MCNP6 V\&V Of Some Unstructured Mesh Models: Summer Student Slides

Chelsea A. D'Angelo

X-Computation Physics Division
Los Alamos National Lab

\&
University of Pittsburgh cad82@pitt.edu

Roger Martz, LANL mentor
Karen Kelly, LANL mentor

NATIONAL LABORATORY
UNCLASSIFIED

ABSTRACT:

A new capability available in MCNP6 allows for the transport of neutrons and photons on unstructured mesh geometries created with Abaqus/CAE. Analysis of several benchmark-type problems will assist in the verification and validation process of this new capability. Three benchmark models were chosen to be studied: (1) the Osaka nickel sphere with a D-T neutron source, (2) a reactor pipe and shielding with an N-16 gamma source, and (3) the FNS vanadium cube assembly irradiated with a D-T neutron source. Solid models for each problem were constructed with Abaqus/CAE and the unstructured mesh representation of each was embedded as a mesh universe within a Constructive Solid Geometry (CSG) background. Parameter studies were performed for each model involving changes in type, order, and number of elements composing the mesh. The models were meshed with hexahedrons or tetrahedrons of either first or second order. The mesh seed size was also varied to increase or decrease the number of elements. Results from the unstructured mesh models were analyzed and compared to those obtained from the equivalent CSG models. Differences in computer run time and accuracy in volume calculations are important factors when considering the viability of this new option. It is known that computer run time increases proportionally with the number of elements in the mesh. Therefore, it is desirable to mesh models with the least number of elements as possible without compromising the accuracy of the volume calculations and consequently the results.

Objective: V\&V

- V\&V of MCNP6's new capability of particle transport on unstructured mesh
- Build unstructured mesh geometries using Abaqus CAE
- Create MCNP input files with embedded mesh universe
- Run problems in MCNP6
- Analyze results
- Volume accuracy
- Computer runtime
- Tallies

UNCLASSIFIED

Abaqus CAE

- Computer Aided Engineering Software
- Use to build models
- Easy to create complex geometries
- Improves visualization
- 3D vs. 2D
- Mesh

- 4, 5, and 6 sided elements
- $1^{\text {st }}$ and $2^{\text {nd }}$ order

U N C L A S SIFIED

Benchmark-type Problems

- Osaka nickel sphere
- Reactor pipe with shielding
- FNS vanadium cube assembly
- Reason for choosing:
- Simple
- Run quickly
- Established benchmarks
- Published results

Osaka Nickel Sphere

- Nickel sphere
- Void in center
- Original model has 3 shells
- Radii- 2.5, 10, 16 cm
- D-T neutron source at origin

NATIONAL LABORATORY
UNCLASSIFIED

Osaka Mesh Models

- 3 shell
- $1^{\text {st }}$ order hex- $1 \%, 0.5 \%$, 0.1\% (within actual volume)
- $2^{\text {nd }}$ order hex- $\mathbf{1 \%}$

- 8 shell
- $1^{\text {st }}$ order hex- 1%
- $2^{\text {nd }}$ order hex- $\mathbf{1 \%}$

Osaka Sphere Comparisons

Model Name	Abaqus Mesh Volume (calc. by MCNP)	\% Difference from Actual Volume	\# Elements	Computer Runtime (minutes)
3shell CSG	N/A	N/A	N/A	11.7
3 shell 1 hex $\sim 0.1 \%$	17,138.82	0.108	273,816	*17,280.4**
3 shell 1 hex $\sim 0.5 \%$	17,077.71	0.466	29,000	1,807.9
3 shell 1 hex $\sim 1 \%$	17,013.54	0.844	12,040	783.5
3 shell 2 hex $\sim 1 \%$	17,122.34	0.204	488	N/A
8 shell CSG	N/A	N/A	N/A	15.7
8 shell 1 hex $\sim 1 \%$	17,030.71	0.743	16,618	5,219.7
8 shell 2 hex $\sim 1 \%$	17,134.44	0.133	1,256	N/A

[^0]
Osaka Neutron Flux

3 Shell

8 Shell

UNCLASSIFIED

Osaka Neutron Flux

3 Shell Model - CSG vs. Mesh

Cell	Flux (neutrons/cm^2)	Statistical Error	\%Difference from CSG
Void Center- CSG	$4.42 \mathrm{E}-2$	0.03%	N/A
Void Center-1\% mesh	$4.35 \mathrm{E}-2$	0.02%	1.6%
Inner Ni shell- CSG	$4.09 \mathrm{E}-3$	0.06%	N/A
Inner Ni shell- 1\% mesh	$3.45 \mathrm{E}-3$	0.06%	15.6%
Outer Ni shell- CSG	$9.68 \mathrm{E}-4$	0.06%	N/A
Outer Ni shell- 1% mesh	$9.57 \mathrm{E}-4$	0.06%	1.2%

Osaka Neutron Flux

3 Shell vs. 8 Shell CSG

Cell	Flux (neutrons/cm^2)	Statistical Error

Osaka Neutron Flux

3 Shell vs. 8 Shell Mesh

Cell	Flux (neutrons/cm^2)	Statistical Error

Reactor Pipe and Shielding

- Steel Pipe w/ water
- $h=91.4 \mathrm{~cm} \mathrm{r}=10.15 \mathrm{~cm}$
- Steel Wall
- Thickness=5cm
- N-16 gamma source
- Isotropic, volumetric
- Point Detectors

- Inline
- Offline - offset 40 cm from pipe center

NATIONAL LABORATORY
UNCLASSIFIED

Reactor Pipe Mesh Models

- $1^{\text {st }}$ order hex
- Small, medium, large
- Pipe and Water $1^{\text {st }}$ order tet
- Medium
- Block behind wall
- Point detectors not currently working with mesh models
- Area where point detectors will be

Reactor Pipe Comparisons

Model Name	Abaqus Mesh Volume (calc. by MCNP)	\% Difference from Actual Volume	\#Elements	Computer Runtime (minutes)
RP CSG	N/A	N/A	N/A	162.2
RP 1 hex - small	$109,442.5$	0.184	9,184	$3,521.8$
RP 1 hex - medium	$109,311.6$	0.304	3,864	$1,601.1$
RP 1 hex - large	$107,856.8$	1.65	524	547.1
RP 1 hex \& tet- medium	$109,197.3$	0.408	17,699	N/A

*Actual Volume= 109,643.4

Flux in Reactor Pipe and Shielding

Photon Flux in Block

Model Name	Flux (photons/cm^2)	Statistical Error
RP- small mesh	$4.47 \mathrm{E}-6$	0.22%
RP- medium mesh	$4.46 \mathrm{E}-6$	0.22%
RP- large mesh	4.77	0.21%

FNS Vanadium Cube

- Vanadium cube assembly
- 25.4 cm x 25.4 cm
- Graphite reflector
- Reduce neutron leakage
- D-T neutron source

U N C L A S SIFIED

Vanadium Cube Mesh Models

- $1^{\text {st }}$ order hex
- Small, medium, large meshes

UNCLASSIFIED

Vanadium Cube Volume Comparisons

Model Name	Abaqus Mesh Volume (Calc. by MCNP)	\% Difference from Actual Volume	\#Elements	Runtime (minutes)
VC CSG	N/A	N	N/A	
VC 1 hex- small	$65,098.12$	0.00146	7,128	
VC 1 hex- medium	$65,098.08$	0.00141	2,736	
VC 1 hex- large	$65,097.72$	0.00085	700	$2,710.8$

* Actual Volume= 65,097.17

Flux in Vanadium Cube

- LOS Alamos

UNCLASSIFIED

Vanadium Cube- Energy vs. Flux

UNCLASSIFIED

Conclusions

- Most accurate volume comparisons- finest mesh
- More important for curved surfaces
- Finer mesh -> more elements
- More elements -> longer runtime
- Hex vs. Tet
- Less elements when using hexes
- Choose the right shape for your model

What I learned...

- How to use new software package- Abaqus CAE
- MCNP is the 'best' transport code available
- My project:
- Interesting
- Good amount of work
- Helpful mentors :)
- Great Experience!!
- Outside of work...
- LA is a strange town
- Green chili comes on everything
- FAQ- Are you glowing yet??
- How to dance from this guy

Questions?

NATIONAL LABORATORY

[^0]: *Actual Volume = 17,157.28
 **Run on un-optimized code

