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INTRODUCTION

Ray analysis techniques are standard for computing 
the uncollided component of a detector response to 
radiation [1].  Monte Carlo next-event or point detector 
tallies [2], when scoring uncollided fluxes, are stochastic 
ray-tracing methods.  Uncollided adjoint flux integrals are 
sometimes easier to obtain more accurately than the 
equivalent uncollided point-detector tallies.  In addition, 
uncollided adjoint flux integrals and forward-adjoint inner 
product integrals in volumes and on surfaces are 
associated with the derivatives of uncollided detector 
fluxes and are useful for sensitivity studies and 
optimization problems.   

The forms that these integrals take in general three-
dimensional geometries were recently presented [3].  
These forms have been specialized to one-dimensional 
spherical and two-dimensional cylindrical (r-z)
geometries and evaluated deterministically.  For arbitrary 
three-dimensional geometries, however, it makes sense to 
evaluate them stochastically.   

This paper describes the evaluation of these useful 
integrals using a patch for MCNP5 [2].  The terminology 
in this paper is necessarily specific to MCNP, but the 
integrals derived in [3] can be implemented in any 
neutral-particle Monte Carlo code that can use 
continuous- or discrete-energy cross sections. 

UNCOLLIDED FLUX INTEGRALS 

The angular flux )ˆ,(r  of uncollided neutrons or 
gamma rays is the solution to the monoenergetic, 
continuous-angle transport equation 

),()ˆ,()()ˆ,(ˆ rqrrr t

and the uncollided adjoint flux )ˆ,(* r  is given by 

.)ˆ,()ˆ,()()ˆ,(ˆ ** rrrr dt

The notation is standard and vacuum boundary conditions 
are assumed.  If the quantity of interest is the scalar flux 
at a point rd, the adjoint source (detector response 
function) is ).()ˆ,( dd rrr

It can easily be shown that the quantity of interest 
M = ,d  (the inner product notation indicates an 

integral over all phase space; i.e., angle and volume) is 
equal to the adjoint integral q,* .  For many physically 
realizable situations, the source density is isotropic and 
uniformly distributed by material, and q,*  can be 
calculated as the sum of products of cell-integrated scalar 
adjoint fluxes and cell-dependent source densities.  In 
many cases, q,*  may be easier to obtain more 

accurately than ,d .
Uncollided forward-adjoint integrals are useful in 

sensitivity analysis.  For example, the derivative of M
with respect to the mass density of cell k, k, is [4] 
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where subscript Vk indicates a volume integral in cell k.
The derivative of M with respect to the location of 
interface k is [5] 
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(if the shape of the interface does not change), where 
subscript Sk indicates an integral on surface k and X is 
the difference in quantity X across the surface.   

The derivations of the uncollided adjoint integrals 
and forward-adjoint inner products have been given [3].   

USING MCNP TO COMPUTE INNER PRODUCTS 
OF UNCOLLIDED FLUXES 

The basic idea of using MCNP to compute the inner 
products of uncollided fluxes is to set up the problem as 
an adjoint one in the sense that the source is a point 
source located at the detector point rd.  However, the 
MGOPT card is not used as it would be in a real adjoint 
calculation.  Flux tallies are made in volumes (F4) and on 
surfaces (F2) as usual.   

NOTRN Switch 

In the normal version of MCNP5, the NOTRN card 
causes the code to do only uncollided point detector 
tallies and no normal transport (i.e., no scattering).  In the 
patch, a blank NOTRN card or “NOTRN 1” has the same 
effect.  Using “NOTRN 2” causes the patched MCNP to 

(1)

(2)

(3)

(4)

633Computational Resources for Radiation Modeling



do only uncollided flux integrals as described in this 
paper.   

LINES Card 

The source densities are input on a new data card, 
LINES.  The LINES card has G × N entries (where G is 
the number of discrete energy lines and N the number of 
cells in the problem) consisting of the volumetric line 
source densities g

nq  (in particles/cm3·s) for cell n and line 
index g.  The format of the LINES card is 

LINES G
N

G
NN qqqqqq 1
22

1
11

1

The code calculates G using the number of entries.   

Source

The source is a point source at the detector location 
rd; its angular distribution is )ˆ(d .  In MCNP the 
starting direction is chosen by sampling the polar angle 
cosine cos  rather than the polar angle  and by sampling 
the azimuthal angle  uniformly in 2 ; thus the weight of 
each history must be 

2
cos1)ˆ(sin
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if the quantity of interest is the scalar flux at point rd. max
is an angle chosen, along with a line r0 from rd to an 
arbitrary fixed point in the geometry, to completely cover 
the geometry with rays [6].  The line r0 is input as the 
SDEF parameter VEC.  The value of cos max is input as 
the lower limit on the SP distribution for the SDEF 
parameter DIR [assuming that r0 (i.e., VEC) actually 
points into the system].   

The line energies Eg, g = 1,…,G, are input as a 
discrete SDEF distribution as usual.  The order of the 
lines on the SDEF distribution must match their order on 
the LINES card, and the code has no way of checking for 
consistency.  If the number of lines in the SDEF source 
does not match the number from the LINES card, the 
number from SDEF is used. 

If there are G lines uniformly sampled, then the 
weight sourced into each line per source particle would be 
wgt from Eq. (5) divided by G.  Thus the weight needs to 
be multiplied by G.  This is done automatically when the 
particle is started, so the balance tables reflect the 
modified weight. 

Tallies

Tallies are done in a TALLYX subroutine.  The 
quantities to compute are controlled by entries on the FU 

card as shown in Table I.  The NT entry should be used 
on the FU cards since the sum of these integrals is not 
meaningful [the difference is normally required, as in Eqs. 
(3) and (4)].  Tally divisor SD entries of 1 should 
normally be used for all cells and surfaces; otherwise, 
volume and surface averages will be computed, which are 
not normally useful.  [On the other hand, some 
applications may call for a different tally divisor, such as 
the density in Eq. (3).] 

The uncollided flux surface integrals of Eq. (4) and 
Table I suffer from the same difficulty that plagues 
normal Monte Carlo surface flux tallies [2, 7].  For rays 
that graze the surface, the integrand blows up, so a lower 
limit has to be placed on the cosine of the grazing angle, 
reducing the accuracy of the numerical integral.   

VERIFICATION 

The ability to compute uncollided inner product and 
adjoint-only integrals in volumes and on surfaces was 
verified [3] by comparing stochastic results with 
deterministic ones (including one semi-analytic problem) 
for a one-dimensional spherical and a two-dimensional  
(r-z) cylindrical problem.  Here, derivatives with respect 
to interface locations [Eq. (4)] are compared with 
deterministic values for a sphere. 

The sphere was made of seven shells.  Starting from 
the inside, the material and outer radius of each shell 
were: void, 20 cm; high-enriched uranium (HEU), 25 cm; 
void, 30 cm; HEU, 35 cm; void, 40 cm; HEU, 45 cm; 
27Al, 50 cm.  The HEU and 27Al mass densities were 4 
and 2.7 g/cm3, respectively. 

(5)

TABLE I.  FU Entries for Uncollided Adjoint and 
Forward-Adjoint Flux Integrals. 
Type of Tally FU Entry Integral 

Volume (F4) 1 
kVkq,*

 2 
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Surface (F2) 1 
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Results are shown in Table II.  The deterministic 
spherical surface integrals do not require the cosine 
division that causes integrals to blow up and so are more 
exact [3], but the difference is calculated relative to the 
average; i.e., 

.
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Diff.
2
1

detsto

detsto

RR
RR

A lower cosine limit of 0.0001 and a substitute cosine 
divisor of 0.00005 were used in the MCNP patch, 
replacing the standard MCNP values of 0.10 and 0.05.  
The stochastic results are generally well within one 
standard deviation of the deterministic results.
(Interestingly, when the standard MCNP minimum cosine 
and divisor were used, surfaces 2 and 4 had differences of 
–14.3% and –45.9%, respectively.) 

For this spherical problem, the deterministic 
integrator took less than ½ s on one processor, but the 
MCNP5 calculation took ~100 minutes on 32 processors 
to reach the precision shown on Table II.  A spherical test 
problem was chosen because the deterministic values 
were available.  As usual, the Monte Carlo method would 
be most useful for complicated three-dimensional 
problems for which deterministic results are not available. 

CONCLUSIONS 

A patch to MCNP5 has been developed to compute 
uncollided adjoint flux integrals and forward-adjoint flux 
product integrals on surfaces and in volumes for arbitrary 
three-dimensional geometries.  The adjoint integral 
sometimes offers a more accurate estimate of the quantity 
of interest than a direct calculation.  In addition, these 
quantities are useful for sensitivity and perturbation 
applications.   
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TABLE II.  M/ rk for the Spherical Test Problem. 
k Deterministic Stochastica Diff. 
1 –1.14606 × 10–2 –1.14620 × 10–2 ± 0.01% 0.012%
2 2.16342 × 10–2 2.16479 × 10–2 ± 0.12% 0.063%
3 –3.79882 × 10–2 –3.79892 × 10–2 ± 0.01% 0.003%
4 8.40208 × 10–1 8.37366 × 10–1 ± 0.21% –0.339%
5 –2.32152 × 100 –2.32148 × 100 ± 0.01% –0.002%
6 9.79807 × 103 9.79814 × 103 ± 0.00% 0.001%
7 –8.25002 × 103 –8.25013 × 103 ± 0.00% 0.001%
a 1  relative errors are given. 
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