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INTRODUCTION

Recently [1], the sensitivity of the keff eigenvalue to 
the location of a material interface was derived from the 
standard adjoint-based sensitivity formula.  The equation 
derived in [1] applies only to uniform expansions or 
contractions of a surface, not to surface translations or 
rotations.  However, the equation is related to an earlier 
first-order estimate for the change in the  eigenvalue (  = 
1/keff) resulting from a more general change in the location 
of an interface [2].  It was suggested in [1] that the first-
order  equation of [2] might be used to calculate the keff
sensitivity to surface translations or rotations.  In this 
paper, this idea is applied to estimate the sensitivity of keff
to the translation of a sphere. 

ADJOINT-BASED SENSITIVITY ANALYSIS FOR 
INTERNAL INTERFACES 

The keff sensitivity to an interface location requires 
forward-adjoint inner products evaluated on the 
unperturbed interface multiplied groupwise by cross-
section differences across the interface.  First, define the 
macroscopic cross section difference for reaction x and 
energy group g across interface In as  
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where the region on the negative side of In has cross 
section g

nx,  and the region on the positive side has cross 

section g
nx 1, .  The positive side of In is in the direction of 

the outward normal at any point.  Define the following 
forward-adjoint inner products on the points rn on surface 
In:
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In Eqs. (2), (3), and (4), subscript 0 indicates the initial, 
unperturbed configuration; )ˆ,(0 rg  and )ˆ,(*

0 rg  are the 
forward and adjoint angular fluxes, respectively; )(,0 rg

m

and )(*
,,0 rg
IPm  are the usual forward flux moments and the 

inner product adjoint flux moments [1], respectively; and 
the other notation is standard.  Define the combination of 
group-dependent Ws as 
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and define the adjoint-weighted fission neutron 
production rate as 
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Using these equations, the “first-order eigenvalue 
change due to the interior boundary (interface) 
perturbation” [2] is  
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where )( nI rX  is “an arbitrary first-order change in the 
interface points” in the direction of (or opposite) the 
surface normal at each point.   

If every surface point that is displaced is displaced 
the same (signed) distance, then 0)( rrrX nnI  (a 
constant) on the surface to be perturbed and 0 elsewhere.  
Using this fact in Eq. (7) and identifying 0)( nr ,
the derivative of  with respect to the interface location is 
found to be 
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where it is understood that the integral is only taken on 
the perturbed part of the surface.  Equation (8) was 
derived previously [1] in a way that was independent of 
Ref. [2] and Eq. (7).  It was pointed out [1] that this 
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equation applies only to uniform expansions or 
contractions of a surface, and it was suggested that Eq. (7) 
might be useful for other types of surface perturbations, 
such as translations or rotations. 

APPLICATION TO THE TRANSLATION OF A 
SPHERE

Let the initial, unperturbed surface In be a one-
dimensional sphere of radius R, as shown in Fig. 1; then 
W(rn) is a constant on In and it can be removed from under 
the integral in Eq. (7).  Let r be the distance that the 
sphere, or some subset of its total surface, is translated.  
The displacement XI of each point on the sphere can be 
written as a function of :

.sincos)( 222 rRRrX I

The displacement XI is signed, as indicated by arrows in 
Fig. 1; it is positive for 0  < 1, 0 for  = 1 = 
acos(½ r/R), and negative for 1 < .  Equation (7) 
becomes, in spherical coordinates,  
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where a and b specify the portion of the range of  over 
which the perturbation occurs.  The integral has a closed-
form analytic solution.  The final equation for the change 
in  due to the translation of that portion of a spherical 
surface between a and b a distance r in the  = 0 
direction is 
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The limit of Eq. (11) is 0 as r goes to 0.  The 
difficult term is the logarithm divided by r.  When the 
term in brackets is expanded as the difference between 
evaluations at b and a, the difference in logarithms 
becomes the logarithm of a ratio that equals one when r
is 0, allowing the application of L’Hôpital’s rule. 

NUMERICAL RESULTS FOR PERTURBATIONS 

We consider a two-region sphere.  The inner region 
has a radius of 6.12745 cm and is pure 235U at a density of 
16.9 g/cm3.  The outer region has thickness 3.063725 cm 
and is water at a density of 1 g/cm3.  Scattering is 
isotropic.  The keff calculated using PARTISN [3] with S64
quadrature and a 30-group library, slightly modified from 
MENDF6 to correct non-balancing absorption cross 
sections, was 0.99972692.  The value calculated using 
MCNP [4] and the same 30-group library was 0.999682 ± 
0.0000130.  This comparison is important because W and 
mf [Eqs. (5) and (6)] were calculated using PARTISN for 
the unperturbed one-dimensional sphere, but the exact 
perturbed values of keff, which require at least two-
dimensional transport, were computed using MCNP (for 
this reason, the uncertainty is large when keff is small).  
MCNP was used instead of PARTISN in order to avoid 
orthogonal meshing of the curved surfaces. 
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Fig. 1.  The translation of a sphere a distance r. 1 = 
acos(½ r/R).
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Fig. 2.  The change in keff as a function of the translation of the 
235U sphere.  1  error bars are shown in all figures. 
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First, consider the effect on keff when the entire 235U
sphere is translated.  Results are shown in Fig. 2.  The 
estimate of Eq. (7) gives the right shape but is too small 
(in magnitude) by ~ 20% over the range of perturbations.  

The perturbation formula of Eq. (11) [derived from 
Eq. (7)] can be used to treat the translation of the entire 
sphere as two separate perturbations, one a “bulge” for 
( a, b) = (0, 1), and the other a “collapse” for ( a, b) = 
( 1, ).  The bulge is the portion of the dotted sphere 
corresponding to the outward arrows in Fig. 1, and the 
collapse is the portion of the dotted sphere corresponding 
to the inward arrows.  In first-order perturbation theory, 
the estimated effect of the translation of the entire sphere, 
( a, b) = (0, ), is the sum of these two components. 

Results for the bulge are shown in Fig. 3 and results 
for the collapse are shown in Fig. 4.  The perturbation 
theory is much more accurate for each of the pieces than 
it is for the whole, being in error by only ~ 2% for small 
perturbations and ~ 10% for large perturbations.   

In a similar problem in which there was a gap 
between the fuel and the reflector and translation of the 
fuel did not perturb the reflector, the agreement of the 
perturbation results for the bulge and the collapse was as 
good as those of Figs. 3 and 4, but the agreement of the 
perturbation result for the translation of the entire fuel 
sphere was much worse, having the wrong sign. 

What hurts the perturbation result for the entire 
sphere translation (Fig. 2)?  Clearly, first-order 
perturbation theory is sufficient for the separate 
components but not for the entire sphere.  The first-order 
estimate is the sum of the components, but the exact 
perturbed result is not the sum because the perturbations 
interact, an effect that the first-order theory misses.   

NUMERICAL RESULTS FOR SENSITIVITIES 

For sensitivity analysis, the derivative of keff with 
respect to a surface translation by bulging or collapsing 
may be estimated as recently suggested [1].  For example, 
fitting a quadratic polynomial through the first four points 
of Figs. 3 and 4 results in perturbation estimates of the 
derivative at r = 0 of +/–0.01584 for bulging/collapsing, 
respectively.  Fitting the exact points results in derivatives 
of 0.01547 and –0.01599, respectively, so the perturbation 
estimates of the sensitivity are in error by ~ 2%.  For the 
translation of the entire sphere, the derivative of keff with 
respect to r at r = 0 clearly must be 0 due to symmetry, 
and the estimate shows that behavior (Fig. 2). 

SUMMARY AND CONCLUSIONS 

The translation of a body has a positive component 
(the bulging in the direction of the translation, in “front” 
of the body) and a negative component (the collapsing 
“behind”).  In two related spherical test problems, 
interface perturbation theory worked very well for each 
component separately, but it did not work well for the 
total translation.  The theory has been shown to be very 
accurate for uniform spherical and cylindrical 
contractions and expansions [1].  More work needs to be 
done to understand the accuracy limits of the theory.   
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Fig. 3.  The change in keff as a function of the “bulging” 
displacement of the right side of the 235U sphere.   
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Fig. 4.  The change in keff as a function of the “collapsing” 
displacement of the left side of the 235U sphere.   
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