) corresponding to the frequency of
mesh elements having a particular relative variance v for a given number of histories V.

The relative variance is only defined when the sample mean exists and is non-zero. Since most
Monte Carlo tally scores in radiation transport are either strictly positive or zero, this reduces
to having a non-zero number of positive scores. For this reason, f(v; N) only incorporates
tallies that have positive scores, neglecting those that do not. Note that there are valid reasons
to expect the number of scores to be zero such as in a time-dependent calculation for tally
elements that are beyond a radiation front limited by the speed of light. For quantification, the
factor ( is defined as the faction of mesh elements having at least one positive score.

An assumption inherent in the use of a density function and moments is that the number of
elements be sufficiently large to merit a statistical treatment. Should the number of mesh
elements be few, then performing the statistical checks for individual tallies is tractable and
preferred. While the exact number depends upon the problem, guidance is that it should surely
be more than a hundred elements, which is typical for distributional tallies.

2.2 Moments and Related Quantities

The moments of f(v; N) are meaningful in the limit of large N. Define V' as a random variable
taking on some relative variance v. The rth moment of f(v; N) is

1
IE(VT):/O dv v" f(v; N). (1)

Since f(v; N) is usually unknown, it is necessary to approximate the true rth moment with the
sample rth moment computed by

1 M
7= S () (2)

m=1

instead, where M is the number of elements in the mesh each with an index m with a relative
variance vy, for a given number of N trials or histories. The density mean is the first moment,
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and the density variance (and standard deviation) can be derived from the second moment.
Higher order moments can be used to derive the density skewness and density kurtosis as well.

In the limit of large N the rth moment of f(v; N) has the property of converging to zero as
1/N7, so long as the underlying sampling functions meet certain conditions. This is a direct con-
sequence of the central limit theorem that asserts that if the mean and variance of a distribution
exist and the samples are independent, identically distributed, and sufficient in number, then
the sample mean is approximately distributed about the true mean as a normal distribution
with a standard deviation converging as 1/ V'N.

Each individual mesh element has an underlying scoring density function that is unknown.
Should every scoring density function satisfy the central limit theorem, the individual relative
variances should all converge as 1/N, and, therefore, their sum should converge as 1/N. This
result is easily extended to the rth moment as converging as 1/N". Except for special cases that
are incredibly unlikely to occur in realistic problems (specifically, where the scoring probabilities
are identical for all elements), the variance of f(v; N) converges as 1/N2.

2.3 Numerics of Simplified Models

The actual scoring density functions encountered in a radiation transport simulation are going
to be complicated and unknown. For the sake of convenience, simplified non-transport models
are used to study the relative variance density function.

2.3.1 Binomial mixture

A model allowing for analytical expressions is a mixture of binomial distributions. Suppose
there are M elements in the mesh and that the mesh may be decomposed into a finite number of
domains J such that elements in the jth domain have a probability of scoring p; and there are
w; M elements within this domain. The probability of having k scores is distributed as binomial:

stk ) = () (=)™ Q

If all scores are identical, it is possible to derive a form for the relative variance. Suppose X
represents a random variable for the cumulative score at history N. The relative variance of the
mean for k scores is

oy Var(E(X)) 1 [Var(X)] 1 |E(X?) | 1[N
1 1
- -+ (4)

The relative variance is also distributed as binomial, but slightly modified via renormalization
to account for the fact that it is undefined for & = 0,

1 N Nk
(0(k);N) = F—p) 5
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The density functions for two hypothetical regions with sampling probabilities of 0.05 and 0.10
respectively, given N = 100, are plotted in Fig. 1.a. Note that the connecting lines are merely
for illustrative purposes; the density function is only defined at the data points. Intuitively,
the peak of the distribution has a lower center and is thinner for a higher sampling probability.
This is extended to a mixture of binomial distributions to account for different domains having

—o— N = 100
0.18 0.16
018 S 014
e
0.14 =
Z 012
t
2 012 g
3 g 010
® 010 g
° S 008
o 008 2
8 0.06
0.06 _‘é
0.04 & 0.04
0.02 0.02
0.00 g 0.00 - +
0.0 01 02 03 04 05 06 08 08 1.0 0 01 02 03 04 05 06 07 08 09 1
Relative Variance Relative Variance
(a) (b)
1.0E+00 &+ 1.0E+00
i (o @ Uniform J} N
.0 Q.. N | ;.0 © © Uniform
1.0E-01 ~ N <© Normal e
o, 0*.. 1,003 R ? <& Normal
. &, QL0
1.0E-02 © O 9 v;,
§ e % 5 &,
2 o. o, 5 '8,
Q. - b
2 1.0E-03 + < > 1.0E-06 s
2 ° F-S By
c . .. i} 3
o (0% O, c 3 oy
=] ‘o " o 3
1.0E-04 - O a O,
e ° o 1.0E-09 & o
1.0E-05 o a .
0. 1,
. ©: zQ
1.0E-06 { 1.0E-12 {
1.0E+02 1.0E+03 1.0E+04. 1.0E+05 1.0E+06 1.0E+0; 1.0E+02 1.0E+03 1.0E+04. 1.0E+05 1.0E+06 1.0E+0;
Number of Histories Number of Histories
(c) (d)

Figure 1: Binomial model of relative variance density. (a) Varied p for fixed N, (b) Varied N for
fixed distribution of p, (¢) mean of relative density function for uniform and normal sampling
models, and (d) variance of relative density function for uniform and normal sampling models.

different sampling probabilities. Scores are still the same between domains for simplicity. The
density function for this overall system is simply

J
Fk);N) = w;fj, (6)
j=1

where the w; is a weighting factor corresponding to the fraction of elements within the jth
domain. As an example, the w; are linked with the sampling probabilities that are distributed
normally with mean 0.05 and standard deviation 0.01 (the distribution is truncated at p = 0.001
and p = 0.10 with minimal impact). The density functions for N = 100, 200, and 400 are
plotted in Fig. 1.b. As expected, increasing N shifts and thins the peak. Insightful is the fact
the distributions are positive skewed with the infrequently sampled regions producing a long-
thin tail (i.e., the distribution is leptokurtic). This behavior is observed empirically for realistic
radiation transport problems.
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The mean and variance of f(v(k); N) can also be computed to determine if the distribution
converges at respective rates of 1/N and 1/N? for large N. Two cases are considered and
results are computed numerically for N ranging from 100 to 10 million. The first involves 1000
regions where (randomly chosen) p; are uniformly distributed from 0.01 to 0.10, and the second
are normally distributed with mean 0.01 with standard deviation 0.002. The mean and variance
of these two cases are plotted in Figs. 1.c and 1.d respectively. Linear regression using a least
squares fit for 1/N and 1/N? curves (denoted by h(z)) are plotted. To assess the goodness of
fit, the coefficient of determination (R? value),

N N
R2 =1 (Z(az, — hz)2>/ (Z(JIZ — a;)2> y (7)
i=1 =1

is determined. In this case, both match having coefficients of determination approximately unity
for N > 100 thousand. This is evidence that, for these simplified models, that the mean and
variance converge at their expected asymptotic rates.

2.3.2 Variation in scoring

Unfortunately, the logical extension of allowing for variation in the scoring density function
is not amenable to an analytic calculation of v(k). Numerical simulation via Monte Carlo
techniques is therefore required. The model is similar: a mesh has M elements, each having
a probability of scoring p,, that are distributed with some prescribed distribution. Should the
mesh have a score in a history, there is an underlying scoring density function that is sampled —
for simplicity, an exponential distribution with a fixed parameter with mean score of unity. The
scoring probabilities are distributed as two distributions: uniform and log-normal.

For the uniform case, the scoring probabilities are sampled with a range from 1 x 10~ to 0.01.
The mesh has 100,000 elements and 10 million histories are run. The mean and variance of the
relative variance distribution are computed periodically throughout the simulation. A plot of
these values can be found in Fig. 2.a. Linear regression is performed upon the last half of the
histories for the mean and variance curves on a log-log scale. The regression should match lines
with slopes of -1 and -2 respectively. The corresponding R? values are 0.9999 and 0.9985.

The log-normal case samples the scoring probabilities from the exponentiation of a normal
distribution with mean -8 and standard deviation 1. The mesh has 100,000 elements and 50
million histories are run. Fig. 2.b displays periodically computed means and variances of the
relative variance distribution. The R? values of the linear regression are 0.9999 and 0.9935 for
the respective mean and variance curves.

2.3.3 Rare event simulation

Statistical problems often arise in a Monte Carlo simulation because of rare events contributing
an unusually large score to a tally. For individual tally results, the variance of the variance
(VOV) is particularly useful for this. The analogous quantity is the variance of the relative
variance density (or density variance).
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Figure 2: Simplified model with variable scoring probabilities with: (a) a uniform density, and
(b) a log-normal density.

The question is whether or not the distribution variance is able to pick out a poorly behaved
mesh element. To assess this, a simulation is run with 100 thousand mesh elements with some
defined scoring probability distribution. In one of these elements, there exists a small probability
of sampling a rare event where the usually tally score is multiplied by some large factor. In this
case, only one element of a large mesh will exhibit rare, large scores.

Two cases considered are a simple model where all the scoring probabilities are identical (0.01)
and one where the scoring probabilities are distributed as log-normal (exponentiation of a normal
distribution with mean -5 and standard deviation 0.5). The scoring density itself is distributed
as exponential with mean score of unity for both. For the former, the assigned rare scoring
element has a rare event probability of one part in 100 thousand where the score is multiplied
by one thousand. The latter case takes the least likely element to score; given that it scores,
with probability 0.01, the score is multiplied by one hundred.

To easily visualize that the relative variance density can spot misbehavior in a single element, the
tally standard deviation of the misbehaved element and the standard deviation of the density
function are obtained at specific intervals within the simulation. The ratio of the standard
deviation at an interval to the one computed in the previous is taken representing the amount
of change of the quantity from one interval to the next. Should there be a large fluctuation in
either the standard deviations of the tally or density function, the ratio should show a spike.
For a large number of histories, these fluctuations will be mostly from sampling the rare event.
Figs. 3.a and 3.b for the respective uniform and log-normal cases illustrate this. Qualitatively,
the spikes appear to mostly follow each other.

This effect can be quantified by computing the correlation coefficient between these ratios for
intervals greater than 10 million histories. The uniform density has a correlation coefficient of
0.811 and the log-normal has a correlation coefficient of 0.758. This indicates that there is a
fairly strong positive correlation between the interval ratios of the misbehaved tally standard
deviation and the density standard deviation implying that the the fluctuations in the density
function can detect fluctuations in a single misbehaved tally.

2011 International Conference on Mathematics and Computational Methods Applied to 6/13
Nuclear Science and Engineering (M&C 2011), Rio de Janeiro, RJ, Brazil, 2011



Statistical Assessment of Numerous Monte Carlo Tallies

°
i

1.04

Tally Tally
- - - - Density 1.03 . - - - - Density
H ; :

o
<)

o
(5

2

°
3

4
©
©

Standard Deviation Ratio
Standard Deviation Ratio

0.98

0.97 0.98
1.0E+07 1.0E+08 1.0E+07 5.0E+07

Number of Histories Number of Histories

(a) (b)

Figure 3: Ratio of standard deviations between history intervals for: (a) a uniform density, and
(b) a log-normal density.

3. STATISTICAL ASSESSMENT

3.1 Development of Tests

Using the density function and related quantities, a set of statistical tests can be developed to
provide guidance to an analyst as to the statistical pedigree of the results within a distribution.
These tests are meant to be low cost in terms of memory and computational time. As such,
they can only capture broad behavior of the distribution, but as previously seen, moments of the
density function (particularly the variance) are particularly sensitive to even one misbehaved
element.

All of the calculations are performed in a research version of MCNP6. For the sake of simplicity,
it is assumed that the user cares equally about all elements in the mesh. Often the mesh overlaid
is chosen for convenience, and this is not a valid assumption. In this case, a mechanism can be
implemented for the user to assert the degree of relevance of particular regions of the problem
that act as weighting functions when calculating various quantities. While this extension is
indeed possible and fairly straightforward, it is not employed here.

It is worth stating that the conditions of a test are necessary but not sufficient to prove statistical
robustness. No test can definitively answer the question of whether or not a region has been
sufficiently sampled should not enough data be available to make the assessment. However, tests
are still valuable in providing the user with some confidence in this respect.

An easy test to perform is to count the fraction of elements with non-zero tally (. Ideally,
this fraction should converge to unity; however, for aforementioned reasons, this need not be the
case. A reasonable assertion for its behavior is that this value should be constant for much of the
problem; should new regions be added, this could invalidate the conclusions of the statistical tests
of the density function because it is undefined for zero score elements. Therefore, a reasonable
requirement is that ¢ be constant for the last half of the histories. While this does not ensure
that the phase space has been appropriately sampled, it does give clues as to such.
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Two other tests can be derived from moments of the density function. The first is that the
mean of the relative variance density be decreasing monotonically as 1/N in the last half of the
histories. The second is that the variance of the relative variance density decrease monotonically
as 1/N? in the last half of the histories. To assess both of these, a linear regression is performed
using a least squares fitting scheme. The functions A/N and B/N? are fit using the data collected
in the last half of the histories using iterative techniques such as Newton-Raphson. Next, the
R? value is obtained for the fit. Empirically, it seems that R2 > 0.99 and R32 > 0.95 for the
mean and variance tests seem reasonable to define as passing. The reason for the difference
being related to the higher statistical fluctuation in the variance since it is related to the fourth
moment of the scoring densities.

Another often used metric counts the fraction of elements with a relative uncertainty less than
some prescribed value. An accepted threshold that is common is ten percent, which is based
upon tests of statistical reliability for distributions that are statistically problematic [11]. Un-
fortunately, demanding that every element have a relative uncertainty of less than ten percent
(i.e., the infinity norm) is very stringent, and it may be acceptable for a some elements to be
less precise depending upon the requirements of the application.

Rather, for the purposes of automation, it may be beneficial to think of which elements being
important in a statistical way (again, if the user cares about specific elements, then those need
to be checked manually). Suppose an element is randomly selected (no sampling is actually
done; this is only for the sake of argument) from the mesh with relative variances distributed
as f(v;N). Observed properties of f(v;N) are that they are (for large N) positively skewed
and leptokurtic, implying that even for a well converged peak, there exists a risk (sometimes
termed kurtosis risk) of selecting an element significantly worse than the mean of f(v; N). Such
a selection, should it occur by chance, is considered to be far worse than one with slightly higher
than average relative variance (i.e., elements far on the tail are considered the most problematic).
Of course, if v is large, then the risk is dominated by the peak itself and this must be taken into
account with this statistical selection treatment.

To handle the issue of the tail, consider the index of dispersion for the density variance

Var (ag)
The variance of o2 is
Var (02) = % (s — o) + O(n™2), )

where k, is the density kurtosis and n is the number of elements selected in this hypothetical
sampling and is considered to be a significant fraction such that a statistical treatment is valid
(not to be confused with the number of Monte Carlo histories V). The dispersion coefficient is
approximately

o2
Dy~ 2 (ky — 1). (10)
voon
Now define a statistical risk parameter
©=v+nD,2 =040, (ky—1). (11)

The first term considers the peak. Suppose the tallies somehow had no dispersion in their
variances, then of relevance is the location of the peak or v. The second term accounts for the

2011 International Conference on Mathematics and Computational Methods Applied to 8/13
Nuclear Science and Engineering (M&C 2011), Rio de Janeiro, RJ, Brazil, 2011



Statistical Assessment of Numerous Monte Carlo Tallies

added risk of sampling an element far on the tail that is poorly converged. The factor of n is
present to scale it by the number of elements hypothetically sampled and exists to eliminate
that term so no sampling of f(v; N) is actually done. The first term goes asymptotically as 1/N
and the second 1/N?, so that the second term vanishes for large N leaving © = ¥ when the
dispersion of the density function becomes small. Therefore, when the impact of the density tail
is deemed insignificant, ©® < 0.01 corresponds to an average relative uncertainty of ten percent.

The four statistical tests are summarized as follows:

1. The fraction of mesh elements with scores ( must be constant for the second half of the
problem.

2. The quantity © < 0.01 at the end of the simulation.

3. The density mean must monotonically decrease as 1/N (an R? > 0.99) in the second half
of the problem.

4. The density variance must monotonically decrease as 1/N? (an R? > 0.95) in the second
half of the problem.

3.2 Verification of Statistical Checks

To test whether the checks apply to radiation transport problems, a simple, non-trivial problem
is used. The problem is a 20 cubic cm block of water (1.0 g/cc density) with a centrally located
monoenergetic 14.1 MeV neutron source. A 50 x 50 x 50 element mesh tally with equal sized
elements is overlaid on the problem and the neutron flux is estimated. The problem is run for
varied N and the statistical checks are computed. The results of these tests are displayed in
Table I (¢ is given at the halfway through the calculation and should be 1.0 to pass) where
passing is indicated by italicization.

All tests are satisfied sometime between 500 and 750 thousand histories, and the tests continue
to pass for a larger number of histories. 200 thousand histories are required before all elements
are sampled by halfway through the problem. Also, at this time, the relative variances go as
1/N with a fit of R? > 0.99 suggesting the means of the density function satisfy the central
limit theorem. Twice as many histories are required before the density variance goes as 1/N?
indicating it takes this long to believe the uncertainties are also well behaved. The parameter
© appears the most difficult to converge; for this problem, at 750 thousand histories, just over
80 percent of the mesh elements have a relative uncertainty less than 10 percent; however, © is
within about three percent of v indicating a low dispersion.

Further verification is performed with more difficult problems. The two problems selected require
global importance functions to achieve convergence in a reasonable amount of time. There are
techniques to generate these global importance maps involving either deterministic methods
to generate weight windows from forward-weighted adjoint solutions or iterative Monte Carlo
sampling via a linear tally combination with the weight-window generator (LTC-WWG). For
these comparisons, the iterative technique is used. For a fixed N that is sufficiently large, the
statistical tests should perform better with a better importance map. This is a check on the
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Table I: Statistical test quantities for the water block problem.

N ¢ 0 R2 R2,

v o

50 K || 0.9904 | 0.3659 | 0.9971 | 0.8682

100 K || 0.9992 | 0.1416 | 0.9666 | 0.9007

150 K || 0.9999 | 0.1146 | 0.9541 | 0.8693

200 K || 1.0000 | 0.0805 | 0.9960 | 0.9091

250 K || 1.0000 | 0.0311 | 0.9964 | 0.9085

300 K || 1.0000 | 0.0191 | 0.9977 | 0.9273

400 K || 1.0000 | 0.0135 | 0.9985 | 0.9576

500 K || 1.0000 | 0.0106 | 0.9990 | 0.9646

750 K || 1.0000 | 0.0069 | 0.9997 | 0.9909

1M 1.0000 | 0.0051 | 0.9998 | 0.9961

1.5 M || 1.0000 | 0.0034 | 0.9999 | 0.9975

2M || 1.0000 | 0.0025 | 0.9999 | 0.9983

tests, because better variance reduction parameters should lead to better behaved results more
efficiently.

The first test problems is a fixed-source duct streaming problem that incorporate the physics of
optically thick regions with long streaming paths. Specifically, a three-legged duct benchmark
is selected. A global neutron mesh tally is overlaid with resolution 15 x 143 x 66, making each
mesh element having a side length of about 9 cm. It should be noted that implicit capture and
forced collisions in air are also used to help with the calculation. Eight iterations are conducted
and weight-window maps are generated each iteration.

The second problem is an eigenvalue calculation; namely, a variant on the k-effective of the
World problem. This version uses a 9 x 9 x 9 array of 2 cm radius spheres of 20 g/cc plutonium-
239 spaced 10 cm apart in a bath of water at 1 g/cc. The entire problem is surrounded by a
10 ecm thick water reflector at the same density. As is, this configuration is subcritical. The
center sphere is then replaced with a 4 cm sphere of plutonium-239 at the same density, making
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this problem supercritical. This type of problem has been classically used to demonstrate the
dangers arising from bias in eigenvalue calculations. The goal of this problem will be to compute
the neutron flux throughout this entire system on a uniform 50 x 50 x 50 grid.

The global importance maps are generated with the LTC technique. The three-legged duct
problem calculates fluxes for 7.5 minutes in the first iteration and increases it by that amount of
time for each subsequent iteration (e.g., the fourth iteration runs for 30 minutes). The k-effective
of the World problem is based upon batch sizes with the base iteration being 5000 particles per
cycle for 100 active cycles (100 are skipped) with the batch size increasing by that amount in
subsequent iterations. Once a weight-window map for each iteration [ is obtained, production
calculations are run to test the validity of the map toward achieving a well-behaved solution.
For the three-legged duct problem, one billion neutron histories are run corresponding to about
two hours of computation time. For the k-effective of the World problem, 20000 neutrons per
cycle for 500 active cycles (100 cycles are skipped for convergence) are used.

The results of the four tests are shown in Table II with the italicized numbers indicating passage
of the test. For both problems without global importance maps, none of the statistical checks
pass for the given number of histories. For the duct problem, five or six LTC-WWG iterations
are required to pass the tests given IV of one billion histories. The k-effective of the World
problem requires about three LTC-WWG iterations. Note that a negative R? value implies that
the fit is very poor and not applicable; additionally, the result of the test is not influenced by
the possibility of a negative R? value.

For the three-legged duct problem, Figs. 4.a and 4.b show the mean and variance of the density
function with the number of histories for various weight-window generator iterations. Likewise,

Table II: Statistical test quantities for various LTC-WWG iterations for two test cases.

Three-Legged Duct k-effective of the World
I ¢ 0 R2 R?, ¢ S) R? RZ,

0] 0.9947 | 0.6787 | -1.558 | -53.03 || 0.9987 | 0.4628 | 0.8204 | -0.587

1 0.9956 | 0.6759 | -12.76 | -70.66 | 1.0000 | 0.0948 | 0.9539 | -2.8651

2] 0.9999 | 0.5655 | -114.8 | -476.9 || 1.0000 | 0.0511 | 0.9939 | 0.6497

3| 1.0000 | 0.4246 | -91.57 | -206.7 || 1.0000 | 0.0087 | 0.9995 | 0.9568

4 || 1.0000 | 0.2521 | 0.8132 | -10.84 | 1.0000 | 0.0048 | 0.9991 | 0.9869

5 | 1.0000 | 0.0026 | 0.9994 | -5.296 | 1.0000 | 0.0025 | 0.9999 | 0.9989

6 || 1.0000 | 0.0001 | 0.9996 | 0.9825 | 1.0000 | 0.0050 | 0.9998 | 0.9787
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Figure 4: Density mean and variance with curve fits for the test problems: (a) Density mean
for the three-legged duct, (b) density variance for the three-legged duct, (c¢) density mean for
the k-effective of the World problem, and (d) density variance for the k-effective of the World
problem.

Figs. 4.c and 4.d show the mean and variance of the density function with the number of histories
for various weight-window generator iterations for the k-effective of the World problem. On all
figures, the fits of 1/N and 1/N? are plotted for each curve. Visually, the early iterations do not
follow the fit well, whereas better importance maps show a better match with the theoretical
fit.

4. CONCLUSIONS

Properties of the relative variance density function are developed and demonstrated on simplified
statistical models. Specifically, the convergence rates of the density mean and variance are
demonstrated numerically along with the ability of those to detect the misbehavior of individual
elements. Four statistical checks for mesh distributions are developed based upon this density
function and the associated moments and demonstrated on three different problems; two of these
are difficult enough to require global importance functions generated by some means, namely
an iterative LTC technique.
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Further evidence for the validity of these tests; namely an entire suite of problems demonstrating
their applicability will be required before these tests should be implemented in production level
software. Also, the issue of efficiency of variance reduction parameters towards achieving a
converged solution (i.e., figures of merit) is not addressed, but it is quite likely moments of the
relative variance density function are applicable to that as well.
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