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INTRODUCTION 

 
Recently [1], the sensitivity of the λ eigenvalue (λ = 

1/keff) to the location of a material interface was derived 
from the standard adjoint-based sensitivity formula.  The 
equation applies only to uniform expansions or 
contractions of a surface, not to surface translations or 
rotations.  However, for a flat surface (a plane), a 
translation in the direction of the normal (or in the 
opposite direction) is equivalent to an expansion or 
contraction, so the equation could apply to the translation 
of a body in the direction of its bounding surfaces, if they 
are flat.  A related perturbation expression for the change 
in λ (not the derivative) was recently found to be ill-suited 
to describe the translation of a sphere [2].  In this paper, 
the sensitivity equation is used to estimate the effect of a 
uniform expansion of a solid fissile cylinder and of the 
location of the bottom half of a cylindrical critical 
assembly. 

 
ADJOINT-BASED SENSITIVITY ANALYSIS FOR 
SURFACES 

 
The sensitivity of the λ eigenvalue to a parameter un 

is related to the derivative, which can be shown to be [3] 
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where subscript 0 indicates the initial, unperturbed 
configuration; 0  and *

0  are the forward and adjoint 

angular fluxes, respectively; and L and F are the transport 
and fission operators, respectively. 

Let un represent a surface In (an internal interface or 
an external surface).  The derivative of the λ eigenvalue 
with respect to the location of In is [1, 2] 
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In Eq. (2), rn represents the perturbed points on In; g is the 
energy-group index and g′→g represents an energy-group 

transfer; subscripts s and f refer to scattering and fission; 
mf is the usual adjoint-weighted fission neutron 
production rate; and the W terms are forward-adjoint flux 
products integrated over angle convolved with cross-
section differences across interface In [1, 2].  The 
derivation [1] of Eq. (2) involves a Dirac delta function 
that converts the forward-adjoint product volume integral 
in the numerator of Eq. (1) to a surface integral on the 
unperturbed surface.   

In the derivation [1] of Eq. (2), it was assumed that 
each point on In that is perturbed is perturbed the same 
amount in the same direction (relative to its local surface 
normal).  Thus, Eq. (2) applies only to uniform 
expansions or contractions of a surface.  For a spherical or 
cylindrical surface, the derivative is the rate of change of 
λ as the radius increases.  For flat surfaces, however, the 
derivative is the rate of change of λ as the surface is 
translated in the direction of its normal or in the opposite 
direction, whichever is positive in the coordinate system. 

Thus, Eq. (2) can be used for certain translations of 
certain bodies as well as uniform expansions or 
contractions of any body. 

 
APPLICATION TO A SOLID URANIUM 
CYLINDER 

 
First, we apply Eq. (2) to the bounding surfaces of a 

solid uranium right circular cylinder.  This problem is 
similar to the application to the bounding surface of a 
solid uranium sphere in [1], for which Eq. (2) was very 
accurate.  The material is highly enriched uranium (HEU; 
94.73 wgt% 235U, 5.27 wgt% 238U) with a mass density of 
18.74 g/cm3.  The radius and height of the cylinder are 7 
and 10 cm, respectively, and its mass is 28.85 kg. 

The derivatives computed using Eq. (2) were 
compared with central-difference derivatives estimated by 
perturbing the dimensions by ±0.1 cm.  Calculations were 
done using the PARTISN multigroup discrete ordinates 
code [4] with S16 quadrature, P3 scattering, and the 
MENDF6 30-group library uncorrected for self-shielding.  
The unperturbed keff was 0.81938286. 

The derivative of λ with respect to the location of the 
cylindrical surface was –0.09344135 from Eq. (2) and      
–0.09325011 from the central difference, a 0.2% 
difference.  The derivative of λ with respect to the 
location of the top surface was –0.04298977 from Eq. (2) 
and –0.04370721 from the central difference, a 1.6% 
difference.  Note that neffneff dudkdudk )( 2 , so raising 

the top surface or increasing the radius has the effect of 

(1)

(2)



decreasing λ and raising keff, as expected because these 
changes increase the mass of the fuel.  The derivative of λ 
with respect to the location of the bottom surface was 
equal to the derivative for the top surface but opposite in 
sign, reflecting the fact that raising the bottom surface 
decreases the mass. 

The larger difference for the flat surface is [1] due to 
the fact that Wg , which should be computed using angular 
fluxes, is estimated using flux moments, the number of 
which is limited (in PARTISN) to the number used in the 
expansion of the scattering source, and this is not 
necessarily enough to accurately reconstruct Wg.  A 
Monte Carlo formulation would not suffer this deficiency.   

The derivative of λ with respect to the size of the 
cylinder — that is, with respect to the uniform expansion 
of the entire boundary — is, in first-order perturbation 
theory, the derivative with respect to the cylindrical 
surface plus the derivative with respect to the top surface 
minus the derivative with respect to the bottom surface 
(since, for a uniform expansion, that surface moves in the 
negative axial direction).  Thus the derivative of λ with 
respect to the uniform expansion of the cylinder is            
–0.1794209 from Eq. (2).  The derivative using a central 
difference (perturbing all surfaces simultaneously) was    
–0.1806921, a 0.7% difference (with respect to the central 
difference).   

 
APPLICATION TO ZEUS  

 
Zeus [5] was a cylindrical stack of alternating HEU 

(93% enriched) and graphite plates (the outer radius of the 
stack was 26.67 cm) surrounded by rectangular copper 
blocks.  “Configuration 1” had a critical mass of 125.6 kg 
HEU.  It was assembled on a vertical assembly machine 
in which the moveable, bottom part of the assembly 
contained ~40% of the HEU mass.  The two-dimensional 
geometry for configuration 1 as given in Appendix C of 
[5] was modified for use in this paper; in it, the 
rectangular copper reflector is converted to a cylindrical 
annulus.  For this paper, the axial dimensions were 
rounded to 0.1 cm so that the bottom half of Zeus could 
be moved without changing the mesh spacing, and the 
bottom half was placed 0.1 cm below full assembly.  
Transport calculations were done using PARTISN with 
S16 quadrature, P3 scattering, and the MENDF6 30-group 
cross section set uncorrected for self-shielding.  The 
unperturbed keff was 0.96667242.   

The derivative of λ with respect to the location of 
each axial (z) interface in the Zeus lower core was 
calculated using the adjoint-based equation [Eq. (2)] and a 
central difference with a perturbation of ±0.01 cm.  
Results are shown in Table I.   

Table I shows that the adjoint-based derivatives 
[from Eq. (2)] match the central differences extremely 
well, except where the derivatives are very small, in 
which case the central differences are probably 

inaccurate.  The separate sums of negative and positive 
quantities agree very well, but the overall sum has a 1.3% 
difference, because of the inaccuracy in subtracting 
similarly sized terms. 

What is the derivative of λ with respect to the 
location of the entire Zeus lower core?  The central-
difference result, obtained by perturbing all surfaces 
simultaneously, was –0.0074363.  The adjoint-based 
result is the sum of the independent derivatives for all 
surfaces, or –0.0098139 from Table I.  The adjoint-based 
result is in error by 32%.   

This problem demonstrates one of the well-known 
pitfalls of first-order perturbation and sensitivity theory.  
The first-order theory has no way to account for 
interacting effects of multiple perturbations.  The true 
derivative of keff or λ with respect to the location of the 
Zeus lower core is not the simple sum of the derivatives 
with respect to the location of the individual surfaces.   

 
SUMMARY AND CONCLUSIONS 

 
The adjoint-based first-order sensitivity estimate of 

the λ eigenvalue with respect to the location of a surface 
[1] has been applied to the uniform expansion of a solid 
HEU cylinder.  Each of the components of that expansion 
(the expansion of the cylindrical surface, the raising of the 
top, and the lowering of the bottom) were very accurately 
estimated by the adjoint-based equation (compared to 
central differences).  The overall expansion of the 
cylinder is estimated in first-order theory as the simple 
sum of the individual components (with their correct 
sign), and the adjoint-based equation was quite accurate. 
 

Table I. ndzd  for each material interface in the lower 

core of Zeus. 
z (cm) Central Diff. Adjoint Difference 
57.6 –0.0067285 –0.0067374 0.132% 
53.6a –0.1251248 –0.1248847 –0.192% 
53.3b 0.1242767 0.1240026 –0.221% 
45.2a –0.0964496 –0.0962740 –0.182% 
44.9b 0.0953346 0.0951158 –0.229% 
36.8a –0.0639967 –0.0639009 –0.150% 
36.5b 0.0629240 0.0627898 –0.213% 
28.4a –0.0366902 –0.0367146 0.066% 
28.1b 0.0360359 0.0360658 0.083% 
24.1 0.0006416 0.0006392 –0.362% 
9.7 0.0000482 0.0000499 3.628% 
5.9 0.0000000 0.0000000 0. 
0 0.0000449 0.0000345 –23.135% 

Sum –0.0096840 –0.0098139 1.341% 
Negatives –0.338674 –0.338326 –0.103% 
Positives 0.319306 0.318698 –0.190% 

a Top of a fuel plate. 
b Bottom of a fuel plate. 



The adjoint-based theory was also applied to estimate 
the effect on λ of raising the lower core of the Zeus 
assembly (from a position 0.1 cm below full insertion).  
The effect of raising each surface independently was well 
estimated using the adjoint-based equation, but the effect 
of raising the entire lower core is not the simple sum of 
the effect of raising each surface.  The adjoint-based 
equation cannot cope with interacting effects, and the 
equation yielded a poor estimate. 

The adjoint-based equation for the sensitivity of λ to 
geometry perturbations can be a very powerful tool for 
the analysis of critical systems.  For the uniform 
expansion or contraction of a body — for the size of a 
tank or slug, for example — the equation is quite robust.  
For the location of a body, there are competing additions 
and removals of reactivity [2], and the equation must be 
applied cautiously. 
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