Monte Carlo Burnup Interactive Tutorial

Michael L. Fensin, John S. Hendricks, Gregg W. McKinney
Los Alamos National Laboratory
Los Alamos, NM,87545, USA

Overview

- Introduction
- A simple criticality calculation
- Depletion theory
- Setup sample burn cases
- Fixed passive source calculation
- Further considerations

User Base

- ~2500 users world wide
- Provide 6-8 workshops per year (4-6 US, ~2 international)
- 150 workshop participants per year
- Access to RSICC/NEA released versions only
- http://www-rsicc.ornl.gov/ (C00730) 2.5.0
- http://www.nea.fr/html/dbprog/ (CCC-0730) 2.5.0
- Limited access to MCNPX web site
- http://mcnpx.lanl.gov (some documentation)
- ~2000 registered Beta Testers
- Full access to MCNPX web site
- Access to intermediate versions
- Increased user support

History of MCNPX

- Monte Carlo radiation transport code
- Extends MCNP4C to virtually all particles and energies
- 35 particles (n,p,e, 5 leptons, 11 baryons, 11 mesons, 5 ions)
- Continuous energy (roughly 0-100 GeV)
- Data libraries below ~ 150 MeV (n,p,e,h) \& models otherwise
- General 3-D geometry
- 1st \& 2nd degree surfaces, tori, 10 macrobodies, lattices
- General sources and tallies
- Interdependent source variables, 7 tally types, many modifiers
- Supported on virtually all computer platforms
- Unix, Linux, Windows, OS X (parallel with MPI)

History of MCNPX

History of MCNPX

Set up to run MCNPX

- Right click on dos icon
- Click properties
- In the "Start In" box type the path of where you would like the prompt to start i.e. C:IMCNPX or C:\MCNPXIclass
- Open dos window
- Type PATH
- Look to see if a path exists to the MCNPX.exe executable
- If not, type SET PATH=\%PATH\%;C:\MCNPXIBIN
- Type DATAPATH
- Look to see if the variable datapath exists and points to the directory containing MCNPX/MCNP5 cross sections
- If not, type SET datapath=C:\MCNPXIdata

Changing XSDIR

- If you would like to use your own XSDIR you will need the $\begin{gathered}\text { atomic weight ratios } \\ 00011.000000 \\ 00011.000000\end{gathered}$ updated atomic weight ratio data
- Temporarily copy your XSDIR file to XSDIROLD
- Rename your XSDIR to XSDIR1
- Download the distributed XSDIR file and open it
- Highlight all information from the top till you reach "directory" and copy it into XSDIR1
20003.9682176020032 .9901201520043 .96821894
30006.8813118830065 .9634494530076 .95573316
40008.9347631040076 .9566504140098 .93476310
96000244.87800096241238 .98684496242239 .97942696243240 .973367
96244241.96612896245242 .96025496246243 .953380
96247244.94789296248245 .941280
$97000244.878000 \quad 97245242.96111697246243 .95481797247244 .947844$
97248245.94201197249246 .935305
$98000248.844000 \quad 98249246.93517398250247 .92812298251248 .922684$ 98252249.916116
99000251.81800099240238 .00661199241238 .99776599242239 .990202
99243240.98154499244241 .97428099245242 .966035 99246243.95907899247244 .95116799248245 .944369 99249246.93671799250247 .93035799251248 .923084 99252249.91745799253250 .91069699254251 .905276 99255252.89891799256253 .89362399257254 .887399
100000254.792000

03/10/2003
directory

- DELETE XSDIR

- RENAME XSDIR1 to XSDIR

NATIONAL LABORATORY LA-UR-09-02051

Problem Execution

- mcnpx i=filename $\mathrm{n}=$ =output_family options
- output_family:
- OUTP, RUNTPE, MCTAL, ...
- or NAMEo, NAMEr, NAMEm , ...
- Options:
- opxrz
- $\mathbf{p}=$ geometry plot
- ixz = cross section plot
$-\quad z=$ tally plot
- ixr = run

Input File

Title Card

Cell cards

cel\#\# mat den --- surfaces --- data
Blank
Surface cards
sur\# type --- parameters ---
Blank
Data cards
everything else (source, tally, physics, variance, ...)
Blank

NATIONAL LABORATORY

Input File Formatting

- Comments
- C_ in column 1
- \$ starts (after input stuff)
- Capitalization irrelevant
- 80-column limit
- Continuation
- $1^{\text {st }} 5$ columns blank
- or, following card with \&

Ex1 Input File

Open by typing: notepad Ex1

KCODE (Source) Card

KCODE A B C D E F G

A = Source size per cycle 1000
$B=$ initial guess for $k_{\text {eff }}$ 1.0
C = \# settle cycles 15
D = total cycles to run 50$E=$ storage for new source points (use default)F = tally normalization method (use default)
0 = by weight (default) 1 = by number of particles
$\mathbf{G}=$ storage for plotting $\mathbf{k}_{\text {eff }}$ values (use default)
KSRC $\mathrm{x}_{1} \mathrm{y}_{1} \mathrm{z}_{1} \mathrm{x}_{2} \mathrm{y}_{2} \mathrm{z}_{2} \ldots$ or,

Run KCODE Calculation

- Rename Ex1 to Ex1a
- Add KCODE card
- 1000 particles per cycle
$-k_{\text {eff }}=1$ for the initial guess
- 15 settle cycles
- 50 total cycles
- Add KSRC card
- Place a KSRC in the middle of the fuel pin
- Run the case \rightarrow mcnpx $i=e x 1 a n=e x 1 a$.

Deterministic Method

LA-UR-09-02051
Operated by the Los Alamos National Security, LLC for the DOE/NNSA
NAS

The Monte Carlo Method

- The Monte Carlo method uses probability theory to model a system stochastically
- Random sampling of events
$e^{-\Sigma_{t} x} d x=$ Probability that a neutron moves a distance dx without any interaction
$\Sigma_{t} e^{-\Sigma_{t} x} d x=$ Probability that a neutron has its first interaction in $\mathrm{dx}=\mathrm{p}(\mathrm{x}) \mathrm{dx}$
- Probability density function (PDF) \rightarrow A real-valued function whose integral over any set gives the probability that a random variable has values in the set

$$
\text { PDF }=f(x) \rightarrow \Sigma_{t} e^{-\Sigma_{t}(E) x} d x=p(x) d x \rightarrow \int_{a}^{b} f(x) d x=P(a \leq x \leq b)
$$

- Cumulative distribution function (CDF) \rightarrow The probability that the variable takes a value less than or equal to x^{\prime}

$$
C D F=\int_{0}^{x^{\prime}} p(x) d x=1-e^{-\Sigma_{t}(E) x}=\xi \rightarrow x=-\frac{\ln (1-\xi)}{\Sigma_{t}(E)} \Rightarrow-\frac{\ln (\xi)}{\Sigma_{t}(E)} \Rightarrow-\frac{\ln (\xi)}{\sum_{i} N_{i} \sigma_{i, t}(E)}
$$

What is Depletion Analysis?

- During reactor operation the isotopic concentration of the reactor material (fuel/coolant/clad/shielding) will change as isotopes consume neutrons and undergo various nuclear reactions
- (n, f), ($n, a l p h a$), ($n, b e t a),(n, p)$, etc.
- Changes in the isotopic concentration over time will result in changes in reactor parameters
- Flux/ Core Reactivity/ Power Distribution/ SDM/ Poison Concentration
- These reactor parameters limit reactor operation characteristics therefore it is necessary to accurately calculate these values at many time steps
- The study of the interaction of these reactor parameters with the timedependant production/depletion of nuclei is know as depletion analysis (J. J. Duderstadt and L. J. Hamilton, Nuclear Reactor Analysis, (1976).)

Depletion Equation

$$
\begin{gathered}
\frac{d N_{m}(r, t)}{d t}=-N_{m}(r, t) \beta_{m}+\bar{Y}_{m}+\sum_{k \neq m} N_{k}(r, t) \gamma_{k \rightarrow m} \\
\beta_{m}=\lambda_{m}+\sum_{j} \int \sigma_{m, j}(E) \Phi(r, E, t) d E \\
\gamma_{k \rightarrow m}=\sum_{m \neq k} L_{k m} \lambda_{k}+\sum_{m \neq k} \sum_{j} \int Y_{k m, j}(E) \sigma_{k, j}(E) \Phi(r, E, t) d E
\end{gathered}
$$

Matrix Exponential Method

- Formulas for solving normal systems of equations are identical to solving first order differential equations with constant coefficients
- Large amount of memory required to store the matrix of coefficients
- User must choose an acceptable subset of nuclides to follow exactly
- Very large and very small eigenvalues depending upon the half-lives
- Short half-life isotopes must be decayed analytically
- Relative to time step size
- Numerical precision depends upon the size of time step

$$
\begin{aligned}
& \frac{d}{d t} n_{m}(r, t)=\sum_{k} B_{m k}(r, t) n_{k}(r, t)
\end{aligned} \quad B_{m k}(r, t)=\left\{\begin{array}{ll}
L_{k m} \lambda_{k}+\sum_{r} Y_{k m, r} \sigma_{k, r} \Phi(r, t) & m \neq k \\
-\lambda_{m}-\sum_{r} \sigma_{m, r} \Phi(r, t) & m=k
\end{array}\right\}
$$

CINDER90 Method

- The set of coupled differential equations is reduced to a set of linear differential equations
- Markov Chains (Andrei Markov) \rightarrow given the present state, future states are independent of the past states
- Linear chains are created for each isotope transmutation path

$$
\frac{d \mathrm{~N}_{i}}{d t}=\bar{Y}_{i}+\mathrm{N}_{i-1}(t) \gamma_{i-1}-\mathrm{N}_{i}(t) \beta_{i}
$$

- The solutions of each linear chain determines a partial nuclide density

$$
\mathrm{N}_{n}(t)=\sum_{m=1}^{n} \prod_{k=m}^{n-1} \gamma_{k}\left\{\bar{Y}_{m}\left[\frac{1}{\prod_{l=m}^{n} \beta_{l}}-\sum_{j=m}^{n} \frac{e^{-\beta_{i t}}}{\prod_{i=m, \neq j}^{n}\left(\beta_{i}-\beta_{j}\right)}\right]+\mathrm{N}_{m}^{0} \sum_{j=m}^{n} \frac{e^{-\beta_{j i}}}{\prod_{i=m, \neq j}^{n}\left(\beta_{i}-\beta_{j}\right)}\right\}
$$

CINDER90 Method

- Partial nuclide densities are then summed to determine the total nuclide density

$$
N_{m}=\sum_{j=1}^{M} \mathrm{~N}_{i, j}
$$

- Each path for each nuclide defined by available data is followed until tests of significance are failed

$$
P_{m}(t)=\int_{0}^{t} N_{m}\left(t^{\prime}\right) \beta_{m} d t^{\prime}
$$

- 3400 Isotopes, 1325 Fission Products, Yield sets for over 30 actinides
- ORIGEN2 1700 isotopes, 850 Fission Products, 8 yields
- ORIGEN-S 1946 isotopes, 1119 Fission Products, 30 yield sets

Necessity for Linked Approach

- Reaction rates are spatially dependent
- Spectrum changes evolve due to buildup/depletion of highly absorbing isotope
- Since it is assumed that considerable changes in the isotope concentration are required in order to significantly alter the neutron energy spectrum, the depletion equation may be considered separable in time and space
- Steady-state reaction rate calculator linked to temporal nuclide inventory calculator

NATIONAL LABORATORY

Simple Interface

BURN TIME=T1,T2,T3,... PFRAC=F1,F2,F3,... POWER=P
 MAT $= \pm$ M $1, \pm \mathrm{M} 2, \pm \mathrm{M} 3, \ldots$ OMIT=J1,N1,I11,I12,..., J2,N2,I21,I22,...
 AFMIN=A1 A2
 BOPT=B1, B2, B3
 MATMOD=
 MATVOL= V1, V2, V3

```
C Control Cards
vol 192.287
kcode 5000 1.0 5 300
ksrc 0. }65665\mathrm{ O. }65665 150.
BURN TI ME=0. 645, 40, 100, 140, 200, 250
    MAT=1
    POMER=0. 066956
    PFRAC=1. 0, 1. 0, 1. 0, 1. 0, 1. 0, 1. O
    OM T=1, 8, 6014, 7016, 8018, 9018, 90234, 91232, 95240, 95244
    BOPT=1. O, - }1
C Material Cards
mi
            8016. 60c 4.5854e-2
            92235.60c 1.4456e-4
            92238. 60c 1. 9939e-2
            94238. 60c 1. 1467e-4
            94239.60c 1.0285e-3
            94240.60c 7. 9657e-4
                            94241.60c 3. 3997e-4
                            94242. 60c 5. 6388e-4
```


Isotope Tracking

- CINDER90 contains transmutation path data for 3400 isotopes
- The current ENDF/B VII library only contains actual transport cross sections for 390 isotopes
- To save computation time and reduce the influx of memory-prohibitive information, MCNPX only tracks those isotopes accounted for from the following processes:
- Listing the isotope on a material card
- Selecting an isotope from a preset fission product tier
- Producing the isotope from the Isotope Generator Algorithm
- CINDER90 still tracks transmutation path data for the other isotopes not containing ENDF transport data

Fission Product Tiers

- Certain Monte Carlo linked depletion codes force the user to input every fission product to be tracked during the depletion process
- MCNPX offers the user preset fission product "tier"s
- Eliminates the task of inputting every fission product to be tracked
- MCNPX offers three fission product tiers
- Tier 1. (default) Zr-93, Mo-95, Tc-99, Ru-101, Xe-131, Cs-133, Cs-137, Ba-138, Pr-141, Nd-143, Nd-145
- Tier 2. Isotopes contained in the fission product array that are included in the current cross section library file (XSDIR) for MCNPX version 2.6.0
- Tier 3. All isotopes contained in the fission product array

BURN CARD

BURN TIME=T1,T2,T3,...
PFRAC=F1,F2,F3,...
POWER=P

MAT=M1,M2,M3,...
OMIT=J1,N1,I11,I12,...,J2,N2,I21,I22,...
AFMIN=A1 A2
$B O P T=B 1, B 2, B 3$
$\mathrm{Ti}=\quad$ Duration of burn step i (days). Default is one time step of one day.
$\mathrm{Fi}=\quad$ Fraction of POWER. Default is 100% POWER (1.0)
$\mathrm{P}=\quad$ Power level (MW). Default is 1.0 MW .
$\mathrm{Mi}=\quad$ List of material numbers to include in the burn. If the BURN card is utilized then a burn material MUST be specified.
$\mathrm{Ji}=\quad$ ith material for which to omit nuclides li1, li2, etc.
$\mathrm{Ni}=\quad$ Number of omitted nuclides listed for the ith material.
li1, li2,..$=1 \mathrm{st}$, 2nd, etc. omitted nuclide for the ith material.

Practice

BURN TIME=T1,T2,T3,... PFRAC=F1,F2,F3,... POWER=P
MAT=M1,M2,M3,...
OMIT=J1,N1,I11,I12,...,J2,N2,I21,I22,...
AFMIN=A1 A2
$\mathrm{BOPT}=\mathrm{B} 1, \mathrm{~B} 2, \mathrm{~B} 3$

- Burn material 1
- At 1 MW
- For 100 days and then 30 more days
- Burn at 30\% power for the last 30 days
- And omit 92235 and 92238 from material 1

Los Alamos
NATIONAL LABORATORY
LA-UR-09-02051
Operated by the Los Alamos National Security, LLC for the DOE/NNSA

Practice

BURN TIME= 100,30
PFRAC=1.0,0.3
POWER=1
MAT=1
OMIT=1,2,92235,92238

NATIONAL LABORATORY

BURN CARD cont.

A1 = atom fraction minimum below which the atom fraction is set to zero. Default is $1.0 \mathrm{e}-10$.
$\mathrm{A} 2=$ decay chain convergence criteria. Default 1e-10.
$B 1=\quad Q$ value multiplier. Default is 1.0.
$B 2=+/-m n$
$m=0 / 1 / 2=$ fission product tiers $1 / 2 / 3$
$n=1 / 2 / 3 / 4=$ print output by decreasing mass/decreasing activity/decreasing specific activity/increasing ZAID
If $m n$ " + " only print output at the end of the entire run
If mn "-" print output at the end each kcode run
Example: B2 = 14 tier 2, print by increasing zaid printing output only at the end of the entire run

B3 $=$ Models option
-1 Fatal error if models are used in the problem (DEFAULT)
1 Runs with models

Practice

BURN TIME=T1,T2,T3,...
PFRAC=F1,F2,F3,...
POWER=P
MAT $=\mathrm{M} 1, \mathrm{M} 2, \mathrm{M} 3, \ldots$
OMIT=J1,N1,I11,I12,...,J2,N2,I21,I22,...
AFMIN=A
BOPT=B1,B2,B3

- Burn Material 1 At 1 MW
- For 100 Days and then 30 more days
- Burn at 30\% power for the last 30 days
- Q value multiplier 1.1
- Fission Product tier 2 ordering by zaid
- Print output only at the end of the run
- Using Cross section models

Los Alamos
NATIONAL LABORATORY

Practice

BURN TIME= 100,30 PFRAC=1.0,0.3 POWER=1 MAT=1 BOPT=1.1 141.0

NATIONAL LABORATORY
LA-UR-09-02051
Operated by the Los Alamos National Security, LLC for the DOE/NNSA

Stipulations for Each Burn Case

- For each case
- Power level of 70 kW
- 2 time steps (time durations 50, 500 days)
- Q value multiplier $=1.0$
- AFMIN =1e-10 1e-4
- Run all cases using only 100 particles per cycle
- Place BURN card below KCODE cards and above material card

KCODE 1001.01550
KSRC 00182.5
BURN TIME= 50500
MAT=
POWER= 0.07
PFRAC=1.0 1.0
AFMIN $=1 \mathrm{e}-101 \mathrm{e}-4$
$\mathrm{BOPT}=1.0 \mathrm{~B} 2 \mathrm{~B} 3$

Cross Section Models

- The following examples address the options available for identifying, and eliminating isotopes that do not posses continuous energy cross section data for steady state transport
- Example 2A
- Rename this case ex2a.
- Burn only the fuel region (m1)
- Use fission product Tier 1
- Ordering the output by zaid
- Retrieving burnup output only at the end of the of run
- Using the DEFAULT cross section option

Example 2A

Decay Chain Tracking

- MCNPX utilizes the Isotope Generator Algorithm to determine all the immediate daughter isotopes created from a burn material reaction, and tracks those isotopes during the transport process
- CINDER90 still tracks isotope concentrations for 3400 isotopes
- Only those isotopes utilized in the steady state transport calculation contain isotope abundance data in the output file

Cross Section Models

- Example 2C
- Burn only the fuel region
- Use fission product Tier 1
- Ordering the output by zaid
- Retrieving burnup output only at the end of the of run
- OMMITING from the calculation those isotopes that do not contain transport cross sections

Example 2C

BURNTIME=50 500

MAT=1
POWER= 0.07
PFRAC=1.0 1.0
AFMIN $=1 \mathrm{e}-101 \mathrm{e}-4$
OMIT=1,8,6014,7016,8018,9018,90234,91232,95240,95244 BOPT=1.0 4

Cross Section Averaging

Number Density
 FLUX

Los Alamos
NATIONAL LABORATORY

Fission Product Yields

Yield Data Available

Element	Z	A	Thermal	Fast	HE	SF
Th	90	227	X			
Th	90	229	x			
Th	90	232		X	X	
Pa	91	231		x		
U	92	232	x			
U	92	233	X	X	x	
U	92	234		x	X	
U	92	235	x	X	x	
U	92	236		x	X	
U	92	237		X		
U	92	238		x	x	x
Np	93	237	x	X	x	
Np	93	238		x		
Pu	94	238		X		
Pu	94	239	x	X	X	
Pu	94	240	x	x	x	
Pu	94	241	x	X		
Pu	94	242	x	X	X	

Element	Z	A	Thermal	Fast	HE	SF
Am	95	241	x	x	X	
Am	95	242m	x			
Am	95	243		X		
Cm	96	242		x		
Cm	96	243	x	x		
Cm	96	244		X		x
Cm	96	245	x			
Cm	96	246		x		X
Cm	96	248		x		x
Cf	98	249	x			
Cf	98	250				X
Cf	98	251	x			
Cf	98	252				X
Es	99	253				X
Es	99	254	x			
Fm	100	254				X
Fm	100	255	x			
Fm	100	256				x

- Transmutation chain data for 3400 isotopes
- Fission Yield Data for 1325 isotopes
- Thermal: 18 isotopes, Fast: 22 isotopes, HE: 11 isotopes, S.F.: 9 isotopes

Automatic Fission Yield Selection

- Automating the fission yield selection process eliminate computational cost associated with preliminary neutron spectrum calculation

LA-UR-09-02051
Operated by the Los Alamos National Security, LLC for the DOE/NNSA

FPs, Outputs, and Pfrac

- The following examples address the effect of implementing different fission product tiers on criticality as well as the available options for ordering output and adjusting output frequency
- Example 3
- Copy ex2C and rename to ex3
- Use fission product tier 2
- Order output by mass
- Burn at 80\% power for the final step
- Alter output frequency so that burnup output is printed after each kcode run

NATIONAL LABORATORY

Example 3

BURN TIME=50 500

```
MAT=1
POWER= 0.07
PFRAC=1.0 0.8
AFMIN= 1e-10 1e-4
OMIT=1,9,6014,7016,8018,9018,90234,91232,95240,95244
BOPT=1.0-11
```

- How does the end of cycle $\mathrm{k}_{\text {eff }}$ of this case compare with Example 2C? Why?

Multiple Material Burning

- The following example addresses the multiple material burning capabilities
- Example 4
- Open ex4 rename ex4a
- Burn materials 1 and 4
- Type in needed BURN card input

Infinitely Reflected PWR Fuel Pin

C Cell Cards

	(1)	6.87812e-2		imp:n=1 vol=192.29		Fuel
3	2	$4.5854 \mathrm{e}-2$	$1-2$	imp:n=1 vol=66.53	\$	Clad
4	(4)	6.87812e-2	-3	imp:n=1 vol=192.29	\$	Fuel
5	2	4.5854e-2	3-4	imp:n=1 vol=66.53	\$	Clad
6	3	7.1594e-2 2	$4-5$	ol=748.34 imp:n=1	\$	ater
7	0	5 imp:n=0 \$	Outsi	de Universe		

Second entry on cell the card corresponds to material number
Los Alamos
NATIONAL LABORATORY

Example 4a

BURN TIME=50 500
MAT=1,4
POWER= 0.07
PFRAC=1.0 1.0
AFMIN=1e-10 1e-4
OMIT=1,8,6014,7016,8018,9018, 90234,91232,95240,95244
4,8,6014,7016,8018,9018, 90234,91232,95240,95244
BOPT=1.0 4

SAVE THE OUTPUT OF THIS CASE FOR LATER USE!!!!

Multi Material Burnup

$$
\begin{aligned}
& \text { Individual Material Burnup } \\
& \text { Material \#: } 1 \\
& \text { step duration time power fraction burnup } \\
& \text { (days) (days) (GWd/MTU) } \\
& 0 \text { 0.000E }+000.000 \mathrm{E}+00 \text { 4.956E-01 } 0.000 \mathrm{E}+00 \\
& 15.000 \mathrm{E}+015.000 \mathrm{E}+01 \quad 4.967 \mathrm{E}-01 \quad 9.945 \mathrm{E}-01 \\
& 25.000 \mathrm{E}+025.500 \mathrm{E}+02 \quad 5.038 \mathrm{E}-01 \quad 1.096 \mathrm{E}+01 \\
& \text { Material \#: } 4 \\
& \text { step duration time power fraction burnup } \\
& 0 \text { 0.000E }+00 \text { 0.000E }+00 \quad 5.044 \mathrm{E}-01 \quad 0.000 \mathrm{E}+00 \\
& 15.000 \mathrm{E}+015.000 \mathrm{E}+01 \quad 5.033 \mathrm{E}-01 \quad 1.012 \mathrm{E}+00 \\
& 2 \text { 5.000E+02 5.500E+02 4.962E-01 1.111E+01 } \\
& \text { Burnup }_{i}=\text { Burnup }_{i, \text { previous step }}+\frac{\text { Power Level } * \% \text { Full Power } * \text { Time }^{*} \text { Power Fraction }}{\text { MTHM }_{i}} \\
& \text { Power Fraction }=\frac{\left(\text { volume }^{\prime}\right)_{j}(\text { atom density })_{j} \sum_{i}(\% \text { isotope })_{i, j} \sigma_{f, i, j} Q_{i, j}}{\sum_{j}(\text { volume })_{j}(\text { atom density })_{j} \sum_{i}(\% \text { isotope })_{i, j} \sigma_{f, i, j} Q_{i, j}}
\end{aligned}
$$

LA-UR-09-02051
Operated by the Los Alamos National Security, LLC for the DOE/NNSA

Multiple Material Burning

- Example 4b
- Rename ex4a to ex4b
- Set both fuel cells as material 1
- Burn material 1 only
- Material 1 is located in cells 1 and 3

Infinitely Reflected PWR Fuel Pin
C Cell Cards

Example 4B

BURNTIME=50 500

```
MAT=1
    POWER= 0.07
    PFRAC=1.0 1.0
    AFMIN=1e-10 1e-4
    OMIT=1,8,6014,7016,8018,9018, 90234,91232,95240,95244
    BOPT=1.04
```

- Are the results different from between the two runs? Why or why not?

Lattices

```
Infinitely Reflected PWR Fuel Pin
C Cell Cards
1 1 6.87812e-2 -1 imp:n=1 vol=192.29 u=1 $ Fuel
2 4.5854e-2 1 -2 imp:n=1 vol=66.53 u=1 $ Clad
3 3 7.1594e-2 2 imp:n=1 vol=374.17 u=1 $ water box
4 4 6.87812e-2 -1 imp:n=1 vol=192.29 u=2 $ Fuel
5 2 4.5854e-2 1 -2 imp:n=1 vol=66.53 u=2 $ Clad
6 3 7.1594e-2 2 imp:n=1 vol=374.17 u=2 $ water box
7 0 -5 imp:n=1 lat=1 u=3 fill=0:4 0:4 0:0
\begin{tabular}{lllll}
1 & 1 & 2 & 1 & 1 \\
1 & 2 & 1 & 2 & 1 \\
2 & 1 & 2 & 1 & 2 \\
1 & 2 & 1 & 2 & 1 \\
1 & 1 & 2 & 1 & 1
\end{tabular}
8 0 -6 fill=3 imp:n=1 $ Lattice Bounds
9 0 6 imp:n=0 $ Outside Universe
C Surface Cards
C Fuel Pin
1 RCC 00000365.00 .4095
C Cladding
2 RCC \(00-0.065500365 .1310 .4750\)
C Water Box
5 BOX -0.65665-0.65665-0.1 1.3133 0001.3133000367 .0
*6 BOX -0.657-0.657-0.11 6.570006 .57000367 .1
```


Repeated Structures Modeling

- Energy integrated reaction rates and normalization constants are tallied within each separate burn material using the track length estimator

$$
\phi=\frac{1}{N} \sum_{n}\left(\frac{\left(l_{n} * w_{n}\right)}{V}\right)
$$

- Due to limitations in the repeated structures mapping algorithm in MCNPX, the code cannot always determine the total volume of a plethora of repeated cells
- Excessive time is also wasted trying to query and calculate the total volume

$$
\phi=\frac{1}{N V} \sum_{n}\left(l_{n} * w_{n}\right)
$$

MATVOL Keyword

MATVOL=V1,V2,V3,V4

- If a cell is used once a vol keyword is not needed on the BURN card
- $\mathrm{Vi}=$ Total volume of all cells containing material Mi .
- A Vi entry must be stated for each corresponding Mi entry or the user receives a fatal error
- If a VOL keyword is not stated, the code will try to determine total volume of burn cells employing each specific burn material
- However the code will determine this incorrectly if the user is implementing repeated structures

Multiple Material Burning

- Example 4d
- Open ex4c rename to ex4d
- Burn material 1 and 4 in each lattice element
- Material 1 is listed 16 times
- Material 2 is listed 9 times
- Use a MATVOL keyword to specify the total volume of all pins

Example 4d

BURN TIME=50 500

```
MAT=1,4
POWER= 0.07
PFRAC=1.0 1.0
AFMIN= 1e-10 1e-4
OMIT=1,8,6014,7016,8018,9018,90234,91232,95240,95244
    4,8,6014,7016,8018,9018,90234,91232,95240,95244
BOPT=1.0 4
MATVOL=3076.6 1730.6
```


Manual Time-Dependent Concentration Changes

- To model real life systems, isotopes may have to be added or extracted in order to meet the conditions of the operating strategies
- Boron dilution in PWR
- Fission product extraction in molten salt or gaseous fuel reactor
- MCNPX depletion is capable of manually changing the concentration of a nuclide at any time step
- Atom density
- Weight density
- Atom fraction
- Weight fraction

MATMOD

$$
\begin{aligned}
& \text { MATMOD }=\quad N T, T S,{ }_{1} N M,{ }_{1} M T_{1}, K_{1},{ }_{1} Z_{1}^{1}, C_{1}^{1}, Z_{1}^{2}, C_{1}^{2}, \ldots,{ }_{1} Z_{1}^{K_{1}},{ }_{1} C_{1}^{K_{1}} \text {, } \\
& \ldots,{ }_{1} M T_{n}, K_{n}, Z_{n}^{1}, C_{n}^{1}, Z_{n}^{2}, C_{n}^{2}, \ldots, Z_{n}^{K_{n}}{ }_{1} C_{n}^{K_{n}}, \\
& { }_{j} T S,{ }_{j} N M,{ }_{j} M T_{1},{ }_{j} K_{1},{ }_{j} Z_{1}^{1},{ }_{j} C_{1}^{1},{ }_{j} Z_{1}^{2},{ }_{j} C_{1}^{2}, \ldots,{ }_{j} Z_{1}^{K_{1}}{ }_{j}{ }_{j} C_{1}^{K_{1}}, \\
& \ldots,{ }_{j} M T_{n},{ }_{j} K_{n},{ }_{j} Z_{n}^{1},{ }_{j} C_{n}^{1},{ }_{j} Z_{n}^{2},{ }_{j} C_{n}^{2}, \ldots,{ }_{j} Z_{n}^{K_{n}},{ }_{j} C_{n}^{K_{n}},
\end{aligned}
$$

- $N T=$ Number of time steps (1 through I)
- ${ }_{j} T S=$ Time step (1..j) for which to manually change nuclide concentrations of material MT_{i}. Enter " 1 " for $2^{\text {nd }}$, etc. (If positive apply at discrete steps. If negative apply continuously and make linear interpolations for corrector step)
- ${ }_{j} N M=$ Number of materials at time step " j " that incur nuclide concentration changes
- ${ }_{j} M T_{n}=n$ nth material number for which to manually change nuclides at time step " j ". Positive value indicates atom/wt. fraction and negative value indicates atom/gram densities.
= number of nuclides to manually change for the ith material

MATMOD

$$
\begin{aligned}
& \text { MATMOD }=N T, T S,{ }_{1} N M,{ }_{1} M T_{1,1} K_{1}, Z_{1}^{1}, C_{1}^{1}, Z_{1}^{2},{ }_{1} C_{1}^{2}, \ldots,{ }_{1} Z_{1}^{K_{1}}{ }_{1} C_{1}^{K_{1}} \text {, } \\
& \ldots,{ }_{1} M T_{n}, K_{n}, Z_{n}^{1}, C_{n}^{1}, Z_{n}^{2}, C_{n}^{2}, \ldots,{ }_{1} Z_{n}^{K_{n}}{ }_{1} C_{n}^{K_{n}}, \\
& { }_{j} T S,{ }_{j} N M,{ }_{j} M T_{1},{ }_{j} K_{1},{ }_{j} Z_{1}^{1},{ }_{j} C_{1}^{1},{ }_{j} Z_{1}^{2},{ }_{j} C_{1}^{2}, \ldots,{ }_{j} Z_{1}^{K_{1}},{ }_{j} C_{1}^{K_{1}}, \\
& \ldots,{ }_{j} M T_{n},{ }_{j} K_{n},{ }_{j} Z_{n}^{1},{ }_{j} C_{n}^{1},{ }_{j} Z_{n}^{2}, C_{j}^{2}, \ldots,{ }_{j} Z_{n}^{K_{n}},{ }_{j} C_{n}^{K_{n}},
\end{aligned}
$$

- ${ }_{j} Z_{n}^{K_{n}}=1$ st, $2 n d, . . \mathrm{K}_{\mathrm{n}}$ th nuclide of the MT_{i} th material at time step " j " for which a concentration will be specified. List as a ZAID value.
- ${ }_{j} C_{n}^{K_{n}}=$ concentration for the nth isotope in material MT_{i} at time step "j". Enter positive values for atom fractions or atom densities, and enter a negative value for wt. fractions or gram densities. See sign of MT_{i} to specify either fraction or density

Example 5

- Example 5
- Copy ex4d rename to ex5
- At the first time step change the atom density of U-235 to $7.0 \mathrm{e}-2$ for both materials
- At the second time step make U-238 97\% atom fraction for material 1

MATMOD

BURN TIME=50 500

MAT=1 4
POWER= 0.07
PFRAC=1.0 1.0
AFMIN= 1e-10 1e-4
OMIT=1,8,6014,7016,8018,9018,90234,91232,95240,95244 4,8,6014,7016,8018,9018,90234,91232,95240,95244
BOPT=1.0 4
MATVOL=3076.6 1730.6
MATMOD=2,
1,

$$
2,-1,1,92235,7 \mathrm{e}-2
$$

-4,1,92235,7e-2
2 ,
$1,1,1,92238,0.97$

Time step Determination

$$
\frac{d N_{m}(r, t)}{d t}=-N_{m}(r, t) \beta_{m}+\bar{Y}_{m}+\sum_{k \neq m} N_{k}(r, t) \gamma_{k \rightarrow m}
$$

- Even with cross section averaging methods, without proper selection of time steps, inaccurate conclusion can be made about time dependant results
- As the flux shape changes by " ε," more burn steps are needed in order to determine accurate reaction rates
- Dictated by the buildup and depletion of highly absorbing isotopes
- How does one determine which isotopes have a threshold worth of implementing more burn steps?
- Time-steps are usually chosen by trial-and-error and/or engineering operating experience
- Benchmarking!
- However, can this process by automated?

Los Alamos
NATIONAL LABORATORY

Time Step

- Example 6
- Take previous example and break up the 500 day time step into 5100 day time steps
- Why would the results be expected to be different?

Metastable Representation

Metastable isotopes ZA will now be represented using the following equation:

$$
\begin{gathered}
A^{\prime}=(A+300)+\left(m^{*} 100\right) \\
m=1,2,3,4
\end{gathered}
$$

Example:

$$
\text { Ag-110m }=47510
$$

$47510=47110+1^{\text {st }}$ metastable

Treating Metastable Isomer Branching in MCNPX 2.7.B

Collision Rate of Isomer State $i=\int_{G} Y(E)_{i} \sigma(E)_{R} \Phi(E) d E$
What we do to adjust:

1. Tally (n, g) total in MCNPX $=\left(\sigma_{n, \gamma} \Phi\right)_{\text {MCNPX }}$
2. Allow CINDER90 to calculate and energy integrate the $\mathrm{M}(\mathrm{n}, \mathrm{g}) \mathrm{L}^{*}=\quad\left(\sigma_{n, \gamma^{*}} \Phi\right)_{\text {CINDER90 }}$
3. Use the equation listed below to adjust $M(n, g) L$

$$
\text { Corrected } M(n, \gamma) N=\left(1-\frac{\left(\sigma_{n, \gamma^{*}} \Phi\right)_{\text {CINDERP0 }}}{\left(\sigma_{n, \gamma} \Phi\right)_{\text {MCNPX }}}\right) \times\left(\sigma_{n, \gamma} \Phi\right)_{\text {MCNPX }}
$$

Recoverable Energy per Fission

$$
Q_{\text {recoverable }}=Q_{\text {prompt }}+Q_{\text {delayed }}+\left(\bar{v}(E)-k_{\text {eff }}\right) * Q_{\text {capture } \gamma}-Q_{\text {neutrino }}
$$

- Prompt Q value is usually determined from ENDF tape
- File 1 MT 458
- Delayed Q value may be estimated assuming local energy deposition
- Deposited gamma energy may need adjustment

Emitted and recoverable energy for fission of U-235

Form	Emitted Energy $(M e V)$	Recoverable Energy (Mev)
Fission Fragments	168	168
Fission Product Decay		
γ-rays	8	8
-rays	7	7
neutrinos	12	--
Prompt gamma rays	7	7
Fission neutrons (kinetic energy)	5	5
Capture y-rays	--	$3-12$
Total	207	$198-207$

- 207 of 390 isotopes contain capture gamma data in ENDF VII. 0

Future Work for Burnup

- New Data
- CINDER90 version 8
- Large sized problems and message passing
- Error propagation
- Toshikazu Takeda, Naoki Hirokawa and Tomohiro Noda "Estimation of Error Propagation in Monte-Carlo Burnup Calculations" Journal of Nuclear Science and Technology, Vol 36, No. 9, September 1999.
- Minor actinide fission yields
- Q value
- File 1 MT 458 (Prompt Q)
- Capture Gamma
- 207 of 390 isotopes contain capture gamma data in ENDF VII. 0
- Fission product lumps
- Critical Spectra
- Thermohydraulic feedback
- Isomer branching ratio File 9 MT 102
- Automatic burn step generation

Domain decomposition Monte Carlo

Fixed Source Detector Calculations

- Sources
- Tallies and Tagging

Sources

- GENERAL
- CRITICALITY
- SURFACE
- USER-SUPPLIED

SDEF
KCODE/KSRC SSW/SSR

- ENERGY
- TIME
- DIRECTION u,v,w
- POSITION x,y,z
- PARTICLE TYPE
- WEIGHT
- cell/surface if any

SDEF Card

SDEF <var ${ }_{1}=$ spec $_{1}><\operatorname{var}_{2}=$ spec $_{2}>\ldots$ DEFAULT:

A 14 MeV isotropic point source from position $0,0,0$ at time $=0$ and weight $=1$

SDEF ERG $=14(\mathrm{MeV})$ pos $=000$ tme $=0\left(\right.$ shakes $\left.=10^{-8} \mathrm{~s}\right) \mathrm{wgt}=1$

SDEF Variables Used for this Exercise

- SCALAR

PAR, CEL, EXT and RAD

- VECTOR (must specify x, y, z)
- POS reference point for sampling position
- AXS reference vector for EXT and RAD

SDEF Specification Types

SPECIFICATION can have 3 forms:

- explicit value:

SDEF Par = a

- distribution number:

SDEF Pos = D1

- a function of another variable:

SDEF POS=D1 Par FPOS D2

SI (Source Information) Card

Distribution numbers: SDEF EXT = D1

SIn option entries

$\mathrm{n}=$ distribution number from D specification
H - histogram bin upper boundaries (default)
L - discrete values follow
A - points where probability density distribution is defined
S - distribution numbers follow

SP (Source Probability) Card

Distribution numbers: SDEF POS = D1

SPn option entries

$\mathrm{n}=$ distribution number from D specification
d - bin probabilities (default)
c - cumulative bin probabilities
v - probability proportional to volume
f - built-in function (FOR CYINDERS use -21 1)

DS (Dependent Source) Card

SDEF POS = D1 Par = fpos = d2
DSn option entries

SI1	L	0	0	0	110
SP1		1	1	1	
DS2	L	a		t	

Or...
$\begin{array}{llll}\text { DS2 } & \text { S } & 3 & 4\end{array}$
H -- values for continuous distribution
L -- discrete values
S -- more distribution numbers
T -- independent value dependent value
Q -- independent value distribution \#

CYLINDRICAL VOLUME

AXS vector $\mathbf{u} \mathbf{v} \mathbf{w}$
POS vector xyz
RAD distribution Dn
for cylinder
EXT distribution Dn

Spontaneous Fission Source from Two Cylinders

- Geometry of Ex4b
- Emit a spontaneous fission source par=sf from each fuel pin
- Cells 1 and 4 contain fuel pins cel = ?; d\#
- Position is a function of cell location; pos=fcel=?
- Each fuel pin is $0 \rightarrow 365 \mathrm{~cm}$ tall; ext = ?; d\#
- Each fuel pin is $0 \rightarrow 0.4095 \mathrm{~cm}$ diameter; rad = ?; d\#; sp\#-21 1
- Each fuel pin is oriented on the z-axis; axs = ?

What would the SDEF card for this passive spontaneous fission source look like?

Spontaneous Fission Source from Two Cylinders

```
SDEF par=sf cel=d1 pos=fcel=d2
        ext=d3 rad=d4 axs=0 0 1
SI1 L 1 4
SP1 }1
ds2 L 0 0 0 1.3133 00
SI3 0.001 364.99
SP3 0 1
SI4 0 0.40949
SP4-211
```


We will use this source later!!!

Tally Types

Tally Type

F1: Surface Current
F2: Surface Fluence
F4: Cell Fluence
F5: Detector Fluence
F6: Energy Deposition
+F6: Energy Depos. (all particles) MeV/gm
F7: Fission Energy Deposition $\quad \mathrm{MeV} / \mathrm{gm}$
F8: Pulse Height pulses

Tally Format

Simple Form: Fn:<pl> $S_{1} S_{2} \ldots S_{k}$ General Form: Fn:<pl> $S_{1}\left(S_{2} \ldots S_{3}\right)\left(S_{4} \ldots S_{5}\right) S_{6}$

n $\quad=$ tally number
<pl> = particle type (IPT Symbol Only)
() -> total over the specified range
Examples
F2:n 3
F104:u 2
(5 67 8)
$\$$ fluence on surface 3 (neutron)
\$ fluence in cell 2 (neutrino)
\$ total fluence, cells 5, 6, 7, 8

Tally Test

Further Examples:

Tally neutrons crossing surface 2
F \qquad :

Tally the volumetric flux for neutrons entering volume 4, have a separate tally determine neutrons entering volume 6

Tally Tagging

FTn TAG a

$n=$ tally number
$a=$ specifies how scatter is to be treated when tagging
a=1 all collided particles will lose their tag and bremsstrahlung and annihilation photons will be included in the bin of collided particles
a=2 indicates that all collided particles will lose their tag, but that bremsstrahlung and annihilation photons will be given special tags that allow them to be segregated
$a=3 \quad$ indicates that all collided particles will retain their production tag

Tally Tagging (Binning)

FUn CCCCCZZAAA.RRRRR

CCCCC $\quad=$ cell location (i.e. $400000 \rightarrow$ cell 4)
ZZ
AAA $\quad=$ atomic mass
RRR = reaction type (MT number)

Example:
1426056.00102 \rightarrow tag all (n, g) reactions with iron 56 in cell 14 that contribute to detection in tally number n

Special Tags for Our Examples

-0000000001 or -1 Source particle tag for all cells
-CCCCC00001 Source (i.e., uncollided) particle tag for cell CCCCC
0000000000 or 0 Scattered particle tag
10000000000 or 1 e 10 everything else tag

Example:
F4:n 3
FT4 TAG 3
FU4 400000.00018-400001 4000001 e 10
Tag neutrons were detected in cell 3 and came from cell 4 by fission, any other inelastic reaction, or source neutrons. Also tag everything else.

Example 7

- Example 7
- Open ex7 rename to ex7a
- Open ex4a.o
- Take the material information for the final burn step for ex4b for materials 1 and 4 and make new material cards for ex7 materials 1 and 4
- Add your previously generated passive neutron source definition; SDEF card
- Create a volumetric neutron flux tally in the detector region; F_:n _; cell 105; duplicate this tally using another number F_{-}:n _.
- Use tally tagging to determine all neutrons sources and induced fissions that were detected in cell 105

Example 7

```
C SDEF Cards
SDEF par=sf cel=d1 pos=fcel=d2 ext=d3 rad=d4 axs=0 0 1
SI1I14
SP111
ds21000 1.313300
SI3 0.001 364.99
SP3 0 }
SI4 0 0.40949
SP4-211
C Material Cards
print
f4:n 105
f14:n 105
FT14 TAG 3
FU14 400000.00018 100000.00018-400001-100001 1e10
FMULT 94236 WIDTH = 1.1 WATT = .2 4 SFYIELD 1
FMULT 96246 WIDTH = 1.1 WATT = .2 4 SFYIELD 1
nps }10000
mode n
phys:n 100 100 0-1 201 0
```


Questions?

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

