LA-UR-09-2440

Approved for public release; distribution is unlimited.

Title: | One-Group Analytic Test Problems for MCNP5 Perturbation |
| :--- |
| Verification (U) |

NATIONAL LABORATORY
\qquad
EST. 1943

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

This page intentionally left blank.

Los Alamos

NATIONAL LABORATORY

research note

Applied Physics Division Applied Science \& Methods Development
Group X-1, MS F699
Los Alamos, New Mexico 87545
505/667-7780
Fax: 505/665-6722

To/MS: Distribution
From/MS: Jeffrey A. Favorite / X-1-TA, MS P365
Phone/Email: 7-7941 / fave@lanl.gov
Symbol: X-1-RN(U)09-06 (LA-UR-09-2440)
Date: April 16, 2009

SUBJECT: One-Group Analytic Test Problems for MCNP5 Perturbation Verification (U)

Abstract

An analytic monoenergetic fixed-source problem is used to demonstrate a bug in the MCNP5 perturbation feature. The presence or absence of tallies, and the form of the associated FM cards, may lead to silent wrong answers in unrelated perturbed tallies. An analytic monoenergetic k_{∞} problem (derived previously) also demonstrates the bug. Input files are listed.

\section*{I. Introduction}

Recently, verification of the MCNP5 perturbation capability ${ }^{1}$ has been done using analytic formulas, direct perturbation calculations, and code-to-code comparisons. ${ }^{2,3}$ In this work, bugs have been found. In $k_{\text {eff }}$-eigenvalue problems, the perturbation capability sometimes gives nonzero $\Delta k_{\text {eff }}$ results for fission reactions that do not exist. ${ }^{3}$ In fixed-source and $k_{\text {eff }}{ }^{-}$ eigenvalue problems, the presence or absence of tallies can change the tally perturbation results. ${ }^{4}$

This paper presents analytic results for a monoenergetic fixed-source problem that may be useful in diagnosing the perturbed tally bug. The analytic k_{∞} problem of Ref. 2 is also used to demonstrate the perturbed tally bug as well as the nonzero $\Delta k_{\text {eff }}$ results for fission reactions that do not exist. The monoenergetic cross sections are in continuous-energy format.

The input files, cross-section files, and cross-section directory are listed in an attachment.

II. Fixed-Source Test Problem and Derivatives of the Quantity of Interest

Consider a monoenergetic isotropic point source at the center of a homogeneous sphere of radius R. The material in the sphere has neutron capture and fission, but fission is treated as capture (there is no fission multiplication), and there is no scattering. Thus there is no way to change a neutron's energy, and the cross sections can be specified for one discrete energy. The flux $\psi(r, \hat{\boldsymbol{\Omega}})$ in direction $\hat{\boldsymbol{\Omega}}$ at a point r in the sphere is

$$
\begin{equation*}
\psi(r, \hat{\boldsymbol{\Omega}})=\frac{S}{4 \pi} \frac{e^{-\Sigma_{t} r}}{r^{2}} \tag{1}
\end{equation*}
$$

where S is the source strength and Σ_{t} is the total interaction cross section, given by

$$
\begin{equation*}
\Sigma_{t}=\Sigma_{f}+\Sigma_{c} \tag{2}
\end{equation*}
$$

where Σ_{f} and Σ_{c} are the material macroscopic fission and capture cross sections, respectively (the capture cross section Σ_{c} is MCNP's absorption cross section).

Let the quantity of interest k be the total fission rate in the sphere:

$$
\begin{align*}
k & =\int_{4 \pi} d \hat{\boldsymbol{\Omega}} \int_{0}^{R} d r r^{2} \Sigma_{f} \psi(r, \hat{\boldsymbol{\Omega}}) \\
& =S \int_{0}^{R} d r \Sigma_{f} e^{-\Sigma_{t} r} \\
& =S \frac{\Sigma_{f}}{\Sigma_{t}}\left(1-e^{-\Sigma_{t} R}\right) \tag{3}
\end{align*}
$$

If the material is composed of two isotopes with atom densities N_{1} and N_{2} such that $\Sigma_{x}=N_{1} \sigma_{x, 1}+N_{2} \sigma_{x, 2}$, Eq. (3) becomes

$$
\begin{equation*}
k=S \frac{N_{1} \sigma_{f, 1}+N_{2} \sigma_{f, 2}}{N_{1}\left(\sigma_{f, 1}+\sigma_{c, 1}\right)+N_{2}\left(\sigma_{f, 2}+\sigma_{c, 2}\right)}\left(1-e^{-\left[N_{1}\left(\sigma_{f, 1}+\sigma_{c, 1}\right)+N_{2}\left(\sigma_{f, 2}+\sigma_{c, 2}\right)\right] R}\right) . \tag{4}
\end{equation*}
$$

For comparison with MCNP5 perturbation results, we will examine the first derivative of k with respect to each of the cross sections of material 1. The derivatives are

$$
\begin{gather*}
\frac{d k}{d \sigma_{t, 1}}=\left(\frac{N_{1}}{\sigma_{t, 1}}\right) \frac{d k}{d N_{1}}=S \frac{\left(\sigma_{f, 1}+\sigma_{c, 1}\right)}{\sigma_{t, 1}} \frac{N_{1} \Sigma_{f}}{\Sigma_{t}}\left\{\left(\frac{\sigma_{f, 1}}{\left(\sigma_{f, 1}+\sigma_{c, 1}\right) \Sigma_{f}}-\frac{1}{\Sigma_{t}}\right)\left(1-e^{-\Sigma_{t} R}\right)+R e^{-\Sigma_{t} R}\right\} \tag{5}\\
\frac{d k}{d \sigma_{f, 1}}=S \frac{N_{1} \Sigma_{f}}{\Sigma_{t}}\left\{\left(\frac{1}{\Sigma_{f}}-\frac{1}{\Sigma_{t}}\right)\left(1-e^{-\Sigma_{t} R}\right)+R e^{-\Sigma_{t} R}\right\} \tag{6}
\end{gather*}
$$

and

$$
\begin{equation*}
\frac{d k}{d \sigma_{c, 1}}=S \frac{N_{1} \Sigma_{f}}{\Sigma_{t}}\left\{-\frac{1}{\Sigma_{t}}\left(1-e^{-\Sigma_{t} R}\right)+R e^{-\Sigma_{t} R}\right\} . \tag{7}
\end{equation*}
$$

The first-order term of the Taylor series expansion of $\Delta k \equiv k\left(\sigma_{x}\right)-k\left(\sigma_{x, 0}\right)$, where $\sigma_{x, 0}$ is the reference value of the cross section, is

$$
\begin{equation*}
\Delta k_{1}=\left.\frac{d k}{d \sigma_{x}}\right|_{\sigma_{x}=\sigma_{x, 0}}\left(\sigma_{x}-\sigma_{x, 0}\right) \tag{8}
\end{equation*}
$$

The METHOD keyword on the PERT card controls the printing of Taylor terms; Δk_{1} is given using METHOD=2.

III. Numerical Results for the Fixed-Source Problem

The isotopes and data used in the fixed-source problem are listed in Table I. The cross sections are one-group macroscopic cross sections from Ref. 5, except that the scattering cross sections were set to zero and the total cross sections recomputed with Eq. (2). In this paper they are treated as microscopic cross sections and the isotopic densities in the homogeneous material are $N_{1}=0.6 \mathrm{at} / \mathrm{bn} \cdot \mathrm{cm}$ and $N_{2}=0.4 \mathrm{at} / \mathrm{bn} \cdot \mathrm{cm}$ so that the total material atom density $N_{1}+N_{2}$ is $1 \mathrm{at} / \mathrm{bn} \cdot \mathrm{cm}$. Nevertheless, we stress that N_{1} and N_{2} are atom densities, not atom fractions, and N_{1} will vary but N_{2} will not. These monoenergetic data were put into a continuous-energy format for MCNP using the MAKECE code provided by Bob Little (X-1-NAD). The source strength S was unity.

Table I. Isotopes Used in the Fixed-Source Problem

Index	v	$\sigma_{f}\left(\mathrm{~cm}^{2}\right)$	$\sigma_{c}\left(\mathrm{~cm}^{2}\right)$	$\sigma_{s}\left(\mathrm{~cm}^{2}\right)$	$\sigma_{t}\left(\mathrm{~cm}^{2}\right)$
1^{a}	3.24	0.081600	0.019584	0.	0.101184
2^{b}	2.70	0.065280	0.013056	0.	0.078336

${ }^{a} \mathrm{Pu}$-239 (a), Table 2, Ref. 5.
${ }^{\mathrm{b}}$ U-235 (a), Table 9, Ref. 5.
The analytic value of k is 0.251211 . The MCNP5 calculation used 4×10^{6} source neutrons. The NONU card was used to treat fission as capture. The MCNP5 value of k was $0.251261 \pm 0.02 \%$, having an error of 0.02% or 0.99 standard deviations. The cross sections of isotope 1 were each perturbed by $+30 \%$ independently. Two MCNP5 problems were run. One had a tally only for the quantity of interest k (i.e., the "real" tally) and the other also had a dummy tally with a number smaller than that of the real tally.

Results are shown in Table II. The analytic results were computed using Eq. (8) with the appropriate derivative from Eq. (5), (6), or (7).

Table II. Results for the First-Order Taylor Term Δk_{1}

			Difference	
	Analytic	PERT Estimate	Rel. to Analytic	Num. Std. Devs.
$\sigma_{t, 1}$	$4.05596 \mathrm{E}-02$	$4.05640 \mathrm{E}-02 \pm 0.02 \%$	0.011%	0.543
$\sigma_{f, 1}$	$4.22223 \mathrm{E}-02$	$-6.93207 \mathrm{E}-03 \pm 0.12 \%^{\left({ }^{(2)}\right.}$	-116.418	5909.05
		$4.22277 \mathrm{E}-02 \pm 0.02 \%^{\text {(b) }}$	0.013%	0.644
$\sigma_{c, 1}$	$-1.66266 \mathrm{E}-03$	$-1.66370 \mathrm{E}-03 \pm 0.12 \%$	0.062%	0.519

${ }^{(a)}$ Only one tally (for k).
${ }^{(b)}$ Also with a "dummy" tally with a number smaller than that of the k tally.
Clearly, the absence of the dummy tally leads to a serious error (a silent wrong answer) in the perturbation estimate of Δk_{1}. Also, when the dummy tally has a number greater than the real tally, the effect is the same as if the dummy tally were absent.

The FM card on the dummy tally is also important. When it is "fm004 ($\left.-1 \begin{array}{llllll}1 & -6 & -6 & -6 & -6 & -6\end{array}\right)$ " (reactions are multiplied), the effect is the same as if the dummy tally were absent (it leads to an error in $\left.\Delta k_{1}\right)$, but when it is "fm004 (-1 1 $-6:-6:-6:-6:-6$)" (reactions are added), the real tally perturbation is correct. In addition, if there are four reactions to add in the dummy tally, the effect is the same as if the dummy tally were absent, but with five, the real tally perturbation is correct.

IV. \boldsymbol{k}_{∞} Test Problem and Numerical Results

A monoenergetic analytic k_{∞} test problem was presented in Ref. 2. There it was shown that the MCNP5 perturbation estimates of the first- and second-order Taylor terms of Δk_{∞} were extremely accurate. But Ref. 2 did not look at perturbed tallies.

For completeness, the isotopes and data used in the k_{∞} problem are listed in Table III. As in Sec. II, they are treated as microscopic cross sections and the isotopic densities in the homogeneous material are $N_{1}=0.6 \mathrm{at} / \mathrm{bn} \cdot \mathrm{cm}$ and $N_{2}=0.4$ $\mathrm{at} / \mathrm{bn} \cdot \mathrm{cm}$ so that the total material atom density $N_{1}+N_{2}$ is $1 \mathrm{at} / \mathrm{bn} \cdot \mathrm{cm}$. Continuous-energy tables were created using the MAKECE code.

Table III. Isotopes Used in the k_{∞} Problem

Index	v	$\sigma_{f}\left(\mathrm{~cm}^{2}\right)$	$\sigma_{c}\left(\mathrm{~cm}^{2}\right)$	$\sigma_{s}\left(\mathrm{~cm}^{2}\right)$	$\sigma_{t}\left(\mathrm{~cm}^{2}\right)$
1^{a}	3.24	0.081600	0.019584	0.225216	0.32640
2^{b}	2.70	0.065280	0.013056	0.248064	0.32640

${ }^{\mathrm{a}} \mathrm{Pu}$-239 (a), Table 2, Ref. 5.
${ }^{\mathrm{b}}$ U-235 (a), Table 9, Ref. 5.
The analytic value of k_{∞} is 2.489362 (there is a typo in this value in Sec. III of Ref. 2). Using a $10-\mathrm{cm}$ sphere of the material with a reflecting boundary and 5000 neutrons per cycle, 30 settle cycles, 100 active cycles, and an initial guess of 1 , the MCNP5 track-length estimate of k_{∞} was 2.48990 ± 0.00111, having an error of 0.02% or 0.48 standard deviations. The cross sections of isotope 1 were each perturbed by $+30 \%$ independently. Two MCNP5 problems were run. One had a tally only for the quantity of interest k_{∞} (i.e., the "real" tally) and the other also had a dummy tally with a number smaller than that of the real tally.

Results are shown in Table IV. The analytic formulas are given in Ref. 2.

Table IV. Results for Δk_{∞} (Sum of Two Taylor Terms)					
Difference Analytic PERT Estimate Rel. to Analytic Num. Std. Devs.					
$\sigma_{t, 1}$	$1.96084 \mathrm{E}-02$	$1.91346 \mathrm{E}-02 \pm 6.67 \%$	2.416%	0.371	
$\sigma_{f, 1}$	$1.00668 \mathrm{E}-01$	$-3.33940 \mathrm{E}-01 \pm 0.16 \%{ }^{\text {(a) }}$	-431.723	813.41	
		$1.00659 \mathrm{E}-01 \pm 0.36 \%{ }^{\text {(b) }}$	-0.009%	0.026	
$\sigma_{c, 1}$	$-9.16860 \mathrm{E}-02$	$-9.17190 \mathrm{E}-02 \pm 0.19 \%$	0.036%	0.189	

${ }^{(a)}$ Only one tally (for k_{∞}).
${ }^{(b)}$ Also with a "dummy" tally with a number smaller than that of the k_{∞} tally.
The conclusions of the previous section regarding the order of the tallies and the contents of the dummy FM card applied to this problem also.

In the monoenergetic continuous-energy cross sections, fission is given as MT=18, and reactions 19, 20, 21, and 38 do not exist. However, for a perturbation of reactions $19,20,21$, and 38 , the $\Delta k_{\text {eff }}$ results are nonzero. This bug was reported in Ref. 3.

V. Summary and Conclusions

In this paper, an analytic monoenergetic fixed-source problem was used to demonstrate a bug in the MCNP5 perturbation feature. A previously derived analytic monoenergetic k_{∞} problem was also used. The bug is that perturbed tally results depend on the presence or absence of unrelated tallies and their FM cards. The k_{∞} problem also shows that the perturbation capability sometimes gives nonzero $\Delta k_{\text {eff }}$ results for fission reactions that do not exist.

Difficulties with the MCNP5 estimate of $k_{\text {eff }}$ sensitivities to scattering cross sections have been observed. ${ }^{2,3}$ The analytic fixed-source problem of this paper has no scattering, so it cannot be used to test perturbations of scattering cross sections. The analytic k_{∞} does not depend on scattering, ${ }^{2}$ so although it has non-zero scattering it too cannot be used to test perturbations of scattering cross sections. However, the bugs identified in this testing may be affecting the sensitivities to scattering. Work is continuing to figure out why the MCNP5 perturbation capability has trouble with scattering in $k_{\text {eff }}$ problems.

Extreme caution should be used with the MCNP5 perturbation capability until these bugs are fixed.

References

1. X-5 Monte Carlo Team, "MCNP-A General Monte Carlo N-Particle Transport Code, Version 5," Vol. I, LA-UR-031987, and Vol. II, LA-CP-03-0245, Los Alamos National Laboratory (April 24, 2003; Rev. October 3, 2005).
2. Jeffrey A. Favorite, "Comparison of MCNP5 Perturbation Estimates of k-Eigenvalue Sensitivities with Exact Results for One-Group and 30-Group Problems (U)," Research Note X-1-RN(U)09-03, LA-UR-09-0499, Los Alamos National Laboratory (January 26, 2009).
3. Jeffrey A. Favorite, "A Comparison of MCNP5 Perturbation Estimates of $k_{\text {eff }}$ Sensitivities with TSUNAMI-3D Results for a Homogeneous Thermal Sphere (U)," Research Note X-1-RN(U)09-05, LA-UR-09-1724, Los Alamos National Laboratory (March 17, 2009).
4. Jeffrey A. Favorite, email to Jeffrey S. Bull, Dec. 9, 2008 and March 30, 2009.
5. Avneet Sood, R. Arthur Forster, and D. Kent Parsons, "Analytical Benchmark Test Set For Criticality Code Verification," Progress in Nuclear Energy, 42, 1, 55-106 (2003).

JAF:jaf
Distribution:
M. P. Bernardin, X-DO, MS B218, mpb@lanl.gov
S. M. Sterbenz, X-1, MS F699, sterbenz@lanl.gov
J. S. Sarracino, X-1-TA, MS F663, jxs@lanl.gov
G. W. McKinney, D-5, MS K575, gwm@lanl.gov
F. B. Brown, X-3-MCC, MS A143, fbrown@lanl.gov
J. S. Bull, X-3-MCC, MS A143, jsbull@lanl.gov
J. T. Goorley, X-3-MCC, MS A143, jgoorley@lanl.gov
J. S. Hendricks, X-3-MCC, MS A143, jxh@lanl.gov
B. C. Kiedrowski, X-3-MCC, MS P365, bckiedro@lanl.gov
R. C. Little, X-1-NAD, MS F663, rcl@lanl.gov
D. K. Parsons, X-1-NAD, MS F663, dkp@lanl. gov
K. C. Bledsoe, X-1-TA, MS P365, kbledsoe@lanl.gov
J. A. Favorite, X-1-TA, MS P365, fave@lanl.gov

X-Archive, x-wellnitz@lanl.gov
X-DO File
X-1 File

ATTACHMENT

INPUT FILES AND CROSS-SECTION FILES

These files are available electronically from the author.

Input file for the fixed-source problem:

```
message: xsdir=xsdir1
tally pert bug, fixed-source, one-group.
10
10 so 4.
mode n
sdef pos=0. 0. 0.
nps 4e6
prdmp j 4e5 -1
nonu
m1 90240.43c 0.6 90240.63c 0.4
m2 90240.43c 0.78 90240.63c 0.4
C
c ----------------------------------------------------------------
c analytic results:
c tally 104, unpert: 0.251211
c pert201: 0.040560
c pert202: 0.042222
c pert203: -0.0016627
c pert204: 0.0 (there is no scattering in xs43 or xs63)
c pert205: 0.0 (because xs43 and xs63 have fission as mt=18)
c pert206: 0.042222
c
c mcnp5 results:
c pert202 is wrong. pert201, 203, 204, and 205 are right.
c when f4 is not included, pert206 is the same as pert202, as
c it should be, but they are both wrong. when f4 is included,
c pert206 is correct but pert202 is still wrong.
C
C -----------------------------------------------------------------
c fc004 dummy
c f004:n 10
c fm004 (-1 1 -6:-6:-6:-6:-6)
fc104 real, sigf
    f104:n 10
fm104 (-1 1 -6)
sd104 1.
pert201:n cell=10 rho=1.18 mat=2 rxn=1 method=2
pert202:n cell=10 rho=1.18 mat=2 rxn=18 method=2
pert203:n cell=10 rho=1.18 mat=2 rxn=102 method=2
pert204:n cell=10 rho=1.18 mat=2 rxn=22 method=2
pert205:n cell=10 rho=1.18 mat=2 rxn=19 20 21 38 method=2
pert206:n cell=10 rho=1.18 mat=2 rxn=-6 method=2
print
end of input
```

X-1-RN(U)09-06 (LA-UR-09-2440)

Input file for the k_{∞} problem:

```
message: xsdir=xsdir1
pu239a and u235a, unpert, kinfinity
10
*10 so 10.
mode n
kcode 5000 1. 30 130
prdmp j 100
sdef pos=0. 0. 0. rad=d2
si2 0. 10.
sp2 -21 2
m1 90240.40c 0.6 90240.60c 0.4
m2 90240.40c 0.78 90240.60c 0.4
c
C -------------------------------------------------------------
c analytic results:
c tally 54 and 64, unpert: 2.489362
c pert101: 0.01961
c pert102: 0.10067
c pert103: -0.09169
c pert104: 0.0 (there is no scattering in kinfinity)
c pert105: 0.0 (because xs40 and xs60 have fission as mt=18)
c pert106: 0.10067
C
c menp5 results:
c when f004 is not included:
c delta-k, pert 5, is wrong (non-zero), others are right.
c pert102 and pert 106 are wrong, both tallies.
c pert101, 103, 104, and }105\mathrm{ are right.
c when f004 is included:
c delta-k, pert 5, is wrong (non-zero), others are right.
c pert102, tally 54 is right, tally 64 is wrong.
c pert106, tally 54 is wrong, tally 64 is right.
c pert101, 103, 104, and 105 are right.
C
с -------------------------------------------------------------------
C
    fc004 dummy
        f004:n 10
    fm004 (-1 1 -6:-6:-6:-6:-6 )
c f054:n 10
c fm054 (-1 1 -7 18)
c sd054 1.
    f064:n 10
fm064 (-1 1 -7 -6)
sd064 }1
c
pert101:n cell=10 rho=1.18 mat=2 rxn=1 method=1
pert102:n cell=10 rho=1.18 mat=2 rxn=18 method=1
pert103:n cell=10 rho=1.18 mat=2 rxn=102 method=1
pert104:n cell=10 rho=1.18 mat=2 rxn=22 method=1
pert105:n cell=10 rho=1.18 mat=2 rxn=19 20 21 38 method=1
pert106:n cell=10 rho=1.18 mat=2 rxn=-6 method=1
c
print
end of input
```

X-1-RN(U)09-06 (LA-UR-09-2440)

Cross-section file xs40:

90240.40c 2.40000E+02 0.00000E+00 11/02/97
pu239 a, table 2, unperturbed

8290240	23	20	$0 \quad 0$
00	$0 \quad 0$	0 0	0 0
111	1821	2427	$30 \quad 42$
4545	470	0 0	0
0 0	00	082	$0 \quad 0$
0 0	$0 \quad 0$	0 0	0 0
$1.000000000000 \mathrm{E}-11$	100	3.264000000000E-01	3.264000000000E-01
$1.958400000000 \mathrm{E}-02$	$1.958400000000 \mathrm{E}-02$	0	0
0	0	2	0
2	1.000000000000E-11	100	3.240000000000E+00
$3.240000000000 \mathrm{E}+00$	18	22	102
180	1	5	19
1	0	1	5
9	1	2	8.160000000000E-02
8.160000000000E-02	1	2	$2.252160000000 \mathrm{E}-01$
$2.252160000000 \mathrm{E}-01$	1	2	$1.958400000000 \mathrm{E}-02$
$1.958400000000 \mathrm{E}-02$	0	0	0
1	19	0	1
10	0	2	1.000000000000E-11
100	1	1	0
2	1.000000000000E-11	100	2
1.000000000000E-11	100	1.000000000000E-11	100
0	1	28	\bigcirc
2	1.000000000000E-11	100	1
1	0	2	$1.000000000000 \mathrm{E}-11$
100	2	1.000000000000E-11	100
1. $000000000000 \mathrm{E}-11$	100		

Cross-section file xs60:

90240.60c 2.40000E+02 0.00000E+00 11/02/97 u235 a, table 9, unperturbed

8290240	23	20	$0 \quad 0$
0 0	0 0	0 0	0 0
111	1821	2427	$30 \quad 42$
4545	47 0	0 0	0
0 0	0 0	082	0 0
0 0	0 0	0	0 0
1. $000000000000 \mathrm{E}-11$	100	3.264000000000E-01	3.264000000000E-01
1.305600000000E-02	1.305600000000E-02	0	0
0	0	2	0
2	1.000000000000E-11	100	$2.700000000000 \mathrm{E}+00$
$2.700000000000 \mathrm{E}+00$	18	22	102
180	1	5	19
1	0	1	5
9	1	2	6.528000000000E-02
6.528000000000E-02	1	2	$2.480640000000 \mathrm{E}-01$
2.480640000000E-01	1	2	$1.305600000000 \mathrm{E}-02$
1.305600000000E-02	0	0	0
1	19	0	1
10	0	2	1.000000000000E-11
100	1	1	0
2	1.000000000000E-11	100	2
1.000000000000E-11	100	1.000000000000E-11	100
0	1	28	0
2	1.000000000000E-11	100	1
1	0	2	1.000000000000E-11
100	2	1.000000000000E-11	100
1.000000000000E-11	100		

X-I-RN(U)09-06 (LA-UR-09-2440)

Cross-section file xs43:

90240.43c 2.40000E+02 0.00000E+00 11/02/97
pu239 a, table 2, unperturbed, sigs=0

5490240	22	10	0
0 0	0 0	$0 \quad 0$	0 0
111	18 20	$22 \quad 24$	2634
$36 \quad 36$	37 0	0	00
00	00	054	0
0 0	0 0	0	0 0
1. $000000000000 \mathrm{E}-11$	100	1.011840000000E-01	1.011840000000E-01
$1.958400000000 \mathrm{E}-02$	$1.958400000000 \mathrm{E}-02$	0	0
0	0	2	0
2	1.000000000000E-11	100	$3.240000000000 \mathrm{E}+00$
$3.240000000000 \mathrm{E}+00$	18	102	180
5	19	0	1
5	1	2	8.160000000000E-02
8.160000000000E-02	1	2	$1.958400000000 \mathrm{E}-02$
$1.958400000000 \mathrm{E}-02$	0	0	1
0	1	10	0
2	1.000000000000E-11	100	1
1	0	2	1.000000000000E-11
100	2	1.000000000000E-11	100
1.000000000000E-11	100		

Cross-section file xs63:

90240.63c 2.40000E+02 0.00000E+00 11/02/97
u235 a, table 9, unperturbed, sigs=0

5490240	22	10	$0 \quad 0$
0 0	0 0	$0 \quad 0$	0 0
111	1820	2224	26 34
36	$37 \quad 0$	0 0	0 0
0	00	$0 \quad 54$	0 0
0 0	$0 \quad 0$	0 0	0 0
$1.000000000000 \mathrm{E}-11$	100	7.833600000000E-02	7.833600000000E-02
1.305600000000E-02	1.305600000000E-02	0	0
0	0	2	\bigcirc
2	1.000000000000E-11	100	2.700000000000E+00
$2.700000000000 \mathrm{E}+00$	18	102	180
5	19	0	1
5	1	2	6.528000000000E-02
6.528000000000E-02	1	2	$1.305600000000 \mathrm{E}-02$
$1.305600000000 \mathrm{E}-02$	0	0	1
0	1	10	0
2	1.000000000000E-11	100	1
1	0	2	1.000000000000E-11
100	2	1.000000000000E-11	100
1.000000000000E-11	100		

Cross-section directory file xsdir1:

```
atomic weight ratios
    90240 2.40000E+02
directory
90240.40c 2.40000E+02 xs40 0 1 1 82
90240.60c 2.40000E+02 xs60 0 1 1 82
90240.43c 2.40000E+02 xs43 0 1 1 54 0 0 0.00000E+00
90240.63c 2.40000E+02 xs63 0 1 1 54 0 0 0.00000E+00
```

