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1 Introduction

Verification and validation of software and methods is vital so that users can have confidence in the results.
The three methods of performing this are through comparisons of analytic solutions, results from equivalent
calculations with other numerical methods, and experimental data. The advantage of an analytic solution
(assuming that it, in itself, is correct) is that there is no question of the veracity of the benchmark re-
sult. Method and experimental comparisons, however, have potential issues of approximations and errors in
software and biases in measurements and instrumentation. Unfortunately, analytic solutions are typically
only available for idealized, simple (and sometimes, arguably trivial) problems. Therefore, the other two
approaches of validation and verification are utterly indispensable.

Infinite medium solutions for comparing the kinetics parameters and reactivity changes are provided.
The advantage of an infinite medium problem is that a solution to the transport equation can usually be
obtained algebraically without resort to the techniques of calculus. Of course, such solutions lack any notion
of geometric effect and, therefore, cannot be viewed as a complete verification. Nonetheless, while spatial
effects cannot be captured, spectral ones can. This, in and of itself, makes an infinite medium solution useful.

2 Analytic Kinetics Solutions

The neutron generation time has the following formulation:

Λ =
〈
ψ†, v−1ψ

〉

〈ψ†, Fψ〉 . (1)

The brackets denote an integration over all space, energy, and direction. For an infinite medium solution,
the space and direction components are uniform, so for these solutions, it will merely be a sum over energy.
The nomenclature is as follows: ψ is the forward angular flux, ψ† is the adjoint angular flux, v is the neutron
speed, and F is the operator for prompt fission, which has the following form:

F =
χp(E)

4π

∫∫
dE′dΩ′νΣf (E). (2)

Additionally, χ is the energy dependent prompt emission spectrum, ν is the average number of neutrons
per fission that is usually grouped with Σf , the macroscopic fission cross section. Note that for these
problems, since the angular flux is isotropic, the factors of 4π will be suppressed.

One-Group Generation Time

For one-group, the solutions are very simple. The forward equation takes the following infinite medium form:

Σtψ = Σsψ +
1

k∞
νΣfψ. (3)

Σt is the total macroscopic cross section, Σs is the isotropic scattering cross section, and k∞ is the
eigenvalue for an infinite medium. Define the macroscopic absorption cross section as Σa = Σt − Σs. The
eigenvalue is then

k∞ =
νΣf

Σa
. (4)

For these problems, it will be assumed that nuclear data will be selected to make k∞ = 1. The analytic
solution for Λ is also easy to obtain because all terms can be factored:
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Λ =
1

vνΣf
. (5)

Two-Group Generation Time

A one-group solution of Λ, being the simplest possible solution, is almost trivial since the forward and adjoint
fluxes are identical. It would be more instructive to perform a two-group problem. For simplicity, it will be
assumed that there is no upscatter and fission neutrons are born into group 1. In principle, it is possible to
find more generalized solutions as well.

The forward equation for group 1 takes the form:

Σt1ψ1 = Σs11ψ1 +
1

k∞
(νΣf1ψ1 + νΣf2ψ2) . (6)

The numerical subscripts denote that the cross section applies to that energy group. The cross section
Σsg′g is the scattering cross section for neutrons in group g′ transferring to group g. It is also useful to define
the removal cross section for group g as: ΣRg = Σtg − Σsgg. From here, it is possible to manipulate (6) to
solve for the eigenvalue:

k∞ =
νΣf1

ΣR1
+

νΣf2

ΣR1

ψ2

ψ1
. (7)

The ratio of ψ2 to ψ1 remains unknown. To find this, write the forward equation for group 2:

Σt2ψ2 = Σs22ψ2 + Σs12ψ1. (8)

The ratio is

ψ2

ψ1
=

Σs12

ΣR2
. (9)

By substitution of (9) into (7), the eigenvalue is solved:

k∞ =
νΣf1

ΣR1
+

νΣf2

ΣR2

Σs12

ΣR1
. (10)

The adjoint equations for groups 1 and 2 are:

Σt1ψ
†
1 = Σs11ψ

†
1 + Σs12ψ

†
2 + νΣf1ψ

†
1, (11)

Σt2ψ
†
2 = Σs22ψ

†
2 + νΣf2ψ

†
1. (12)

Like with the forward solution, it is possible to find a ratio of adjoint fluxes:

ψ†
1

ψ†
2

=
ΣR2

νΣf2
. (13)

Since eigenvalue problems have an extra degree of freedom for both the forward and adjoint equations,
some value must be defined somewhere to have a unique solution. Note that this does not impact the
magnitude of any ratio quantity such as the neutron generation time. A convenient choice is: ψ1 = 1 and
ψ†

2 = 1. From these specification, it is possible to easily solve for Λ. The numerator has the form:

〈
ψ†, v−1ψ

〉
= ψ†

1

1
v1

ψ1 + ψ†
2

1
v2

ψ2 =
1
v1

ΣR2

νΣf2
+

1
v2

Σs12

ΣR2
. (14)

It follows that the denominator is:

〈
ψ†, Fψ

〉
= ψ†

1 (νΣf1ψ1 + νΣf2ψ2) =
νΣf1

νΣf2
ΣR2 + Σs12. (15)
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By taking the ratio of (14) and (15), the neutron generation time is obtained:

Λ =
1
v1

ΣR2
νΣf2

+ 1
v2

Σs12
ΣR2

νΣf1
νΣf2

ΣR2 + Σs12

. (16)

Two-Group Effective Delayed Neutron Fraction

The effective delayed neutron fraction has the following expression:

βeff =
〈
ψ†, Bψ

〉

〈ψ†, Fψ〉 . (17)

F is now the operator for total fission, and B is the operator for the delayed component. The operator
for total fission is,

F =
1
4π

∫∫
dE′dΩ′

[
(1 − β)χp(E) +

∑

i

βiχi(E)

]
νΣf (E). (18)

Here β denotes the total delayed neutron fraction which is the sum of the individual fractions βi for each
precursor group i. The total delayed neutron fraction β should not be confused with the effective delayed
neutron fraction βeff. The former is a fundamental constant of the universe in that a neutron of particular
incident energy upon a specific nucleus will produce (on average) some fraction of precursor fission products,
which, in turn, emit delayed neutrons. The effective delayed neutron is a property related to a specific system
involving an importance weighted average of fission neutrons.

There will be some simplifications to make the problem easier to solve. First, emission spectra will be
independent of incident energy. Secondly, the delayed neutron fractions will also be independent of energy.
For additional nomenclature, χpg and χig are the prompt and delayed (of precursor i) emission spectra for
energy group g. To simplify notation, ξg will be the sum of all χigβi. As a further simplification, the prompt
neutrons will only be emitted in group 1 such that χp1 = 1. Delayed neutrons, however, can be emitted into
both groups. Finally, only neutrons in group 2 may cause fission (νΣf2 = νΣf ) and there is no upscatter.

From here, it is possible to write the forward equations:

Σt1ψ1 = Σs11ψ1 +
1

k∞
[(1 − β) + ξ1] νΣfψ2, (19)

Σt2ψ2 = Σs22ψ2 + Σs12ψ1 +
1

k∞
ξ2νΣfψ2. (20)

k∞ may be obtained from (19):

k∞ = [(1 − β) + ξ1]
νΣf

ΣR1

ψ1

ψ2
. (21)

With equation (20), the flux ratio is

ψ2

ψ1
=

Σs12

ΣR2 − 1
k∞

ξ2νΣf
. (22)

By substituting (22) into (21) and rearranging, the eigenvalue can be obtained:

k∞ = [(1 − β) + ξ1]
νΣfΣs12

ΣR1ΣR2
+

ξ2νΣf

ΣR2
. (23)

The adjoint equations are:

Σt1ψ
†
1 = Σs11ψ

†
1 + Σs12ψ

†
2, (24)

Σt2ψ
†
2 = Σs22ψ

†
2 + νΣf

{
[(1 − β) + ξ1]ψ†

1 + ξ2ψ
†
2

}
. (25)
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From (24) the ratio of adjoint fluxes is obtained:

ψ†
1

ψ†
2

=
Σs12

ΣR1
. (26)

Again, defining ψ1 = 1 and ψ†
2 = 1, it is possible to solve for the terms in βeff. The numerator is:

〈
ψ†, Bψ

〉
=

(
ξ1ψ

†
1 + ξ2ψ

†
2

)
νΣfψ2. (27)

Likewise, the denominator is
〈
ψ†, Fψ

〉
=

{
[(1 − β) + ξ1]ψ†

1 + ξ2ψ
†
2

}
νΣfψ2. (28)

By taking the ratio and substituting in for the adjoint fluxes, the effective delayed neutron is obtained:

βeff =
Σs12
ΣR1

ξ1 + ξ2

Σs12
ΣR1

[(1 − β) + ξ1] + ξ2
. (29)

Two-Group Rossi-Alpha

Rossi-α is defined as

α = −βeff

Λ
. (30)

By manipulation of (1) and (17), Rossi-α is

α = −
〈
ψ†, Bψ

〉

〈ψ†, v−1ψ〉 . (31)

The two-group problem from the βeff calculation will be used. The numerator is the same as before and
is given in (27). The denominator can be done through substitution:

〈
ψ†, v−1ψ

〉
=

1
v1

Σs12

ΣR2
+

1
v2

Σs12

ΣR2 − ξ2νΣf
. (32)

By taking the ratio, Rossi-α is obtained:

α = −

[
Σs12
ΣR1

ξ1 + ξ2

]
νΣf Σs12

ΣR2−ξ2νΣf

1
v1

Σs12
ΣR2

+ 1
v2

Σs12
ΣR2−ξ2νΣf

. (33)

3 Analytic Perturbation Solutions

The change in reactivity ρ from a small change in a system configuration can be found, to first order, using
perturbation theory:

ρ = −
〈
ψ†, (∆Σt − ∆S − λ∆F ) ψ

〉

〈ψ†, F ′ψ〉 . (34)

From left to right, the terms in the numerator, when acting on the flux, are: the change in the total
collision rate, the change in the scattering source, and the change in the fission source. Note that λ = 1/k∞
and is taken to be unperturbed. The denominator has the perturbed fission source F ′ acting upon the flux.
Any term with that is perturbed will be primed.

The new eigenvalue from perturbation theory k̃′∞ can be found from the reactivity:

k̃′∞ =
1

λ − ρ
. (35)
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Also, the ratio of perturbed to exact P/E can be found if the analytic solution of k′ is known as well by
taking the ratio:

P/E = k̃′∞/k′∞. (36)

Generalized One-Group Perturbation

Suppose each term in (34) is perturbed for a monoenergetic, homogeneous, and infinite system. The change
in reactivity is:

ρ = −∆Σt − ∆Σs − λ∆(νΣf )
νΣf + ∆(νΣf )

. (37)

Define the absorption cross section Σa = Σt − Σs with corresponding change in the absorption cross
section ∆Σa respectively. The analytic solution for k∞ of the perturbed system is:

k′∞ =
νΣf + ∆(νΣf )

Σa + ∆Σa
. (38)

The perturbation solution of k is:

k̃′∞ = −νΣf + ∆(νΣf )
Σa + ∆Σa

. (39)

Since both the analytic and perturbation are identical, P/E is always unity for this simple problem.

Two-Group Capture Cross Section Perturbation

Suppose the capture cross sections are perturbed for the two-group problem used for the analytic Λ solution.
The removal cross section for group g becomes: Σ′Rg = ΣRg + ∆Σcg. For simplicity, the unperturbed k will
be taken to be unity, although this is not necessary. From (10), it is possible to analytically determine k′:

k′∞ =
νΣf1 (ΣR2 + ∆Σc2) + νΣf2Σs12

(ΣR1 + ∆Σc1) (ΣR2 + ∆Σc2)
. (40)

Since the fission cross section is not perturbed, only the numerator of (34) changes:

〈
ψ†,∆Σcψ

〉
=

ΣR2

νΣf2
∆Σc1 +

Σs12

ΣR2
∆Σc2 (41)

By combining this with the denominator from (15), the reactivity change is found:

ρ = −
ΣR2
νΣf2

∆Σc1 + Σs12
ΣR2

∆Σc2

νΣf1
νΣf2

ΣR2 + Σs12

. (42)

The perturbed eigenvalue can be estimated fairly simply since λ = 1:

k̃′∞ =
νΣf1
νΣf2

ΣR2 + Σs12

νΣf1
νΣf2

ΣR2 + Σs12 + ΣR2
νΣf2

∆Σc1 + Σs12
ΣR2

∆Σc2

. (43)

By taking the ratio of (43) and (40), it is possible to find P/E. Unlike with the previous problem, this
is not, in general unity any longer. It is particularly instructive to consider the case where ∆Σc1 = 0 and
∆Σc2 is positive and very large (for example, the introduction of a strong thermal absorber). The exact
expression yields a return to the one-group solution in (4) since any scatter into group 2 is effectively lost
from the system. The asymptotic limit of the perturbation solution, however, has the reactivity going to
negative infinity, or a solution where no multiplication is possible.
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Two-Group Energy Transfer Cross Section Section Perturbation

Suppose for the same problem as before, the scattering cross section of group 1 to 2, Σs12 is perturbed
instead. There must also be a corresponding perturbation in the total cross section as well, ∆Σt1 = ∆Σs12,
so two terms are needed for the numerator. The analytic result for the perturbed k∞ is:

k′∞ =
νΣf1ΣR2 + νΣf2 (Σs12 + ∆Σs12)

ΣR2 (ΣR1 + ∆Σs12)
. (44)

The numerator of the reactivity expression is

ψ†
1∆Σs12ψ1 + ψ†

2∆Σs12ψ1 = ∆Σs12

(
ΣR2

νΣf2
− 1

)
. (45)

Combining with the same denominator as last time, the reactivity can be expressed as

ρ =
∆Σs12

(
1 − ΣR2

νΣf2

)

νΣf1
νΣf2

ΣR2 + Σs12

. (46)

Again, assuming the unperturbed case has λ = 1, the perturbed eigenvalue is

k̃′∞ =
νΣf1
νΣf2

ΣR2 + Σs12

νΣf1
νΣf2

ΣR2 + Σs12 + ∆Σs12

(
ΣR2
νΣf2

− 1
) . (47)

This solution is particularly interesting because it can demonstrate how inaccurate perturbation theory
may be. It is again useful to analyze the asymptotic behavior as ∆Σs12 gets large. For the exact solution,
all neutrons produced in group 1 almost immediately downscatter into group 2; no other reaction in group
1 matters. The value of k∞ in this case is the one-group solution using the group 2 cross sections.

Of particular interest for the perturbed solution is the case where ΣR2/νΣf2 < 1. In this case, the
predicted eigenvalue will grow to infinity as it hits an asymptote and then promptly reaches an aphysical
solution of a negative k∞ afterward.

Two-Group ν Perturbation

Suppose for the same problem, ν is increased separately for groups 1 and 2. The analytic solution for k∞ is:

k′∞ =
1

ΣR1

[
Σf1 (ν1 + ∆ν1) +

Σs12

ΣR2
Σf2 (ν2 + ∆ν2)

]
. (48)

This time, both the numerator and denominator of (34) must be considered. After manipulation (again,
λ = 1), the change in reactivity is:

ρ =
Σf1∆ν1 + Σs12

ΣR2
Σf2∆ν2

Σf1 (ν1 + ∆ν1) + Σs12
ΣR2

Σf2 (ν2 + ∆ν2)
. (49)

Correspondingly, the perturbed eigenvalue is:

k̃′∞ =
Σf1 (ν1 + ∆ν1) + Σs12

ΣR2
Σf2 (ν2 + ∆ν2)

ν1Σf1 + Σs12
ΣR2

ν2Σf2
. (50)

Taking the ratio, P/E is

P/E =
ΣR1

ν1Σf1 + Σs12
ΣR2

ν2Σf2
= λ = 1. (51)

For this and similar problems, arbitrary increases in ν (even differing between energy groups) can be
captured by perturbation theory perfectly. Note that this is no longer the case if λ $= 1.
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4 Summary

A set of analytic, infinite-medium problems has been developed for the point reactor kinetics parameters and
reactivity perturbations using one or two energy groups. Given defined data, these solutions may be used
to verify methods and implementations in simulation software. Also, the reactivity solutions may be used
to compare the adjoint-weighted and differential operator methodologies of computing shifts in k. Further
extensions would involve simple finite geometries such as 1-D slabs and spheres.
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