
Form 836 (7/06) 

LA-UR- 
Approved for public release;  
distribution is unlimited. 

 
 

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC 
for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By acceptance 
of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the 
published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests 
that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National 
Laboratory strongly supports academic freedom and a researcher’s right to publish; as an institution, however, the Laboratory does not 
endorse the viewpoint of a publication or guarantee its technical correctness. 

Title:  

Author(s):  

Intended for:  

10-01700

Theory, Interface, Verification, Validation, and Performance
of the Adjoint-Weighted Point Reactor Kinetics Parameter
Calculations in MCNP

Brian C. Kiedrowski

Documentation & Release Notes



Theory, Interface, Verification, Validation, and Performance of the Adjoint-Weighted Point
Reactor Kinetics Parameter Calculations in MCNP

Brian C. Kiedrowski
Los Alamos National Laboratory

XCP-3: Monte Carlo Codes

1 Introduction

MCNP5 [1] v1.60 has, for the first time, the ability to compute adjoint-weighted tallies in criticality cal-
culations using only the existing random walks. This document specifically details the ability to compute
point reactor kinetics parameters: neutron generation times, Rossi-α, total and precursor specific effective
delayed neutron fractions, and average precursor decay constants. First, the theory of point-reactor kinetics
is developed along with a formulation of the tallies for the kinetics parameters. Details on the user interface
are given. Following this is a series of verification and validation problems. Finally, a few problems are
selected to test the performance of the methods (in sequential and parallel) with and without calculations
of kinetics parameters.

2 Theory

The average time-dependent behavior of a nuclear reactor for small transients can be described with the point
reactor kinetics equations. From the derivation presented in [2], it is shown that the neutron generation time
and effective delayed neutron fractions take the following definitions:

Λ =
〈
ψ†, v−1ψ

〉

〈ψ†, Fψ〉 , (1)

βeff =
〈
ψ†, Bψ

〉

〈ψ†, Fψ〉 . (2)

The nomenclature is as follows: the brackets denote integration over all space, energy, and direction in
the reactor, ψ is the angular forward flux, ψ† is the angular adjoint flux, v is the neutron speed, F is the
operator for total (prompt plus delayed) fission, and B is the operator for the delayed component of the
fission source.

Often, a related quantity called Rossi-α defined as −βeff/Λ is measured for criticality experiments. By
manipulation, Rossi-α has the following definition:

α = −
〈
ψ†Bψ

〉

〈ψ†v−1ψ〉 . (3)

It is also possible to define an effective delayed neutron fraction for the ith precursor group as follows:

βi =
〈
ψ†, Biψ

〉

〈ψ†, Fψ〉 . (4)

Here Bi is the delayed neutron source only for neutrons emitted from precursors of group i. Note that
the sum of the individual effective delayed neutron fraction is the total effective delayed neutron fraction
βeff.

It is also possible to find average decay constants λ̄i for each precursor i. Each individual λi (which varies
depending on the isotope) for each fission event is averaged:

λ̄i =
1

Wi

∑

f∈i

λiw0. (5)

The summation is only for fissions of precursor i, λi is the decay constant for the isotope in the current
fission event, w0 is the source weight of the neutron, and Wi is the sum of source weights of emissions of
precursor i.
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There is still the issue of performing the adjoint (importance) weighting of each tally. To do this, MCNP
uses the iterated fission probability interpretation of the adjoint flux [3]: the importance of a neutron at
a point in phase space is proportional to the expected steady state population of a hypothetical neutron
introducted into a critical reactor at that same point in phase space. Finding an estimate of the steady state
population would, in theory, require following progeny for an infinite number of generations and measuring
the population with some tally. Since that is not possible, MCNP assumes the population has achieved a
steady state value after some specified number of generations, and measures the asymptotic population in
that asymptotic generation.

To do this, a neutron in some original generation is assigned some index p and has tally contributions Tp.
When this neutron has any progeny (and those progeny have successive progeny), the index p is inherited.
After some number of generations, the asymptotic population Rp of progeny with index p is found by taking
a track-length estimate from all tracks of neutrons with index p in the asymptotic generation:

Rp =
∑

τ∈p

νΣfw&. (6)

The summation is over all tracks τ that have associated index p, νΣf is the mean neutron production
for that track, w is the weight of the track, and & is the length of the track.

The adjoint-weighted tally A is found by taking the sum of all products of Rp and Tp.

A =
1

Wp

∑

p

RpTp. (7)

Within the original generation, it is possible for the history to branch (such as particle splitting or an n,2n
reaction). In this case, different tally contributions for each branch will be accrued after the branching event.
It is therefore important to assign new progenitor indices when a branch occurs to ensure neutrons from one
branch are not weighted by the importance of another. Since it is possible to have multiple progenitor indices
in the same history within the original generation, it is important for calculation of variances to choose the
correct meaning of a score. For this, an individual score for history j, Aj , is the sum of all products RpTp

over all progenitor indicies p that were assigned in history j.
There is one additional consideration with using existing random walks with non-analog particle tracking.

In a non-analog simulation, the particle weight w adjusts the simulated frequency to match (on average)
the physical frequency of the path. The importance weighting is, however, performed with a hypothetical
particle sampled at unit weight from the physical frequency. The number of neutrons produced from a
simulated neutron is scaled by the particle weight w. This is correct for the simulated neutron to match
the physical result, but is not consistent had a hypothetical neutron at unit weight been used. To correct
for this, a factor of 1/w must be applied to each tally contribution, leading to tally results that are not
multiplied by particle weight.

From here it is possible to define the tallies necessary to compute the point-reactor kinetics parameters.
From equations (1) and (2), it is necessary to define three different tallies. The first is the adjoint-weighted
neutron density:

〈
ψ†, v−1ψ

〉
=

∑

p

Rp

∑

τ∈p

&

v
. (8)

This is done for every track τ with progenitor index p in the original generation. For every such track,
the ratio of the track length to the current neutron speed is summed. The sum of these tracks is weighted
by the importance estimate Rp taken from tracks in the asymptotic generation as defined by (6).

The adjoint-weighted fission sources need to be done as absorption estimators and cannot be done with
track-length estimators if only the existing random walks are to be used. This is because the collisions must
be produced with a frequency based upon the incident energy of the neutron, whereas the importance must
be with respect to the energy (and direction) of the neutron after fission emission. A track-length estimator
does not actually perform the collision, and therefore the part where a neutron leaves a collision via fission
is not sampled.

The adjoint-weighted total fission source takes the following form:
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〈
ψ†, Fψ

〉
=

∑

p

Rp. (9)

This form is simpler than (8) since at fission emission every neutron is assigned a progenitor index p
with a weight of unity that remains fixed. Upon any branching event, new indices are selected and the unit
weight is, in concept (but not in the simulation to save memory), passed onto all those branches. Therefore,
a simple sum of the asymptotic populations will yield the adjoint-weighted fission source.

The adjoint-weighted delayed fission source is similar:
〈
ψ†, Bψ

〉
=

∑

p

Rp(1 − δj). (10)

The only difference with respect to (9) is the application of Kronecker delta term. Here j corresponds to
the emitted precursor index, where j = 0 corresponds to a prompt neutron. The Kronecker delta is defined
to be one when j = 0 and zero otherwise.

Likewise, the delayed neutron source for precursor i can be found by
〈
ψ†, Biψ

〉
=

∑

p

Rpδij . (11)

Again, j corresponds to the emitted precursor index and i corresponds to the index of the precursor
group being tallied. The Kronecker delta δij is one when i = j and zero otherwise.

By taking the appropriate ratios of these tallies, the kinetics parameters are obtained. Since the three
tallies are correlated, a proper uncertainty calculation of a ratio involves finding the correlations between
them. Standard techniques in error propogation are used to accomplish this.

3 User Interface

By default, MCNP5 v1.60 does not calculate the kinetics parameters, and therefore must be specified by the
user. This is done by use of the KCODE options card, or KOPTS card. In a criticality (KCODE) problem,
the user specifies the KOPTS card in the following format:

KOPTS KEYWORD1=ENTRY1 KEYWORD2=ENTRY2 ...

To activate the kinetics parameter calculations, the user must specify the KINETICS keyword on the
KOPTS card. There are two valid entries for the KINETICS keyword: YES or NO, with the default being
NO. By specifying the following card, MCNP will compute the kinetics parameters:

KOPTS KINETICS=YES

This will only compute Λ, βeff, and α, but not the detailed precursor information (the βi and λ̄i for each
precursor group). To have MCNP compute these as well, the PRECURSOR keyword must be specified.
Like with the KINETICS keyword, the valid entries are either YES or NO with the default being NO. Note
that it is illegal to request detailed precursor information if the KINETICS keyword is set to NO. When
detailed precursor information is requested, MCNP will automatically read the data files to determine how
many precursor groups are present (typically six for ENDF and eight for JEFF). The following card will
produce a kinetics calculation with detailed precursor information:

KOPTS KINETICS=YES PRECURSOR=YES

By default, MCNP will break the active cycles into blocks of ten cycles for the importance weighting. In
this case, tally contributions are taken and stored in the first cycle, progeny is followed through successive
cycles, the adjoint weighting of the original tally contributions done in tenth. Following this, a new so-
called block begins. Certain problems may require more generations in a block to avoid truncation errors.
Conversely, problems that converge quickly may compute the kinetics parameters more efficiently for a
smaller progenitor block. The size of the block may be controlled with the BLOCKSIZE keyword on the
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KOPTS card. The entry must be an integer greater than or equal to two. A sample KOPTS card with the
block size specified is:

KOPTS BLOCKSIZE=10 KINETICS=YES PRECUROSR=YES

This explicitly states that MCNP should use the default block size of ten cycles. Most problems in the
validation and verification sections will use this card where applicable unless otherwise specified.

Results of the calculation are placed in the output file below the information on results of keff. Λ, βeff,
and α will be displayed with their absolute standard deviations. In the case where TOTNU NO is specified,
Λ will be given and a message will indicate that no calculation of the other two may be performed since no
delayed neutrons are present. Λ is given in appropriate units depending on the magnitude of the result: nsec
(10−9 s), usec (10−6 s), or msec (10−3 s). Rossi-α is displayed in the inverse of the units of Λ.

Should detailed precursor information be required, the results of those calculations will be printed below
the output for the kinetics parameters. This output will contain the effective delayed fractions for each
precursor βi, average emission energies in MeV, average decay constants in s−1, and the corresponding half-
lives in s. Absolute standard deviations are given for all of these except the half-lives which can easily be
derived from the corresponding decay constant standard deviations.

4 Verification & Validation

Verification problems are performed for the kinetics parameters. The verification problems are compared
against both analytic solutions and with discrete ordinates results obtained from Partisn [4]. Unfortunately,
Partisn does not handle delayed neutrons, so only Λ is validated this way. For validation, MCNP computes
six values of Rossi-α and these values are compared against experimentally measured values.

Analytic Verification Problems

Four infinte-medium test problems with analytic solutions [5] are used to verify the methods for computing
the kinetics parameters within MCNP. Three problems specifically test the calculation of Λ using only
prompt neutrons. The first problem is one group, and the second and third have two energy groups. A
fourth problem uses delayed neutrons and compares βeff and α.

The analytic solution for Λ in a monoenergetic infinite medium is

Λ =
1

vνΣf
. (12)

The following data is used: Σt = 4.0 cm−1, Σf = 0.5 cm−1, Σc = 0.5 cm−1, Σs = 3.0 cm−1, ν = 2.0, v
= 1.0 cm/sh. The problem contains only isotropic scattering. For this problem the value of k∞ = 1.0 and
Λ =1 .0 sh or 10 ns.

Because of the infinite nature of the problem, there is no need to iterate on numerous generations, a
block size of two (the minimum allowed by MCNP5) will suffice. The problem is run with 100k neutrons per
cycle with 40k cycles with the default random number seed and generator with an initial source guess of a
point source in the center of the universe. The results yield the expected values of k∞ = 1.00001± 0.00001
and Λ = 10.00014± 0.00030 ns.

It is also possible to obtain an analytic solution for a multigroup infinite medium problem as well. For
simplicity, two groups will be used. Group 1 has the following properties: all fission neutrons are born in
this group, the group itself may not cause fission, any scattering event transfers the neutron to group 2 with
cross section Σs = 0.5 cm−1, and Σt1 = 1.0 cm−1. Group 2 has the following features: no scattering is
possible, ν = 4.0, Σf = 1.0 cm−1, and Σt2 = 2.0 cm−1.

For these simplifications and choices of data, it can be shown that,

k∞ =
νΣf

Σt1

Σs

Σt2
= 1. (13)

The analytic solution for the neutron generation time is,
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Λ =
Σt1Σt2

νΣfΣs

(
1

v1Σt1
+

1
v2Σt2

)
. (14)

For a choice of v1 = 1.0 cm/sh and v2 = 0.5 cm/sh, the analytic solution for Λ is 2 sh or 20 ns. This
problem is run with 100k neutrons per cycle with 40k cycles with the default random number seed and
generator with an initial source guess of a point source in the center of the universe. MCNP obtains a value
for k∞ = 1.00000 ± 0.00000 and Λ = 19.99963 ± 0.00045 ns. For reference the fission lifespan (the mean
simulated time between fission events) has a matching value of 19.9995 ns.

Table 1: Cross section data for analytic test problem 3 (in cm−1 where applicable).
g Σt νΣf χ Σsg1 Σsg2

1 2 3
8 1 1

2
1
2

2 3 9
2 0 0 1

The third problem uses cross section data given in Table 1. The analytic expression for k∞ is:

k∞ =
νΣf1

ΣR1
+

νΣf2

ΣR2

Σs12

ΣR1
= 1. (15)

Note that the removal cross section for group g is ΣRg = Σtg − Σsgg.
The neutron generation time has the following analytic expression:

Λ =
1
v1

ΣR2
νΣf2

+ 1
v2

Σs12
ΣR2

νΣf1
νΣf2

ΣR2 + Σs12

. (16)

For the cross section data and the choice of v1 = 1 cm/sh and v2 = 1/2 cm/sh, the analytic solution for
Λ is 17/12 sh or approximately 14.16667 ns. Like with the others, this problem is run with 100k neutrons
per cycle with 40k cycles with the default random number seed and generator with an initial source guess of
a point source in the center of the universe. Since the problem is more complicated, a generation block size
of five is used. MCNP gives a result of Λ of 14.16669 ± 0.00097 ns, well within the two standard deviation
confidence band. The fission lifespan has a result of 12.6660 ns, which shows that the fission lifespan does
not always give the same result as the analytic solution.

Checking delayed neutrons and Rossi-α analytically is difficult since MCNP does not natively allow
delayed neutrons with multigroup physics. To perform this test, MCNP is modified to read in multigroup
delayed neutron data and sample them when required. An analytic two-group solution (with two precursor
groups) for βeff is developed for the cross section data given in Table 2. The delayed neutron fractions are
independent of incident energy and have values of β1 = 1/4 and β2 = 1/8. The total delayed neutron fraction
is therefore β = 3/8.

Table 2: Cross section data for analytic test problem 4 (in cm−1 where applicable).
g Σt νΣf χp χ1 χ2 Σsg1 Σsg2

1 2 0 1 3
4

1
2

1
2

1
2

2 3 5
24 0 1

4
1
2 0 1

Like before, a form of the eigenvalue is derived:

k∞ = [(1 − β) + ξ1]
νΣfΣs12

ΣR1ΣR2
+

ξ2νΣf

ΣR2
= 1. (17)

The variable ξg is the sum over all precursors i of βiχig for energy group g. Since there are two precursor
groups: ξ1 = 1/4 and ξ2 = 1/8.

An analytic solution for the effective delayed neutron fraction is
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βeff =
Σs12
ΣR1

ξ1 + ξ2

Σs12
ΣR1

[(1 − β) + ξ1] + ξ2
. (18)

For the cross section data provided, the analytic value of βeff is 1/2. For the case run like the others,
MCNP produces a value of k∞ = 1.00002± 0.00001 and βeff = 0.50003± 0.00005.

Rossi-α also has an analytic solution:

α = −

[
Σs12
ΣR1

ξ1 + ξ2

]
νΣf Σs12

ΣR2−ξ2νΣf

1
v1

Σs12
ΣR2

+ 1
v2

Σs12
ΣR2−ξ2νΣf

. (19)

For the current nuclear data, the analytic value of Rossi-α is -15/44 sh−1 or approximately -3.40909 x
10−2 ns−1. MCNP calculates a value of -3.40955 x 10−2 ± 0.00044 x 10−2 ns−1. For reference, the analytic
solution of Λ is 22/15 sh or approximately 14.66667 ns. MCNP calculates 14.66548± 0.00110 ns.

Both the one- and two-group results agree with the respective analytic solutions within two standard
deviations. These tests show that the importance weighting routines are being done correctly and handle
spectral effects (the forward and adjoint solutions differ in the two group problem for the data chosen). It
remains an open question if spatial differences can be accounted, however. To address this, homogeneous
and heterogeneous verification problems are performed and compared with equivalent discrete ordinates
calculations.

Discrete Ordinates Verification Problems

Multigroup problems with finite geometries are tested using the discrete ordinates method with the code
Partisn. Results of Λ are compared between MCNP and Partisn v6.26 (beta release). There are eight
multigroup problems: (1) 4-group, bare, fast slab, (2) 4-group fissile slab with thermalizing reflector, (3) 2-
group, three region slab problem involving fissile center, strong thermal absorber buffer zone, and moderating
reflector, (4) 8-group, bare slab of homogeneous fissile/moderator mixture, (5) 4-group, bare, fast, sphere,
(6) 4-group, sphere with reflector, (7) 4-group, bare, subcritical slab, and (8) 4-group, bare, supercritical
slab. For each of these problems, a block size of ten generations is used.

For reference, the results of all comparisons are given in Table 3. Also provided are n-σ, the number of
MCNP standard deviations that the Partisn result lies outside the MCNP mean result, and C/R which is
the ratio of the calculated (MCNP) to reference (Partisn) results. Detailed information on each test problem
involving multigroup data, Partisn discretization, MCNP problem specifics, etc. are given below.

Table 3: Λ results of MCNP compared with discrete ordinates calculations from Partisn.
Problem Partisn MCNP n-σ C/R

1 9.79325 ns 9.79675 ± 0.00188 ns +1.86 1.00036
2 135.19020 us 135.22164 ± 0.03384 us +0.93 1.00023
3 49.16822 ns 49.20663 ± 0.01863 ns +2.06 1.00078
4 112.05232 us 112.29905 ± 0.13692 us +1.80 1.00220
5 1.72115 ns 1.72121 ± 0.00032 ns +0.19 1.00003
6 10.18997 ns 10.18794 ± 0.00233 ns -0.87 0.99980
7 10.17161 ns 10.17110 ± 0.00230 ns -0.22 0.99995
8 9.67254 ns 9.67168 ± 0.00166 ns -0.81 0.99990

Like with the analytic results, the values of Λ compare well with those computed from the forward and
adjoint fluxes of Partisn. A couple of the results (namely problems 1, 3, and 4) are near the 2-σ confidence
band, but are not unreasonable. It may be, for this degree of precision, that the default block size of
ten generations may be insufficient. As can be seen in the problem descriptions, the value of Λ matches
consistently far more frequently than either the prompt removal time (non-adjoint weighted version of Λ) or
the fission lifespan (simulated time between fission events).
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Problem 1: This problem is a bare, fast slab of half-thickness 7.7218 cm. The 4-group nuclear data
is given in Table 4 and the number density is 0.01 atoms per barn-cm. The upper energy bounds on the 4
groups are 10 MeV, 2.5 MeV, 1.0 MeV, and 0.1 MeV.

In Partisn, 1000 spatial bins are used, each with 512 Gauss-Legendre ordinates. For MCNP, the problem
is run with a uniform source with the default random number seed. 50k active cycles are used with 100k
neutrons per batch are used.

For this problem keff = 1.00000 and both MCNP and Partisn match. The non-adjoint weighted lifetime
computed by Partisn is 9.89003 ns. Correspondingly, MCNP calculates a prompt removal time of 9.89021±
0.00013 ns. There is about a one percent difference between the importance and non-importance weighted
lifetimes. The fission lifespan computed by MCNP is 10.1816 ns, which is actually less accurate than the
prompt removal lifetime.

Table 4: Nuclear cross section (in barns where applicable) data for test problem 1.
g σa νσf σt χ σsg1 σsg2 σsg3 σsg4

1 2.0 4.5 4.0 0.1 0.5 0.5 0.5 0.5
2 3.5 7.125 6.0 0.6 0.0 1.0 1.0 0.5
3 5.0 10.0 8.0 0.3 0.0 0.0 2.0 1.0
4 8.0 12.5 10.0 0.0 0.0 0.0 0.0 2.0

Problem 2: This problem is a reflected slab reactor with overall half-thickness of 112.5 cm. The inner-
core region represents a metallic fuel with a half-thickness of 20 cm. The reflector region is a material
containing low-Z isotopes. The 4-group nuclear data for the core and reflector are given in Table 5 and the
number density of both materials is 0.001 atoms per barn-cm. The upper energy bounds are: 10 MeV, 1
MeV, 0.1 MeV, and 0.625 eV. Much of the fission (about 75 percent) occurs in either the intermediate or
thermal energy range; as such, it is expected that Λ be a few decimal orders of magnitude longer than in
Problem 1.

In Partisn, a mesh spacing of 0.1 cm is used in both core and reflector regions. The simulation is run
using 512 Gauss-Legendre ordinates. For MCNP, the problem is run with a uniform source with the default
random number seed. 50k active cycles are used with 100k neutrons per batch are used.

For this problem keff = 1.00018 from Partisn and 1.00018±0.00001 for MCNP. The non-adjoint weighted
lifetime computed by Partisn is 118.03165 us. Correspondingly, MCNP calculates a prompt removal time of
118.065 ± 0.0002 us. There is about a 12.7 percent difference between the importance and non-importance
weighted lifetimes. This fission lifespan computed by MCNP is 136.252 us.

Table 5: Cross section data for fuel and reflector zones of test problem 2.
g σt νσf σa χ σsg1 σsg2 σsg3 σsg4

Core
1 1.5 2.65 5.0 0.8 1.5 2.0 0.0 0.0
2 3.0 5.0 8.0 0.2 0.0 2.0 3.0 0.0
3 10.0 12.5 20.0 0.0 0.0 0.0 10.0 0.0
4 30.0 70.0 50.0 0.0 0.0 0.0 0.0 20.0

Refl
1 0.0 0.0 20.0 0.0 4.0 6.0 9.0 1.0
2 0.0 0.0 20.0 0.0 0.0 3.0 14.0 3.0
3 0.0 0.0 20.0 0.0 0.0 0.0 15.0 5.0
4 0.1 0.0 20.0 0.0 0.0 0.0 0.0 19.9

Problem 3: This problem is a three-region problem with half-thickness 100 cm. The problem is very
similar to problem 2, except for the 1 cm layer of strong thermal absorber between the core and reflector.
The core region has a half-thickness of 20 cm. The nuclear data for each material is given in Table 6, and all
have number densities of 0.01 atoms per barn-cm. The upper bounds of the two groups are: 1 MeV and 1
eV. This problem is interesting because it is pathological for non-adjoint weighted methods. Neutrons spend
a significant amount of time in the reflector, but, once thermalized, are insignificant in terms of the chain
reaction because of the strong absorber. For reference, the non-adjoint weighted Λ is about a factor of 200
larger than the correct adjoint-weighted case.
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In Partisn, 1000 spatial bins are used, each with 256 Gauss-Legendre ordinates. For MCNP, the problem
is run with a uniform source with the default random number seed. 50k active cycles are used with 100k
neutrons per batch are used.

For this problem keff = 1.00041 from Partisn and 1.00042±0.00001 for MCNP. The non-adjoint weighted
lifetime computed by Partisn is 10.0678 us. Correspondingly, MCNP calculates a prompt removal time of
10.1060± 0.0002 us. There is about a factor of 200 difference between the importance and non-importance
weighted lifetimes. The fission lifespan computed by MCNP is 50.0817 ns.

Table 6: Cross section data for fuel, absorber, and reflector zones of test problem 3.
g σt νσf σa χ σsg1 σsg2

Core 1 5.0 2.425 1.0 1.5 3.5 0.0
2 50.0 100.0 0.0 45.0 5.0 0.0

Abs 1 0.0 0.0 0.0 0.0 0.0 0.0
2 1000.0 0.0 1000.0 0.0 0.0 0.0

Refl 1 1.0 0.0 0.0 0.0 0.9 0.1
2 1.0 0.0 0.0 0.0 0.0 1.0

Problem 4: This problem is a slab consisting of homogenized mixture of fuel and moderator with half-
thickness of 77.2 cm. The 8-group cross section data is given in Table 7 and the number density is 0.001
atoms per barn-cm. The upper energy bounds for the eight energy groups are: 10 MeV, 5 MeV, 2 MeV, 1
MeV, 0.1 MeV, 0.1 keV, 1 eV, and 0.1 eV. The cross section data is chosen such that the fast and thermal
contributions to the tally for Λ are of the same order. In other words, most of the flux is in the fast region,
but each contribution from 1/v is small. Contributions from the thermal region are far fewer, but are much
larger because 1/v is bigger.

In Partisn, a mesh spacing of 0.05 cm is used for each region and using 512 Gauss-Legendre ordinates.
For MCNP, the problem is run with a uniform source with the default random number seed. 50k active
cycles are used with 100k neutrons per batch are used.

For this problem keff = 1.00039 from Partisn and 1.00040±0.00001 for MCNP. The non-adjoint weighted
lifetime computed by Partisn is 100.42339 us. Correspondingly, MCNP calculates a prompt removal time of
100.507 ± 0.006 us. There is about a 10.4 percent difference between the importance and non-importance
weighted lifetimes. The fission lifespan computed by MCNP is 114.462 us.

Table 7: 8-group nuclear cross section (in barns where applicable) data for test problem 4.
g σa νσf σt χ σsg1 σsg2 σsg3 σsg4 σsg5 σsg6 σsg7 σsg8

1 2.5 6.0 4.0 0.05 0.1 0.2 0.2 0.5 0.5 0.0 0.0 0.0
2 3.0 6.75 5.5 0.20 0.0 0.4 0.6 0.7 0.8 0.0 0.0 0.0
3 3.5 7.8 7.0 0.60 0.0 0.0 1.0 1.0 1.5 0.0 0.0 0.0
4 5.0 10.2 10.0 0.15 0.0 0.0 0.0 1.4 3.5 0.1 0.0 0.0
5 30.0 25.0 40.0 0.00 0.0 0.0 0.0 0.0 9.6 0.4 0.0 0.0
6 40.0 75.0 60.0 0.00 0.0 0.0 0.0 0.0 0.0 12.0 7.0 5.0
7 70.0 150.0 90.0 0.00 0.0 0.0 0.0 0.0 0.0 1.0 14.0 5.0
8 115.0 250.0 140.0 0.00 0.0 0.0 0.0 0.0 0.0 0.5 4.5 20.0

Problem 5: This problem is a bare-fast sphere, similar to problem 1. The sphere has a radius of 4.4608
cm, the same (4-group) nuclear data as problem 1, and a number density of 0.05 atoms per barn-cm.

In Partisn, 1000 mesh intervals are used with 64 Gauss-Legendre ordinates. For MCNP, the problem is
run with a central point source with the default random number seed. 50k active cycles are used with 100k
neutrons per batch are used.

For this problem keff = 1.00000 from Partisn and 0.99995±0.00001 for MCNP. The non-adjoint weighted
lifetime computed by Partisn is 1.98991 ns. Correspondingly, MCNP calculates a prompt removal time of
1.98982 ± 0.0002 ns. There is about a 13.5 percent difference between the importance and non-importance
weighted lifetimes. The fission lifespan computed by MCNP is 1.82160 ns.
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Problem 6: This problem is a reflected-fast sphere, similar to problem 2. The overall sphere has a radius
of 30 cm. The inner core region has a radius of 21 cm, has the same (4-group) nuclear data as problem 1,
and a number density of 0.01 atoms per barn-cm. The outer region is a high-Z reflector with nuclear data
given in Table 8. Since the reflector does not thermalize neutrons effectively, the spectrum is, unlike problem
2, expected to be fast.

In Partisn, 300 mesh intervals are used with 64 Gauss-Legendre ordinates. For MCNP, the problem is
run with a central point source with the default random number seed. 50k active cycles are used with 100k
neutrons per batch are used.

For this problem keff = 1.00086 from Partisn and 1.00081±0.00001 for MCNP. The non-adjoint weighted
lifetime computed by Partisn is 18.04258 ns. Correspondingly, MCNP calculates a prompt removal time of
18.0412 ± 0.0002 ns. There is about a 77 percent difference between the importance and non-importance
weighted lifetimes. The fission lifespan computed by MCNP is 11.0911 ns.

Table 8: Nuclear cross section (in barns) data of the reflector region in test problem 6.
g σa νσf σt σsg1 σsg2 σsg3 σsg4

1 0.1 0.0 2.0 0.3 0.4 0.6 0.6
2 0.2 0.0 3.0 0.0 0.6 1.0 1.2
3 0.4 0.0 4.0 0.0 0.0 1.6 2.0
4 1.0 0.0 5.0 0.0 0.0 0.0 4.0

Problem 7: This problem is exactly like problem 1 except that the slab has a half-thickness of 5 cm
and is therefore in a subcritical configuration.

In Partisn, 1000 mesh intervals are used with 512 Gauss-Legendre ordinates. For MCNP, the problem
is run with a uniform source with the default random number seed. 50k active cycles are used with 100k
neutrons per batch are used.

For this problem keff = 0.77971 from Partisn and 0.77972±0.00001 for MCNP. The non-adjoint weighted
generation time computed by Partisn is 9.65371 ns. Correspondingly, MCNP calculates a prompt removal
time (divided by keff to get Λ) of 9.65383± 0.00001 ns. There is about a five percent difference between the
importance and non-importance weighted lifetimes. The fission lifespan computed by MCNP divided by keff

is 10.55002 ns.
Problem 8: This problem is exactly like problem 1 except that the slab has a half-thickness of 10 cm

and is therefore in a supercritical configuration.
In Partisn, 1000 mesh intervals are used with 512 Gauss-Legendre ordinates. For MCNP, the problem

is run with a uniform source with the default random number seed. 50k active cycles are used with 100k
neutrons per batch are used.

For this problem keff = 1.14008 from Partisn and 1.14007±0.00001 for MCNP. The non-adjoint weighted
generation time computed by Partisn is 10.01983 ns. Correspondingly, MCNP calculates a prompt removal
time (divided by keff to get Λ) of 10.0199± 0.00001 ns. There is about a 3.6 percent difference between the
importance and non-importance weighted lifetimes. The fission lifespan computed by MCNP divided by keff

is 10.06561 ns.

Validation with Experimental Results

Comparisons are made with experimental measurements of six criticality experiments from the OECD/NEA
benchmark handbook [6]. These are: Godiva, Jezebel, BIG TEN, Flattop-233, Stacy (run 29), and WINCO
(run 5). The corresponding designators are: HEU-MET-FAST-001, PU-MET-FAST-001, IEU-MET-FAST-
007, U233-MET-FAST-006, LEU-SOL-THERM-007, HEU-SOL-THERM-038.

The kinetics parameters are computed for each of the experiments and are given in Table 9. Detailed
precursor information is also given; Table 10 gives values of βi and Table 11 gives values of λ̄i. All calculations
use 50k active cycles with 100k neutrons per cycle, a block size of ten, and ENDF/B-VII.0 data.

There are relatively few measured values of Rossi-α for the OECD/NEA benchmarks. A comparison of
those measurements that are available are given in Table 12. All six of the validation tests appear to match
within two percent aside from the Flattop-233 benchmark that exhibits about a ten percent difference. One
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Table 9: MCNP results for the point-reactor kinetics parameters.
Λ βeff (pcm) α (ms−1)

Godiva 5.69465 ± 0.00143 ns 649 ± 1 -1139.57 ± 2.35
Jezebel 2.87273 ± 0.00080 ns 184 ± 1 -640.238 ± 2.374

BIG TEN 62.42441 ± 0.01609 ns 721 ± 1 -115.518 ± 0.219
Flattop-233 12.72031 ± 0.00679 ns 372 ± 1 -292.401 ± 0.808

Stacy-29 59.72607 ± 0.01262 us 730 ± 2 -0.122155 ± 0.00296
WINCO-5 7.36401 ± 0.00248 us 823 ± 2 -1.11723 ± 0.00311

Table 10: MCNP results for the effective delayed fractions for each precursor group (in pcm). The uncer-
tainies are less than 1 pcm.

β1 β2 β3 β4 β5 β6

Godiva 21 108 104 297 88 31
Jezebel 6 49 34 72 20 3

BIG TEN 16 102 104 330 129 39
Flattop-233 25 83 63 148 44 9

Stacy-29 24 121 118 333 99 35
WINCO-5 27 137 134 375 110 39

Table 11: MCNP results for the average precursor decay constants (s−1). The uncertainies are usually
negligible.

λ̄1 λ̄2 λ̄3 λ̄4 λ̄5 λ̄6

Godiva 0.01249 0.03180 0.10948 0.31745 1.35233 8.67870
Jezebel 0.01252 0.02997 0.10749 0.31681 1.31001 9.52755

BIG TEN 0.01249 0.03122 0.11212 0.32855 1.33222 9.36772
Flattop-233 0.01248 0.03144 0.11057 0.32484 1.30870 9.90878

Stacy-29 0.01249 0.03181 0.10944 0.31727 1.35328 8.65641
WINCO-5 0.01249 0.03182 0.10938 0.31701 1.35393 8.63788

Table 12: Comparison of MCNP calculations of to experimentally measured values of Rossi-α (ms−1).
Experiment MCNP C/R

Godiva -1100 ± 20 -1139.57 ± 2.35 1.017
Jezebel -640 ± 10 -640.238 ± 2.374 1.000

BIG TEN -117 ± 1 -115.518 ± 0.219 0.987
Flattop-233 -267 ± 5 -292.401 ± 0.808 1.095

Stacy-29 -0.122 ± 0.004 -0.122155 ± 0.00296 1.001
WINCO-5 -1.109 ± 0.003 -1.11723 ± 0.00311 1.007

other consistent peculiarity is λ̄6 exhibits a value that is consistently different than other published values.
A verification of MCNP’s ability to caculate λ̄i is performed by comparing the results from a problem
containing one fissile isotope directly with the nuclear data in ENDF. Both results are consistent indicating
the difference is because of the data itself.

Additions to the Regression Suite

To assist developers and users with ensuring these routines function as expected, two test problems are
included in the Regression Suite. Geometrically, both problems are the same: a two concentric region sphere
of radius 8 cm (inner radius of 5 cm) containing the same material (90 percent uranium-235 and 10 percent
uranium-238).

The first problem tests a calculation of all kinetics parameters with detailed precursor information.

10



The problem includes coupled neutron-photon transport and importance splitting of both the neutrons and
photons. The tallies should not be affected, statistically speaking, by secondary photons, and this tests this.
Also, splitting is performed to ensure that the answers are not affected by that as well.

The second problem uses solely neutrons, no importance splitting, the TOTNU NO option, but still tries
to calculate detailed precursor information. In this case, the user is warned that this is impossible and the
program proceeds without those calculations. Also, an invalid block size of one is specified; MCNP sets this
to the minimum value of two and warns the user. The primary purpose of this test is to catch input errors.

5 Performance Testing

Tests of performance on CPU time/multiprocess scaling and memory usage are performed. MCNP5 v1.60
is compiled using Intel 10.0 on an AMD Operton machine running Red Hat Linux. The test problems run
for the CPU time/multiprocess scaling tests are: Flattop-233, BIG TEN, and Stacy-29. The memory usage
test uses the Godiva benchmark.

For each benchmark, 10k neutrons per cycle are used, 10 inactive and 500 active cycles are run, and a
block size of 10 generations is used. The CPU time is measured with the Linux ‘time’ command and the setup
time is assumed to be small compared to the overall running time. Each benchmark is run with sequentially
(1 process) and with 2, 4, 8, 16, 24, 32, 48, and 63 MPI slave processes. For the three benchmarks, the average
slowdown experienced for toggling the kinetics parameter calculations (with detailed precursor information
tabulated) is around 5-6%. The slowdown for the different number of processors is somewhat erratic because
of the non-linear effects associated with caching.

For each benchmark (Flattop-233, BIG TEN, and Stacy-29), the speedup for each with the kinetics
parameter calculations is compared with the speedup from a reference case with no such calculation. This
comparison is given in Figure 1. For all cases, the speedup is greater for the reference case, as expected, since
more data needs to be passed between processors, boosting the non-parallelizable fraction of the program

Figure 1: Comparison of speedup using varied numbers of MPI processes for the Flattop-233, BIG TEN,
and Stacy-29 criticality benchmarks. The reference cases denote running an equivalent calculation without
kinetics parameters.
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execution. The penalty in speedup is typically less than five percent, but exceptions are observed depending
on the problem and number of processors used.

The Godiva benchmark is run sequentially with varied numbers of neutrons per cycle. The memory of
the cases with and without (which is called the reference case) the kinetics parameter calculations (with
detailed precursor information tabulated) is measured by way of the Linux ‘top’ command.

The results of the tests with the Godiva problem are displayed in Figure 2. The increased memory usage
is from two components: fixed sized data for each tally and arrays that vary with the number of progenitors
allowed. Initially, MCNP selects the size of the latter based on the number of neutrons per cycle specified
by the user (the base memory storage does not necessarily grow linearly with the user selection as seen in
increasing the batch size from 75k to 100k); however, during problem execution MCNP will automatically
adjust the number of progenitors allowed should more be required. This leads to the non-linear growth in
memory usage seen in this test.

As a general trend, the memory usage typically increases with batch size at a faster rate than for the
other arrays found in a simple criticality problem. To illustrate, the kinetics calculations require about 5%
of the memory usage for the 10k batch size case, whereas the the kinetics calculations consume over 50%
of the memory for a batch size of 250k. However, the growth is not always monotonic as the percentage of
memory used by the kinetics calculations actually decreases between the 100k and 150k batch sizes.

Figure 2: Comparison of memory usage for varying the batch size (neutrons per cycle) of the Godiva
benchmark. The reference cases denote running an equivalent calculation without kinetics parameters.

6 Summary

MCNP v1.60 has the ability to compute the point-reactor kinetics parameters (Λ, the neutron generation
time, βeff, the effective delayed neutron fraction, and Rossi-α). Should the user desire, MCNP will also
produce detailed precursor information consisting of the effective dealyed fraction of each precursor βi and
the average decay constant λ̄i. The default is to produce no kinetics parameter information and needs to be
specified by way of the KINETICS and PRECURSOR keywords on the new KOPTS card.

The results of the calculations have been validated and verified using analytic, infinite-medium solutions,
comparisons with discrete ordinates, and comparisons with experimental results. The comparisons indicate
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that the MCNP calculations produce answers that match reference solutions or values, and does so better
than similar, previously available methods. Testing indicates that the performance penalties tend to be
fairly modest, on the order of around five percent. There is a fairly significant increase in memory usage
that scales with the number of neutrons requested per cycle.
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